Designing DCCP: Congestion Control Without Reliability

Eddie Kohler

Mark Handley

Sally Floyd

ICSI Center for Internet Research
{kohler, mjh, floyd}@icir.org

Abstract

DCCP, the Datagram Congestion Control Proto-
col, is a new transport protocol in the TCP/UDP fam-
ily that provides a congestion-controlled flow of un-
reliable datagrams. Delay-sensitive applications, such
as streaming media and telephony, prefer timeliness
to reliability. These applications have historically used
UDP and implemented their own congestion control
mechanisms—a difficult task—or no congestion con-
trol at all. DCCP will make it easy to deploy these ap-
plications without risking congestion collapse. It aims
to add to a UDP-like foundation the minimum mech-
anisms necessary to support congestion control, such
as possibly-reliable transmission of acknowledgement
information. This minimal design should make DCCP
suitable as a building block for more advanced appli-
cation semantics, such as selective reliability. We intro-
duce and motivate the protocol and discuss some of
its design principles. Those principles particularly shed
light on the ways TCP’s reliable byte-stream semantics
influence its implementation of congestion control.

1 Introduction

Providing just the right set of functionality in a
network protocol is a subtle art, and touches on issues
of modularity, efficiency, flexibility, and fate-sharing.
One of the best examples of getting this right is the
split of the original ARPAnet NCP functionality into
TCP and IP. We might argue about a few details, such
as whether the port numbers should have been in IP
rather than TCP, but even with the benefit of 25 years
of hindsight, the original functional decomposition
still looks remarkably good.

The key omission from both TCP and IP was clearly
congestion control, which was retro-fitted to TCP in
1988 [12]. Network protocols which did not use TCP
were left to do their own thing, which was probably
reasonable because TCP-like congestion control isn’t
appropriate for all applications.

Recent years have seen a large increase in applica-

tions using UDP for long-lived flows, and most of these
applications have been reluctant to use congestion
control. In part this may be because the application-
designers don’t have this on their list of priorities, and
in part it may be because they don’t have the necessary
expertise to do it right.

Given the importance of congestion control to the
correct functioning of the Internet, we decided that it
was time to re-evaluate whether an alternative to UDP
should be provided for applications for which TCP’s
semantics were inappropriate. The aim was to provide
a simple minimal congestion control protocol upon
which other higher-level protocols could be built. We
called this the Datagram Congestion Control Protocol
(DCCP) [13, 9, 10], and we expected it to be simple
to provide an unreliable alternative to TCP. The issues
turned out to be more complex than we expected.

In this paper we discuss our motivations for de-
signing DCCP, for the particular set of functionality
that DCCP eventually included, and some of the sub-
tle issues involved in designing a congestion control
protocol for unreliable flows.

2 Motivation

In the last few years there has been a steady growth
of applications such as Internet telephony, streaming
video and on-line games, that generate long-lived flows
of UDP datagrams and share a preference for timeli-
ness over reliability. For these applications, data not
delivered within some deadline (typically a small num-
ber of round-trip times) will not be useful at the re-
ceiver. TCP can introduce arbitrary delay because of
its reliability and in-order delivery requirements; thus,
these applications use non-congestion-controlled UDP
instead. This lack of congestion control poses a threat
to the network: if these applications’ usage continued
to grow, the Internet might be at real risk of conges-
tion collapse. Applications could implement their own
congestion control mechanisms on a case-by-case ba-
sis on top of UDP, and some already do. Implementing

congestion control is difficult and error-prone, how-
ever, as the long history of buggy TCP implementa-
tions makes clear [16, 17], and new applications are
unlikely to do it correctly on their own. We believe that
a new transport protocol is needed, one that combines
unreliable datagram delivery with built-in congestion
control. This protocol would act as an enabling tech-
nology: new and existing applications could use it to
easily transfer timely data without destabilizing the
Internet.

