Additional reading:
- Doucet, De Freitas and Gordon, An introduction to
Sequential Monte Carlo, in SMC in Practice, 2001 Ps
file here
- Gordon, Salmond & Smith, Novel approach to nonlinear non-Gaussian
Bayesian state estimation, IEE, 1993 Pdf
file
Lecture 4 - Advanced
Sequential Monte Carlo methods
Additional reading:
Tutorial covering all these advanced methods and more.
- A.D. and A. Johansen, Particle filtering and smoothing: Fifteen years
later, in Handbook of Nonlinear
Filtering (eds. D. Crisan et B. Rozovsky), Oxford University
Press, 2009Pdf (Updated version)
Or if you prefer reading the original papers.... Auxiliary particle filters
- M.K. Pitt and N. Shephard, Filtering via Simulation: Auxiliary
Particle Filter, JASA, 1999 Pdf
- A. Johansen and A. Doucet, A Note on Auxiliary Particle Filters,
Stat. Proba. Letters, 2008. Pdf Resample move
- W. Gilks and C. Berzuini, Following a moving target: Monte Carlo
inference for dynamic Bayesian models, JRSS B, 2001 Pdf file here Fixed lag sampling
- A. Doucet et al., Efficient
Block Sampling Strategies for Sequential Monte Carlo", (with M. Briers
& S. Senecal), JCGS, 2006.
Pdf
Variance reduction
- C. Andrieu and A. Doucet, Particle Filtering for Partially Observed
Gaussian State Space
Models, JRSS B, 2002. Pdf
- R. Chen and J. Liu, Mixture Kalman filters, JRSSB, 2000. Pdf
- A. Doucet, S.J. Godsill and C. Andrieu, On Sequential Monte Carlo
sampling methods for Bayesian filtering, (section IV) Stat. Comp., 2000
Pdf
Lecture 5 - Sequential
Parameter Estimation for State-Space models: Bayesian and ML approaches
Tutorial discussing almost all the SMC-based methods for offline and sequential parameter estimation. -
N. Kantas, A.D., S.S. Singh and J.M. Maciejowski, An overview of
sequential Monte Carlo methods for parameter estimation in general
state-space models, in Proceedings IFAC System Identification (SySid)
Meeting, 2009Pdf - C. Andrieu, A.D. & R. Holenstein, Particle Markov chain Monte Carlo methods (with discussion), JRSS B, 2010Pdf
Bayesian approaches
* C. Andrieu, N. De Freitas and A. Doucet, Sequential MCMC for Bayesian
Model Selection, Proc. IEEE Workshop HOS, 1999 Pdf
* P. Fearnhead, MCMC, sufficient statistics and particle filters, JCGS,
2002 Pdf
* G. Storvik, Particle filters for state-space models with the
presence of unknown static parameters, IEEE Trans. Signal Processing,
2002 Pdf
Non-Bayesian approaches
* C. Andrieu, A. Doucet and V.B. Tadic, Online EM for parameter
estimation in nonlinear-non Gaussian state-space models, Proc. IEEE
CDC, 2005 Pdf
* G. Poyadjis, A. Doucet and S.S. Singh, Particle Approximations of the Score and
Observed Information Matrix in State-Space Models with Application to
Parameter Estimation, Biometrika, to appear 2010. Pdf (Extended version of Maximum Likelihood Parameter
Estimation using Particle Methods, Joint
Statistical Meeting, 2005 Pdf) * P. Del Moral, A. Doucet & S.S. Singh, Forward Smoothing using Sequential Monte Carlo, technical report, Cambridge University, 2009 Pdf
Application of recursive maximum likelihood
* C. Caron, R. Gottardo and A. Doucet, On-line Changepoint Detection
and Parameter Estimation for Genome Wide Transcript Analysis, Technical
report 2008 Pdf
* R. Martinez-Cantin, J. Castellanos and N. de Freitas. Analysis
of Particle Methods for Simultaneous Robot Localization and Mapping and
a New Algorithm: Marginal-SLAM. International Conference on Robotics
and Automation Pdf
Lecture 6 - Guest Lecturer: Christophe Andrieu - Adaptive Markov chain Monte Carlo methods
* P. Del Moral, A. Doucet & A. Jasra, Sequential Monte Carlo Samplers, JRSSB, 2006. Pdf
Lecture 8 - Guest Lecturer: Alexandre Chorin.
Final Projects
You will have to study a few papers on a specific SMC topic,
write a report, implement some algorithms and make a
presentation.
Potential projects are listed here.
I am open to suggestions but you need to discuss it with me beforehand.
References
Basic Introduction to SMC for
state-space models
* A. Doucet, N. De Freitas and N.J. Gordon, An introduction to
Sequential Monte Carlo, Ps
file here
"Standard" SMC papers
* J. Carpenter, P. Clifford and P. Fearnhead, An Improved Particle Filter for Non-linear Problems,Pdf
file
here
* A. Doucet, S.J. Godsill and C. Andrieu, On Sequential Monte Carlo
sampling methods for Bayesian filtering, Stat. Comp., 2000 (reprinted
2005) Pdf
file here
* M.K. Pitt and N. Shephard, Filtering via Simulation: Auxiliary
Particle Filter, JASA, 1999 Pdf
file here
* J.S. Liu and R. Chen, Sequential Monte
Carlo methods for dynamic systems, JASA, 1998 Pdf
file here
SMC papers for sequential static
parameter estimation in state-space models
- Bayesian approaches
* C. Andrieu, N. De Freitas and A. Doucet, Sequential MCMC for Bayesian
Model Selection, Proc. IEEE Workshop HOS, 1999 Pdf
file here
* P. Fearnhead, MCMC, sufficient statistics and particle filters, JCGS,
2002 Pdf
file here
* G. Storvik, Particle filters for state-space models with the
presence of unknown static parameters, IEEE Trans. Signal Processing,
2002 Pdf
file here
- Non-Bayesian approaches
* P. Del Moral, A. Doucet & S.S. Singh, Forward Smoothing using Sequential Monte Carlo, technical report, Cambridge University, 2009 Pdf * G. Poyadjis, A. Doucet and S.S. Singh, Particle Approximations of the Score and
Observed Information Matrix in State-Space Models with Application to
Parameter Estimation, Biometrika, to appear 2010. Pdf
* C. Andrieu, A. Doucet and V.B. Tadic, Online EM for parameter
estimation in nonlinear-non Gaussian state-space models, Proc. IEEE
CDC, 2005 Pdf
file here
* G. Poyadjis, A. Doucet and S.S. Singh, Maximum Likelihood Parameter
Estimation using Particle Methods, Joint
Statistical Meeting, 2005 Pdf
here
SMC papers
for off-line static parameter estimation in state-space models
* C. Andrieu, A.D. & R. Holenstein, Particle Markov chain Monte Carlo methods (with discussion), JRSS B, 2010Pdf
Books discussing extensively SMC
methods
* Del Moral, Feynman-Kac Formulae, Springer-Verlag, 2004 - All you want
to know about the theory of SMC.
* Doucet, De Freitas & Gordon (eds), Sequential Monte Carlo in
Practice, Springer-Verlag: 2001 - A collection of chapters on the
subject.
* Cappe, Moulines & Ryden, Inference in Hidden Markov Models,
Springer-Verlag, 2005 - Discuss at length the applications of SMC to
state-space models
* Liu, Monte Carlo Methods in Scientific Computing, Springer-Verlag,
2001 - Discuss SMC and also MCMC.
Books discussing MCMC (for those not familiar with this class of
methods)
* Robert & Casella, Monte Carlo Statistical Methods, 2004.