
FIRST EXPERIMENTAL RESULTS OF PROBCUT
APPLIED TO CHESS

A.X. Jiang
Department of Computer Science, University of British Columbia, Vancouver, Canada

albertjiang@yahoo.com

M. Buro
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

mburo@cs.ualberta.ca, http://www.cs.ualberta.ca/˜mburo/

Abstract ProbCut is a selective-search enhancement to the standard alpha–beta algorithm
for two–person games. ProbCut and its improved variant Multi–ProbCut (MPC)
have been shown to be effective in Othello and Shogi, but there had not been
any report of success in the game of chess previously. This paper discusses our
implementation of ProbCut and MPC in the chess engine ������. Initial test
results suggest that the MPC version of ������ is stronger than the original
version of ������: it searches deeper in promising lines and defeated the
original ������ +22��� � �� (59.4%) in a 64–game match. Incorporating
MPC into ������ also increased its tournament performance against ���� –
another strong chess program: ������’s speed chess tournament score went
up from 51% to 56%.

Keywords: Selective search, ProbCut, chess

1. Introduction

Computer chess has been an AI research topic since the invention of the
computer, and it has come a long way. Nowadays, the best computer chess pro-
grams and the best human grandmasters play at roughly the same level. Most of
the successful chess programs use the so–called brute–force approach, in which
the program has limited chess knowledge and relies on a fast search algorithm
to find the best move. There has been much research on improving the original
minimax algorithm for finding moves in two player perfect information games.
Enhancements range from sound backward pruning (alpha–beta search), over
using transposition tables and iterative deepening, to selective search heuristics

20 A.X. Jiang, M. Buro

that either extend interesting lines of play or prune uninteresting parts of the
search tree.

The ProbCut (Buro, 1995) and Multi–ProbCut (MPC) (Buro, 1997a) heuris-
tics fall into the last category. They were first implemented in Othello programs
where they resulted in a much better performance compared to full–width alpha–
beta search. Utilizing MPC, Logistello defeated the reigning human Othello
World Champion Takeshi Murakami by a score of 6–0 in 1997 (Buro, 1997b).

ProbCut and MPC do not rely on any game specific properties. However,
there were no previous reports of success at implementing them in the game
of chess. In this paper we present our first implementations of ProbCut and
MPC in a chess program and some experimental results on their performance.
Section 2 gives some necessary background knowledge. Section 3 discusses
our ProbCut implementation and Section 4 discusses our MPC implementation.
Finally, Section 5 concludes and discusses some ideas for future research.

2. Background

There has been a lot of previous research in the field of game–tree search.
We will not attempt to cover it all here. Instead, we will concentrate on things
relevant to ProbCut. For an introduction to game–tree search, a good web–site
is ��������������	
����������������������

2.1 Minimax and Alpha–Beta Search

For two–person zero–sum games like chess, positions can be viewed as nodes
in a tree or DAG. In this model, moves are represented by edges which connect
nodes. Finding the best move in a given positions then means to search through
the successors of the position in order to find the best successor for the player
to move after finding the best successor for the opponent in the next level of the
tree. This procedure is called minimaxing. In practice, computers do not have
time to search to the end of the game. Instead, they search to a certain depth,
and use a heuristic evaluation function to evaluate the leaf nodes statically. For
chess, the evaluation function is based on material and other considerations
such as king safety, mobility, and pawn structure.

An important improvement over minimax search is alpha–beta pruning (Knuth
and Moore, 1975). An alpha–beta search procedure takes additional parameters
alpha and beta, and returns the correct minimax value (up to a certain depth)
if the value is inside the window (alpha, beta). A returned value greater or
equal to beta is a lower bound on the the minimax value, and a value less or
equal to alpha is an upper bound. These cases are called fail–high and fail–low,
respectively. A pseudo–code representation of one version of the algorithm
is shown in Figure 1. The algorithm shown is called “fail–hard” alpha–beta,
because it generally returns alpha for fail–lows and beta for fail–highs. There