2.1 Application requirements

Any protocol designed to serve a specific group of
applications should consider what those applications
are likely to need (although this needs to be balanced
carefully against a desire to be future-proof and gen-
eral). For the group of applications we are most con-
cerned with, requirements include:

e Choice of congestion control mechanism. While
our applications are usually able to adjust their trans-
mission rate based on congestion feedback, they do
have constraints on how this adaptation can be per-
formed to minimize the effect on quality. Thus, they
tend to need some control over the short-term dynam-
ics of the congestion control algorithm, while being
fair to other traffic on medium timescales. This con-
trol includes influence over which congestion control
algorithm is used—for example, TFRC [8] rather than
strict TCP-like congestion control.!

e Low per-packet overhead. Internet telephony and
games in particular will tend to send small packets fre-
quently, to achieve low delay and quick response time.
Protocol overhead should not expand the packets un-

duly.

e ECN support. Explicit Congestion Notification [19]

lets congested routers mark packets instead of drop-
ping them. ECN capability must be turned on only
on flows that react to congestion, but it is particu-
larly desirable for applications with tight timing con-
straints, as there is often insufficient time to retransmit
a dropped packet before its data is needed at the re-
ceiver.

e Middlebox traversal. UDP’s lack of explicit con-
nection setup and teardown presents unpleasant dif-

'TCP-Friendly Rate Control (TFRC) is a congestion control
mechanism that adjusts its sending rate more smoothly than TCP
does, while maintaining long-term fair bandwidth sharing with
TCP.

ficulties to network address translators and firewalls,
with the result that some middleboxes don’t let UDP
through at all. Any new protocol should improve on
UDP’s friendliness to middleboxes.

2.2 Design alternatives

Instead of designing a new transport protocol, we
could use UDP and provide provide congestion control
above or below it. Another alternative would be to
modify an alternate transport protocol such as SCTP,
which has some mechanisms for accomodating partial
reliability.

2.2.1

It would seem unproductive to force the burden
of implementing congestion control onto applications;
congestion control is both difficult to implement and
not part of most applications’ core needs. While one
could design and disseminate a user-level library of
congestion control algorithms, a new transport proto-
col can do better in terms of ECN usage, middlebox
traversal, features, and interoperability.

To allow the use of ECN by a user-level library, the
UDP socket API would have to allow the application
direct control over ECN fields in the IP header. This
is somewhat risky, as it makes it rather too easy to
send a flow that claims to react to ECN-marking when
in fact it does not. In the absence of the widespread
deployment of mechanisms in routers to detect flows
that are using unreasonable bandwidth, we would not
advise adding ECN capability to UDP sockets at this
time.

A new transport protocol implemented in the ker-
nel could almost certainly provide more speed and
features than a generic UDP socket adapted for con-
gestion control. Acknowledgement packets might be
generated instantly, in the network interrupt for packet
receipt; upcalls could be made exactly when a conges-
tion control algorithm declared that a packet could be
sent.

Finally, we believe that a transport protocol effec-
tively achieves a level of interoperability higher than
most libraries. For example, the transport protocol’s
generic specification makes it more accessible to em-
bedded system designers.

Congestion control above UDP

2.2.2 Congestion control below UDP

A second possibility would be to provide conges-
tion control for unreliable applications at a layer be-

low UDP, with applications using UDP as their trans-
port protocol, and with congestion feedback either at
the application layer or at the layer below UDP. The
Congestion Manager [2, 3] is an example of such an
approach. Unfortunately, this does not necessarily pro-
vide access to multiple congestion control mechanisms
or address UDP’s middlebox traversal issues, and ap-
proaches that rely on application-level feedback still
push much of congestion control’s complexity up to
the application. We note that any new transport pro-
tocol could also use a Congestion Manager approach
to share congestion state between flows using the same
congestion control algorithm, if this were deemed to

be desirable.

2.2.3 Congestion control at the transport layer

It would also be possible to modify TCP or SCTP
to provide unreliable semantics, or modify RTP to
provide congestion control. TCP seems particularly
inappropriate, given its byte-stream semantics and re-
liance on cumulative acknowledgements; changing the
semantics to this extent would significantly complicate
TCP implementations and cause serious confusion at
firewalls or monitoring systems.

SCTP [18] is a better match, as it was originally de-
signed with packet-based semantics and out-of-order
delivery in mind. However, the overlap with our re-
quirements is partial at best; SCTP is hardly minimal,
provides functionality that is unnecessary for many of
the applications that might use DCCP, and does not
currently allow the negotiation of different congestion
control semantics.”