First Experimental Results of ProbCut Applied to Chess 21

��� ������	��
��� ������ ��� �	��� ��� �	���� �

��
�	��� �� �� �	���� ����������
��

��� ���������	� � �	�	���	���	�
��

���
��� ���� � � ���������	�� ���� �

�� 	���	
���

��� � !������	��
!�	��� !������ �	���!"��

#�$����	
���

��
��� %� �	��� �	���� ����

��
��� % ������ ����� � ����

&

�	���� ������

&

Figure 1. The alpha–beta algorithm (fail–hard version).

exist “fail–soft” versions of alpha–beta which can return values outside of the
alpha–beta window, thus giving better bounds when it fail–high/fail–low.

There have been a number of enhancements to alpha–beta, e.g. transposi-
tion tables, iterative deepening, NegaScout, etc. (Reinefeld, 1983; Junghanns,
1998). Armed with these refinements, alpha–beta has become the dominant
algorithm for game tree searching (Junghanns, 1998).

Compared to minimax, alpha–beta is able to prune many subtrees that would
not influence the minimax value of the root position. But it still spends most of its
time calculating irrelevant branches that human experts would never consider.
Researchers have been trying to make the search more selective, while not
overlooking important branches. How should we decide whether to search a
particular branch or not? One idea is to base this decision on the result of a
shallower search. The null–move heuristic (Beal, 1990; Donninger, 1993) and
ProbCut are two approaches based on this idea.

2.2 The Null–Move Heuristic

A null–move is equivalent to a pass: the player does nothing and lets the
opponent move. Passing is not allowed in chess, but in chess games it is almost
always better to play a move than passing. The null–move heuristic (or null–
move pruning) takes advantage of this fact, and before searching the regular
moves for height�� plies as in alpha–beta, it does a shallower search on the
null–move for height�� � � plies, where � is usually 2. If the search on the
null–move returns a value greater or equal to beta, then it is very likely that one
of the regular moves will also fail–high. In this case we simply return beta after
the search on the null–move. This procedure can even be applied recursively in
the shallower search, as long as no two null–moves are played consecutively.

Because the search on the null–move is shallower than the rest, occasionally
it will overlook something and mistakenly cut the branch, but the speed–up from

22 A.X. Jiang, M. Buro

cutting these branches allows it to search deeper on more relevant branches. The
benefits far outweigh the occasional mistakes. However, in chess endgames
with few pieces left, zugzwang positions are often encountered, in which any
move will deteriorate the position. Null–move heuristic fails badly in zugzwang
positions. As a result, chess programs turn off null–move heuristic in late
endgames.

There have been some research to further fine–tune and improve the null–
move heuristic. Adaptive Null–Move Pruning (Heinz, 1999) uses � � � for
positions near the root of the tree and � � � for positions near the leaves of
the tree, as a compromise between the too aggressive � � � and the robust
but slower � � �. Verified Null–Move Pruning (Tabibi and Netanyahu, 2002)
uses � � �, but whenever the shallow null–move search returns a fail–high,
instead of cutting, the search is continued with reduced depth. Verified null–
move pruning can detect zugzwang positions, have better tactical strength while
searching less nodes than standard � � �.

The null–move heuristic is very effective in chess, and most of the strong
chess engines use it. But it depends on the property that the right to move has
positive value, so it is not useful to games like Othello and checkers, in which
zugzwang positions are common.

2.3 ProbCut

ProbCut is based on the idea that the result �� of a shallow search is a rough
estimate of the result � of a deeper search. The simplest way to model this
relationship is by means of a linear model:

� � � � �� � �� ��

where � is a normally distributed error variable with mean 0 and standard de-
viation �. The parameters �, �, and � can be computed by linear regression
applied to the search results of thousands of positions.

If based on the value of ��, we are certain that � � �, where � is the
beta–bound for the search on the current subtree, we can prune the subtree and
return �. After some algebraic manipulations, the above condition becomes
���� � �� ���� � ����. This means that � � � holds true with probability
of at least 	 iff ���� � � � ���� � ����	�. Here, � is the standard Normal
distribution. This inequality is equivalent to �� � �����	� � � � � � ����.
Similarly for � �
, the condition becomes �� � ������	� � � �
 � ����.
This leads to the pseudo–code implementation shown on Figure 2. Note that
the search windows for the shallow searches are set to have width 1. These are
called null–window searches. Generally, the narrower the window is, the earlier
the search returns. Null–window searches are very efficient when we do not
care about the exact minimax value and only want to know whether the value
is above or below a certain bound, which is the case here. The depth pair and

First Experimental Results of ProbCut Applied to Chess 23

cut threshold are to be determined empirically, by checking the performance of
the program with various parameter settings.

For ProbCut to be successful, �� needs to be a good estimator of �, with a fairly
small �. This means that the evaluation function needs to be a fairly accurate
estimator of the search results. Evaluation functions for chess are generally
not very accurate, due to opportunities of capturing which cannot be resolved
statically. Fortunately, most chess programs conduct a so–called quiescence
search: at the leaves of the game tree where the regular search height reaches
zero, instead of calling the evaluation function, a special quiescence search
function is called to search only capturing moves, only using the evaluation
function’s results when there are no profitable capturing moves. Quiescence
search returns a much more accurate value.

In summary, the null–move heuristic and ProbCut both try to compensate
for the lower accuracy of the shallow search by making it harder for the shal-
low search to produce a cut. The null–move heuristic does this by giving the
opponent a free move, while ProbCut widens the alpha–beta window.

'$	���	 () ** $	��� �� ������+ �	��,�

'$	���	 - . ** ,�	, �	���

'$	���	 / "0� ** ,�� ���	����$

��� ������	��
��� ������ ��� �	��� ��� �	���� �

��
�	��� �� �� �	���� ����������
��

��
�	��� �� -� �

��� ����$�

** �� � %� �	�� �� 	�12

����$ � ����$

/ 3 ���� � �	�� ! �� * ���

��
������	��
����$!"� ����$� (� %� ����$�

�	���� �	���

** �� � �� ����� �� 	�12

����$ � ����$

!/ 3 ���� � ����� ! �� * ���

��
������	��
����$� ����$�"� (� �� ����$�

�	���� ������

&

** /�	 �	�� �� �����!�	�� ,�$	 �	� �	�	

000

&

Figure 2. ProbCut implementation with depth pair (4,8) and cut threshold 1.0.

24 A.X. Jiang, M. Buro

2.4 Multi–ProbCut

MPC enhances ProbCut in several ways:

Allowing different regression parameters and cut thresholds for different
stages of the game.
Using more than one depth pair. For example, when using depth pairs
(3,5) and (4,8), if at check height 8 the 4–ply shallow search does not
produce a cut, then further down the 8–ply subtree we could still cut some
5–ply subtrees using 3–ply searches.
Internal iterative deepening for shallow searches.

Figure 3 shows pseudo–code for a generic implementation of MPC. The
MPC search function is not recursive in the sense that ProbCut is not applied
inside the shallow searches. This is done to avoid the collapsing of search depth.
In the case of Othello, MPC shows significant improvements over ProbCut.

2.5 ProbCut and Chess

There has been no report of success for ProbCut or MPC in chess thus far.
There are at least two reasons for this:

1 The null–move heuristic has been successfully applied to chess. Null–
move and ProbCut are based on similar ideas. As a result they tend to
prune the same type of positions. Part of the reason why ProbCut is
so successful in Othello is that the null–move heuristic does not work
in Othello because it is a zugzwang game. But in chess, ProbCut and
MPC have to compete with null–moves, which already improves upon
brute–force alpha–beta search.

2 The probability of a chess search making a serious error is relatively high,
probably due to the higher branching factor (Junghanns et al., 1997). This
leads to a relatively large standard deviation in the linear relationship be-
tween shallow and deep search results, which makes it harder for ProbCut
to prune sub–trees.