Adding congestion control to RTP [21] seems a
reasonable option for audio/video applications. How-
ever, the UDP issues also mostly apply to RTP. In addi-
tion, RTP carries rather too many application seman-
tics to really form a general-purpose building block for
the future. Carrying RTP over DCCP seems a cleaner
separation of functionality.

2.3 Mimimal DCCP requirements

Examining the success of TCP and UDP over the
years, we observe that most of the applications they
originally supported are of secondary importance to-
day. Applications change, but these transport proto-
cols are still useful because the services they provide
are simple and general. There are few application-
specific semantics in TCP, with the possible excep-

2For a complete evaluation of SCTP for this purpose, see [7].

tion of the urgent pointer. Almost anything requir-
ing reliable in-order delivery can be layered over TCP,
and even the in-order delivery constraints are imposed
more by the socket API than by the TCP protocol.
What then would be the equivalent for a protocol
providing an unreliable congestion-controlled packet
stream?

Clearly such a protocol must provide UDP’s de-
multiplexing and checksum functionality. Congestion
control must take place in the context of a flow of
packets, and we need a sequence number space to be
able to discuss packet arrivals or losses. Congestion
control also requires a feedback channel to convey
congestion information back to the sender, including
support for ECN. Strictly speaking, this is all that is
required.

If we only provide the functionality above, we re-
quire out-of-band mechanisms for flow setup, port al-
location, and for negotiation of any congestion con-
trol parameters. Is there any benefit to doing this out-
of-band? Perhaps, because an out-of-band mechanism
can satisfy its own timeliness and reliability constraints,
but in today’s Internet this seems to be outweighed by
the difficulties of middlebox traversal for protocols
that don’t explicitly signal their own setup and tear-
down, and by the inconvenience and additional failure
modes of using two protocols in parallel. Thus it seems
wise to include connection setup and teardown func-
tionality in such a protocol. As different applications
have different requirements of congestion control, a
mechanism for the negotiation of congestion control
parameters is also needed.

To support the applications we currently envisage,
there are many other features that might be desirable,
such as packet-level FEC [11], selective reliability or
limited retransmission, and support for multiple data
streams in a flow. However all of these features can be
supported just as efficiently over the top of a more sim-
ple protocol. We believe it is better not to include any
functionality that is equally well provided at a higher
layer, because this avoids inadvertently tailoring the
protocol to the transient semantics of today’s applica-
tions, which might prove useless baggage for those of
tomorrow.

Functionality that cannot be layered over such a
simple protocol is a short list: mobility and security.

Section 5 describes some of DCCP’s security is-
sues in detail. As for mobility, there are advantages
to designing mobility into a transport protocol, rather

0 8 16 24

Source Port | ‘ Destination Port
(@) | Type [CCval| ~ Sequence Number
—— ‘ ﬁP| ﬁ | ———— C‘h‘ec‘ks‘un‘l ————

ﬁata Of‘fs‘et‘ # N Csie

Acknowledgement Number |

Figure 1—DCCP packet headers. The generic header (a) comes at
the beginning of every DCCP datagram. Individual packet types
may add additional information, such as (b) an acknowledgement
number. In any case, the packet header is followed by space for
options; any payload starts Data Offset words into the datagram.

than relying on other layers (Mobile IP or application-
level connection restart). First, congestion control is
naturally aware of address shifting, and can respond
appropriately. Second, any security parameters associ-
ated with the normal flow processing can be leveraged
in securing the move itself. Last, at least with IPv4,
it avoids the triangle-routing caused by an endpoint
being unable to assume IP mobility capability in the
other party. For these and other reasons, DCCP in-
cludes a simple mobility mechanism; but even so, the
authors are not completely convinced that this was the
right choice.

3 Fundamentals and Framework

Our goal, given the motivations above, is to design
a protocol that is lightweight and minimal, while pro-
viding a transport on which other mechanisms can be
layered. The primary purpose is to support congestion
control. Given that different applications have differ-
ent requirements of congestion control, the protocol
must support negotiation of congestion control mech-
anisms. As congestion control involves keeping state
for the flow in the end-points, we need well-defined
mechanisms to set up and cleanly tear down that state.
And the pragmatics of deployment in today’s Internet
mean that NAT and firewall traversal must be taken
into account.

This section describes DCCP’s basic design choices
and some consequences of its requirements. We present
DCCP header structure, its feature negotiation mecha-
nism, the problem of reliable acknowledgements on an
unreliable connection, and justify its bidirectionality.

3.1 Packet structure

DCCP datagrams begin with a 12-byte generic
header, showed in Figure 1. The four-bit Type field

marks a difference from TCP: there are several (cur-
rently nine) different types of DCCP packet, rather
than a single packet type whose meaning depends on
a collection of flags. Compared to TCP, this design
increases the number of packet types available (a four-
bit field represents 16 types, not 4 flags), eliminates the
possibility of confusing flag combinations (“Christmas
tree packets”), and makes the smallest DCCP headers
as small as possible (individual packet types can add
information, such as an Acknowledgement Number,
after the generic header).

DCCP has an option mechanism similar to TCP’s—
options are used for acknowledgement reporting and
and parameter negotiation, for example—but its header
allows much more option space: at most 1008 bytes,
25 times more than TCP. (Of course, we expect most
packets will carry few options.)

3.2 Feature negotiation

At the beginning of a DCCP connection, the end-
points must agree on a set of parameters, most clearly
the congestion control mechanisms to be used. Both
endpoints have capabilities (the mechanisms they im-
plement) and application requirements (the mecha-
nism the application would prefer), and capabilities
and application requirements should both be able to
influence the outcome. TCP has a similar problem, ap-
plying at least to ECN, SACK, window scaling, and
timestamps, which it solves ad hoc with different op-
tions or bits in each case. DCCP, in contrast, provides
a minimal set of options for negotiating the values
of general features, where a feature is simply a value
meant to be negotiated.

A “Change” option sent from A to B asks B to
change its value for some feature. B can respond with
either “Prefer”, which says that it would prefer a dif-
ferent value, or “Confirm”, which confirms that the
feature’s value has changed. Change and Prefer op-
tions are retransmitted until a response is received,
making negotiation reliable. An endpoint that thinks
a negotiation is taking too long may reset the connec-
tion.

Most features have values at both endpoints. Thus,
a single packet sent from A to B might contain both
“Change(f)” and “Confirm(f)” options, the first re-
ferring to the f feature located at B and the second
referring to the f feature located at A. Feature negoti-
ations for different features may take place in parallel.

With hindsight, the decision to provide generic re-

liable feature negotiation has allowed additional func-
tionality to be added easily without the need to con-
sider interactions between feature negotiation, conges-
tion control, and the differing acknowledgement styles
required by each congestion control mechanism.

3.3 Reliable acknowledgements

TCP’s acknowledgements are built on a cumulative
acknowledgement field. Two acknowledgements with
the same cumulative-ack convey the same informa-
tion,> and TCP mechanisms like ack clocking and the
retransmit and persist timers make acknowledgements
reliable. The result is that a TCP receiver needs to keep
only a fixed amount of acknowledgement state.

Ideally, a congestion control protocol for unreli-
able data would be as nicely integrated, efficient and
safe, but the problem turns out to be significantly more
complex. Firstly, cumulative acknowledgements have
no meaning in an unreliable protocol: you never re-
transmit a packet. Secondly, depending on the conges-
tion control mechanism, both ECN Nonce verification
(Section 5.1) and application reporting may require
that the receiver report exactly which packets it re-
ceived. The result is that the acknowledgement state
required at the receiver can grow without bound.

There is only one way to cut back on this state
growth: the sender must occasionally acknowledge
one of the receiver’s acknowledgements. Once the re-
ceiver knows that one of its acks arrived at the sender,
it can throw away the state that it sent in that ack.
Thus, even though the protocol is unreliable, acknowl-
edgements may need to be at least partially reliable.

There are several potential ways to do this:

e Treat acknowledgements like features, and use an
explicit handshake to transfer acknowledgement
information.

e Addan option to be used occasionally by the sender
that means “I received feedback for everything up
to my sequence number s”.

e Make acknowledgements take up sequence num-
ber space. Then, when the sender reports that it
received packet p, the receiver knows that p’s ac-
knowledgement options were received.