In the GAMES group at the University of Alberta there had been attempts
to make ProbCut work in chess in 1997 (Junghanns and Brockington, 2002).
However, the cut–thresholds were chosen too conservatively resulting in a weak
performance.

Recently, researchers in Japan have successfully applied ProbCut to Shogi
(Shibahara, Inui, and Kotani, 2002). In Shogi programs forward pruning meth-
ods are not widely used, because Shogi endgames are much more volatile than
chess endings. Therefore, ProbCut by itself can easily improve search perfor-
mance compared with plain alpha–beta searchers. As mentioned above, gaining
improvements in chess, however, is much harder because of the already very
good performance of the null–move heuristic.

First Experimental Results of ProbCut Applied to Chess 25

'$	���	 ��4�(/��� 5 ** 	00 ��$$�	!��	� 	�$��	

'$	���	 ��4�-�6�-/ "� ** ��70 ,�	, �	���

'$	���	 8#��/9: 5 ** ��70 ����	� �� ,�	, �

** ;���<�� �����	�	� �	�� ��� 	�,� ���	 ��$ �	���

����,� ;���� �

��� $� ** ������+ $	���

����� �� ** ,�� ���	����$

����� �� �� �� ** ����	� ����	�� ��0	�0

& �����=��4�(/����">=��4�-�6�-/�">=8#��/9:>�

��� �;<
��� ������ ��� �	��� ��� �	���� �

** ;���<�� ,�	,

��
�	��� �� ��4�-�6�-/� �

���
��� ���� � � 8#��/9:� ���� �

��� ����$�

;���� ?�� � �����=���	>=�	���>=�>�

** � �� �� ��	�	 ��	 �� �����	�	�� �������	

��
��0$ � �� ��	� �

** �� ���	��� %� �	�� �� 	�12

����$ � ����$

��0�3��0���	��!��0��*��0���

��
������	��
����$!"� ����$� ��0$� %� ����$�

�	���� �	���

** �� ���	��� �� ����� �� 	�12

����$ � ����$

!��0�3��0�������!��0��*��0���

��
������	��
����$� ����$�"� ��0$� �� ����$�

�	���� ������

&

&

** ��	 �	����$	� �� ��	 �����!�	�� ��������

000

&

Figure 3. Multi–ProbCut implementation. AlphaBeta() is the original alpha–beta search
function.

3. ProbCut Implementation

Before trying MPC, we implemented the simpler ProbCut heuristic with
one depth pair and incorporated it into ������ (version 18.15) by Hyatt.1

1������’s source code is available at ftp://ftp.cis.uab.edu/pub/hyatt.

26 A.X. Jiang, M. Buro

������ is a state–of–the–art free chess engine. It uses a typical brute–force
approach, with a fast evaluation function, NegaScout search and all the stan-
dard search and all the standard enhancements: transposition table, Null–Move
heuristic, etc. ������ also utilizes quiescence search, so the results of its
evaluation function plus quiescence search are fairly accurate.

The philosophy of our approach is to take advantage of the speed–up provided
by the null–move heuristic whenever possible. One obvious way to combine
the null–move and ProbCut heuristics is to view null–move search as part of
the brute–force search, and build ProbCut on top of the “alpha–beta plus null–
move” search. Applying the necessary changes to������ is easy. We put the
ProbCut shallow search code in front of the null–move shallow search code.
We also implemented the MPC feature that allows different parameters to be
used for middle–game and endgame.

Before ProbCut–������ could be tested, parameters of the linear Prob-
Cut opinion change model had to be estimated. We let ������ search (us-
ing alpha–beta with null–move heuristic) around 2700 positions and record
its search results for �� �� � � � � �� plies. The positions were chosen randomly
from some computer chess tournament games and some of ������’s games
against human grandmasters on internet chess servers. Note that that ������
was using the null–move heuristic for these searches.

Then we fitted the linear regression model for several depth pairs and game
phases, using the data collected. The results indicate that shallow and deep
search results are correlated, as shown in Figure 4. However, the fit is not
perfect. The �� versus � relation has the following characteristics.

The slope is closer to 1.0 and the standard deviation smaller for �� data
points closer to zero, For example, for depth pair (4, 8), and �� data points
in the range 	����� ���
, the slope is ���� and the standard deviation is
��; for �� data points in the range 	������ ����
, the slope is ���� and the
standard deviation is ���. This can be explained as follows: if say White
has a big advantage, then White will likely gain more material advantage
after a few more moves. Therefore, if the shallow search returns a big
advantage, a deeper search will likely return a bigger advantage, and
vice versa for disadvantages. We only used �� data points in the range
	����� ���
 for the linear regression.

Occasionally the shallow search misses a check–mate while the deeper
search finds it. For example, in a position White can check–mate in 7
plies. A 4–ply search cannot find the check–mate while a 8–ply search
can find it. For the depth pair (4, 8), and �� data points in the range
	����� ���
, this happens roughly once every 1000 positions. A check–
mate–in–�–moves is represented by a large integer in ������. We
excluded these data points from the linear regression, because the evalu-

First Experimental Results of ProbCut Applied to Chess 27

-1000

-500

 0

 500

 1000

-800 -600 -400 -200 0 200 400 600 800

v,
 d

ep
th

 8

v’, depth 4

Figure 4. �
� versus � for depth pair (4,8) The evaluation function’s scale is 100 = one pawn,

i.e. a score of 100 means the player to move is one pawn up (or has equivalent positional
advantage).

Pairs Stage a b � r

(3,5) middle–game 0.998 �� 55.8 0.90
(3,5) endgame 1.026 ���� 51.8 0.94
(4,8) middle–game 1.02 ���� 82 0.82
(4,8) endgame 1.11 ���� 75 0.90

Table 1. Linear regression results. The evaluation function’s scale is 100 = one pawn. � is the
regression correlation coefficient, a measure of how good the data fits the linear model.

ation of check–mate is a rather arbitrary large number, there is no proper
way to incorporate these data points in the linear regression.

We also fitted model parameters for different game stages. It turned out that
the standard deviation for the fit using only endgame positions2 is smaller than
the standard deviation using only middle–game positions. Table 1 shows some
of the results.

We conducted some experiments3 with different depth pairs and cut thres-
holds. Depth pairs �� �� and �� ��, and cut thresholds ��� and ��� were tried.

2In ������ endgame positions are defined as those in which both players have weighted material count
less than 15. Here Queen is 9, Rook is 5, Knight/Bishop is 3, and Pawns do not count.
3All initial experiments were run on Pentium–3/850MHz and Athlon–MP/1.66GHz machines under Linux,
whereas the later tournaments were all played on Athlon–MP/2GHz machines. ������’s hash table size

28 A.X. Jiang, M. Buro

We used two types of tests. First, we test the search speed by running fixed–
time searches and look at the depths reached. If a ProbCut version is not faster
than the plain null–move version, then the ProbCut version is clearly no good.
If a ProbCut version is faster than null–move, it is still not necessarily better.
So to test the overall performance, we then run matches between the promising
ProbCut versions and the original ������.

We let the program search about 300 real–game positions, spending 30 sec-
onds on each position, and see how deep it was able to search on average.
Results show that

Versions with depth pairs (4,6) and (4,8) have similar speeds.
The versions with cut threshold 1.5 are not faster than plain ������.
The versions with cut threshold 1.0 are slightly faster than ������:
they search 11.6 plies compared to 11.5 plies by ������. In some
positions, �����% of the shallow searches result in cuts, and ProbCut is
much faster than plain������. But in some other positions the shallow
searches produce cuts less than 60% of the time, and ProbCut is about the
same speed or even slower than ������. On average, this version of
ProbCut produces more cuts than plain ������’s null–move heuristic
does at the check height.