DCCP chooses this last approach as the clean-
est and most general solution to the problem. (The

*Modulo SACK information, which is advisory.

handshake approach has high overhead, while an ad-
hoc solution for acknowledgements wouldn’t apply to
anything else.) A DCCP sequence number is a 24-bit
number that increases by one on every packet sent,
including acknowledgements.

Per-packet sequence numbers have the happy side-
effect that acknowledgements can finally be conges-
tion controlled. In TCP, there is no way to congestion-

control acknowledgements: since they’re effectively equiv-

alent, no one can tell how many were dropped by the
network. In DCCP, even pure acks take up sequence
space, so detecting reverse-path congestion is trivial.
Some of the side effects of per-packet sequence num-
bers are less happy—see Section 5.2.1 on sequence
number validity, for example—but overall, this design
decision seems to have been a win.

3.4 Bidirectionality

DCCP, like TCP, provides a single bidirectional
connection: both data and acknowledgements can flow
in both directions.

This might seem less appropriate for DCCP than
for TCP. In particular, with streaming media, the roles
are very asymmetric. The server may transmit a huge
live video feed to the client, using DCCP’s congestion
control to the fullest, while the client may have trans-
mitted only a filename.

We originally considered making DCCP a unidi-
rectional protocol, where all data flows from server
to client except for an initial client-to-server request,
which was not congestion controlled. In practice there
are a number of reasons why this approach is unde-
sirable. First, it’s not clear when the client-to-server
channel will cease. What if part of the request were
dropped and the application needed to retransmit it,
or what if the client wanted pause/play/rewind func-
tionality? Retransmissions and further communica-
tion must be congestion controlled. Second, using two
unidirectional connections for telephony would pre-
vent acknowledgement information being piggybacked
on data packets flowing in the same direction, and so
would be rather inefficient. Finally, NATs and fire-
walls complicate the picture; their traversal is some-
what simplified if only a single connection is required
(usually initiated from inside) for bidirectional com-
munication.

We are still faced with the possibility of asymmet-
ric functionality in a single connection, however. Our
solution is to break a DCCP connection into two log-

Half-connection from A to B

Host A Host B Host A
Data

ck

Data

ical half-connections. Given a connection between A
and B, one half connection comprises data packets
from A to B and acknowledgement data from B to
A, and the other comprises data from B to A and
acks from A to B; see Figure 2. Feature negotiation
for the two half-connections is completely indepen-
dent, and may happen simultaneously. For example,
the two half-connections may use different congestion
control mechanisms.

This adds some complexity to the protocol. For ex-
ample, two congestion control mechanisms may need
to cooperate to produce a single piggybacked data-
plus-ack packet, and a quiescence mechanism is re-
quired to reduce packet overhead in the common case
of unidirectional communication (see below). Half-
connections nevertheless have significant benefits in
flexibility of use.

3.5 Quiescence

Again, we expect that many applications will use
DCCP essentially unidirectionally, with most data flow-
ing from server to client. A quiescence mechanism en-
sures that the protocol can handle unidirectional com-
munication without unreasonable overhead. When one
endpoint, say A, stops sending data for some amount
of time (currently 2 RTTs, with some other constraints),
the other endpoint, B, detects that A has gone quies-
cent and shifts to a unidirectional pattern of commu-
nication. This affects, mostly, the acknowledgements
it sends. The quiescent endpoint sends only acknowl-
edgements by definition. While A might demand Ack
Vector for feedback on its data packets, it likely will
not require such precise feedback—or, perhaps, any
feedback at all—for its acknowledgements. Therefore,
B, the non-quiescent endpoint, will limit the acknowl-
edgements it sends to exactly those acks-of-acks re-
quired for its congestion control mechanism.

Half-connection from B to A

Full DCCP session with
Bidrectional data

Host B Host A Host B

le———Fpiggybacked Ack
Ack

Figure 2—The two half-connections that make up a DCCP connection.

4 Congestion Control

With DCCP, the application has a choice of con-
gestion control mechanisms. Many unreliable applica-
tions might prefer TFRC congestion control, avoiding
TCP’ abrupt halving of the sending rate in response
to congestion, while other applications might prefer a
more aggressive TCP-like probing for available band-
width.