Because the cut threshold 1.5 is no good, we concentrated on the threshold 1.0
for the following experiments. We ran matches between the ProbCut versions
and plain ������. Each side has 10 minutes per game. A generic opening
book was used. Endgame databases were not used. A conservative statistical
test4 shows that in a 64–game match, a score above 38 points (or 59%) is
statistically significant with 	 ����. Here a win counts one point and a draw
counts half a point.

The match results are not statistically significant. The ProbCut versions
seem to be no better nor worse than plain ������. For comparison, we ran
a 64–game match of ProbCut against ������ with null–move turned off for
both programs. The ProbCut version is significantly better than ������ here,
winning the match 40–24.

4. Multi–ProbCut Implementation and Results

ProbCut produces more cuts than the plain null–move heuristic does, but
it seems that the small speed–up provided by ProbCut is not enough to result

was set to 48 MBytes, and the pawn hash table size to 6 MBytes. Opening books and thinking on opponent’s
time was turned off.
4The statistical test is based on the assumption that at least 30% of chess games between these pro-
grams are draws, which is a fair estimate. The test is based on Amir Ban’s program from his posting
on rec.game.chess.computer:
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=33071608.796A%40msys.co.il

First Experimental Results of ProbCut Applied to Chess 29

�end 0.5 0.6 0.7 0.8 0.9 1.0 1.05 1.1 1.2 1.3
MPC % 53.9 59.3 53.1 48.5 51.6 57.8 52.3 54.7 51.6 51.6

Table 2. Endgame threshold optimization results. Reported are the point percentages for MPC–
������ playing 64–game tournaments against������ using different values for the endgame
cut thresholds. Game timing was 2 minutes per player per game plus 12 seconds increment on
an Athlon–MP 1.67 GHz. The middle–game threshold was fixed at 1.0.

�mid 0.8 0.9 1.0 1.1 1.2 1.3
MPC % 54.7 59.4 57.8 58.6 59.4 53.1

Table 3. Middle–game threshold optimization results. With the endgame threshold fixed at
1.0 we repeated the 64–game tournaments now using faster hardware (Athlon–MP 2 GHz) that
just became available and longer time controls: 10 minutes per player per game plus 60 seconds
increment. Each tournament took about eight CPU days.

in better playing strength. This motivates our implementation of MPC. We
already have different regression parameters for middle–game and endgame in
our ProbCut implementation. Now we implemented multiple depth pairs. The
implementation was straightforward, much like the pseudo–code in Figure 3.

After initial experiments which showed that the null–move heuristic excels
at small heights, we chose depth pairs (2,6), (3,7), (4,8), (3,9), and (4,10) for
endgames and middle–games. Another reason for choosing pairs with increas-
ing depth differences is that otherwise the advantage of MPC rapidly diminishes
in longer timed games. We tested the speed of the MPC implementation using
a cut threshold of 1.0 on the same 300+ positions as in Section 1.3. With 30
seconds per position, it is able to search 12.0 plies on average, which is 0.5 plies
deeper than original ������.

For optimizing the endgame and middle–game cut thresholds we then ran
two sets of 64–game tournaments between MPC–������ and the original
version. In the first phase we kept the middle–game cut threshold fixed at
1.0 and varied the endgame threshold. The results shown in Table 2 roughly
indicate good threshold choices. However, the high fluctuations suggest that
we should play more games to get better playing strength estimates. After
some more experimentation we fixed the endgame threshold at 1.0 and went
on to optimizing the middle–game cut threshold by playing a second set of
tournaments, now on faster hardware and longer time controls. Threshold pairs
����� ���� and ����� ���� resulted in the highest score (59.4%) against the original
������ version.

In order to validate the self–play optimization results, we let MPC–������
play a set of tournaments against ���� – a strong chess program written
by Dieter Buerssner, which is available for Linux and can be downloaded
from http://home1.stofanet.dk/moq/. Table 4 summarizes the promising re-

30 A.X. Jiang, M. Buro

sults which indicate a moderate playing strength increase even against other
chess programs when using MPC.