This selection is done by using Congestion Con-
trol IDs (CCIDs) to indicate the choice of standard-
ized congestion control mechanisms, with the connec-
tion’s CCID being negotiated at connection start-up.
This profile-based selection allows the introduction of
CCID-specific options and features, which avoid pol-
luting the global option and feature space. For exam-
ple, option numbers 128 to 255 have CCID-specific
meaning; this space is further split between the two
half-connections that might be relevant for a piggy-
backed data-plus-ack.

4.1 TCP congestion control

Before we describe DCCP’s congestion control mech-
anisms, this section provides a quick overview of TCP’,
to serve as a point of comparison.

TCP’s congestion control mechanisms involve an
intertwining of flow control, congestion control, relia-
bility, and in-order delivery. For example, the question
of what to send is conflated with the question of when
next to send a packet. TCP’s flow control mechanisms
are also closely related to TCP’s use of in-order de-
livery. The TCP receiver tells the sender the receiver’s
advertised window and the lowest byte not yet deliv-
ered to the application; this restricts what the sender
is able to send.

TCP’s congestion control framework is a natural
outgrowth of the flow control framework, with the
sender maintaining a congestion window, and cumu-
lative acknowledgements informing the sender that old
data has left the network.

There is no need for a TCP receiver to check whether
its acknowledgements arrived at the sender.* First, the
information in TCP acknowledgements is cumulative
(ignoring SACK information, which is advisory): sub-
sequent acknowledgements will provide the same or
newer information. More importantly, when too many
TCP acknowledgement packets are lost, TCP’s receive
and congestion windows mean the sender will quickly
stop sending: new acknowledgements are required to
move the window forward.

4.2 CCID 2: TCP-like Congestion Control

DCCP provides a TCP-like congestion control mech-
anism, labeled CCID 2. However, because this oper-
ates in the context of an unreliable transfer, much of

the congestion control framework differs from that of
TCP.

TCP’s stringent flow-control mechanism is not needed

with DCCP. If packet 7 has been received but not yet
read by the application, and packet # + m then ar-
rives, DCCP can choose to drop packet n from its
receive buffer and use the buffer space to store the
more recent packet.

DCCP’s TCP-like congestion control still uses the
sender’s congestion window to limit the number of
unacknowledged packets outstanding in the network,
but it cannot use a cumulative acknowledgement field
to control this. Thus some other mechanism is needed
to ensure that if packets are lost, the sender halves its
sending rate appropriately.

There are a number of ways that this could be ac-
complished in an unreliable transfer. One possibility
would be to use a mechanism similar to TCP’s SACK
option [6]; the receiver sends acknowledgements of
packets received, repeated in several subsequent pack-
ets for robustness. If the sender did not hear from the
receiver that all of the packets in a window of data
were received, along with reports of the ECN status
of those packets, then the sender would be compelled
to halve its congestion window. This would be safe, in
that the sender would always back off when it should,
but it could also result in unnecessary reductions of
the congestion window if so many acknowledgements
were lost that the sender did not hear about the receipt
of some packet.

*The exception is ECN, where the sender’s Congestion Window
Reduced (CWR) flag acts to confirm that an acknowledgement
with ECN Congestion Experienced (ECE) set was received.

The alternate mechanism used by DCCP is to reli-
ably transmit acknowledgement information from the
receiver to the sender, using an Ack Vector and acks-of-
acks. Essentially, the receiver keeps telling the sender
that packet k has been received until the sender ac-
knowledges some receiver message that included an
Ack Vector covering k. The Ack Vector describes ex-
actly which packets have been received, and whether
those packets were ECN-marked in the network. The
congestion control algorithm used to react to this in-
formation closely resembles that for SACK TCP.

A second vector may optionally be used to inform
the sending application of packet payloads dropped by
the receiving endpoint—because the receive buffer was
full, for example. This ensures there is no ambiguity
regarding metadata receipt; if a packet was reported
received in the primary Ack Vector then the metadata
will have been processed, even if the packet’s payload
was subsequently discarded. Section 5.1.1 further de-
scribes this issue.