Pairing ������ % ������ %
(2min+10sec/move) (8min+20sec/move)

������ vs. ���� 42.0% 50.8%
MPC–������ (1.2,1.0) vs. ���� 53.1% 56.3%
MPC–������ (1.0,1.0) vs. ���� 57.0% 55.5%

Table 4. Results of 64–game tournaments played by three ������ versions against ����
using two different time controls.

5. Conclusions and Further Research

Preliminary results show that MPC can be successfully applied to chess.
Our MPC implementation shows clear improvement over our ProbCut (plus
variable parameters for different stages) implementation. This indicates that
the main source of improvement in MPC is the use of multiple depth pairs.
Due to the already good performance of the null–move heuristic in chess, the
improvement provided by MPC in chess is not as huge as in Othello. However
our implementation, which combines MPC and null–move heuristic, shows
definite advantage over the plain null–move heuristic in������, as shown by
the match results. MPC is relatively easy to implement. We encourage chess
programmers to try MPC in their chess programs.

More experiments need to be conducted on our MPC implementation to de-
termine how evaluation function parameters like the king safety weight can
influence MPC’s performance. To further verify the strength of the MPC im-
plementation, we plan to run matches with even longer time controls.

The depth pairs and the cut threshold can be further fine–tuned. One way
to optimize them is to run matches between versions with different parameters.
But better results against another version of the same program do not necessarily
translate into better results against other opponents. An alternative would be
to measure the accuracy of search algorithms by a method similar to the one
employed in (Junghanns et al., 1997)), using a deeper search as the “oracle,” and
looking at the difference between the oracle’s evaluations on the oracle’s best
move and the move chosen by the search function we are measuring. Maybe
the combination of the above two methods gives a better indication of chess
strength.

First Experimental Results of ProbCut Applied to Chess 31

Acknowledgements

We would like to thank David Poole for his helpful comments, and Bob Hyatt
for making the source code of his excellent and very readable ������ chess
program available to the public.

References
Beal, D. (1990). A generalized quiescence search algorithm. Artificial Intelligence, 43:85–98.
Buro, M. (19955). ProbCut: An effective selective extension of the alpha–beta algorithm. ICCA

Journal, 18(2):71–76.
Buro, M. (1997�a). Experiments with Multi–ProbCut and a new high–quality evaluation function

for Othello. Workshop on game–tree search, NECI.
Buro, M. (1997�b). The Othello match of the year: Takeshi Murakami vs. Logistello. ICCA

Journal, 20(3):189–193.
Donninger, C. (1993). Null move and deep search: Selective search heuristics for obtuse chess

programs. ICCA Journal, 16(3):137–143.
Heinz, E. (1999). Adaptive null-move pruning. ICCA Journal, 22(3):123–132.
Junghanns, A. (1998). Are there practical alternatives to alpha–beta? ICCA Journal, 21(1):14–32.
Junghanns, A. and Brockington, M. (2002). Personal communication.
Junghanns, A., Schaeffer, J., Brockington, M., Björnsson, Y., and Marsland, T. (1997). Dimishing

returns for additional search in chess. In van den Herik, H.J. and Uiterwijk, J.W.H.M., editors,
Advances in Computer Chess 8, pages 53–67.

Knuth, D. and Moore, R. (1975). An analysis of alpha–beta pruning. Artificial Intelligence,
6:293–326.

Reinefeld, A. (1983). An improvement of the Scout tree search algorithm. ICCA Journal, 6(4):4–
14.

Shibahara, K., Inui, N., and Kotani, Y. (2002). Effect of ProbCut in Shogi — by changing
parameters according to position category. In Proceedings of the 7th Game Programming
Workshop, Hakone, Japan.

Tabibi, O. and Netanyahu, N. (2002). Verified null-move pruning. ICGA Journal, 25(3):153–161.

5The author’s articles can be downloaded for personal use from
http://www.cs.ualberta.ca/˜mburo/publications.html