One of the limitations of TCP is that there is no
congestion control for the acknowledgements sent by
the receiver to the sender. Ack congestion control can
be useful any time there is congestion on the reverse
path, but is particularly important for bandwidth-
asymmetric networks or packet radio subnetworks [1].
DCCP, unlike TCP, can detect reverse-path congestion
using per-packet sequence numbers, and respond to it
as appropriate. In CCID 2, the DCCP sender responds
by modifying the Ack Ratio, which controls the rate of
the acknowledgement stream from the receiver. The al-
gorithm used to set the Ack Ratio gives an ack sending
rate that is very roughly TCP-friendly.

4.3 CCID 3: TFRC Congestion Control

TFRC congestion control in DCCP’s CCID 3 uses a
completely different approach than the TCP-like con-
gestion control in CCID 2. Instead of a congestion
window, a CCID 3 sender uses a sending rate, and the
receiver sends feedback to the sender roughly once per
round-trip time reporting the loss event rate calculated
by the receiver. The sender uses the reported loss event
rate to determine its sending rate. If the sender receives
no feedback from the receiver for several round-trip
times, then the sender halves its sending rate.

This is reasonably straightforward, and does not
require the reliable delivery of feedback packets, as
long as the sender trusts the receiver’s reports of the
loss event rate. Complications do arise if the sender

wants to verify for itself that the receiver’s reported
loss rate is accurate. For this, the receiver reports the
ECN Nonce Sum for the long sequence of packets
reported received and not ECN-marked at the end of
each loss interval.

A key point to note is that the feedback informa-
tion required by TFRC is substantially different from
that required by TCP-style congestion control. A pro-
tocol whose basic feedback mechanism is not suffi-
ciently flexible could have difficulties in the future as
the state of the art of congestion control evolves.

Of course, a sending application might want to
know exactly which packets were received by the re-
ceiver for its own reasons. In these cases, a CCID 3
half-connection can additionally include Ack Vectors
and acks-of-acks, as in CCID 2.

4.4 Partial checksums

The design of DCCP allows the DCCP checksum to
cover all of the packet, just the DCCP header, or both
the DCCP header and some number of bytes from the
payload. This follows the proposal for a partial check-
sum in UDP-Lite [14]; the motivation for partial check-
sums is that some applications (e.g., voice and video)
would prefer to have partially damaged payloads de-
livered rather than discarded by the network. How-
ever, because DCCP is a congestion-controlled trans-
port protocol, some of the design issues for adding
partial checksums to DCCP are more complex (and
perhaps more compelling) that the issues with UDP.

Because of DCCP’s use of end-to-end congestion
control, if DCCP only allowed a checksum that cov-
ered the packet’s payload, then a bit error in the pay-
load would result in a dropped packet, and this packet
drop would necessarily (but possibly incorrectly) be
treated by DCCP as an indication of congestion in the
network. However, a corrupted packet is generally not
an indication of congestion, and it is unnecessary for
the transport protocol to reduce its sending rate in re-
sponse to a single packet with a corrupted payload. To
address this issue of an inappropriate congestion con-
trol response to a packet with a corrupted payload,
DCCP also allows the use of separate checksums for
the header and payload. This allows DCCP to detect
payload corruption, but still not to mistake corruption
for network congestion.

We note that the usefulness of partial checksums
remains to be determined. For example, if the link-
layer CRC on noisy links always discarded corrupted

packets, this would limit the usefulness of partial check-
sums. In addition, as discussed in [13], partial check-
sums do not co-exist well with IP-level authentication
mechanisms such as IPsec AH, which cover the entire
packet with a cryptographic hash. On balance, how-
ever, our belief is that DCCP partial checksums have
the potential to enable some future uses that would
otherwise be difficult. As the cost and complexity of
supporting them is small, it seems worth including
them at this time.

5 Guarding Against Misbehavior

DCCP includes tools that endpoints need to pre-
vent misbehavior. Specifically, it addresses misbehav-
ing-receiver attacks, where a greedy endpoint tries to
get more than its fair share of network bandwidth; hi-
jacking attacks, where a man-in-the-middle takes over
a connection; and denial-of-service attacks, where a
malicious or simply broken partner sends useless mes-
sages that nevertheless take up CPU or memory re-
sources. Our goal was to make DCCP at least as safe
against misbehavior as a state-of-the-art modern TCP
implementation.

The issues encountered in preventing misbehavior
deserve description, in particular because several issues
were more difficult than in TCP because of DCCP’s un-
reliability. Nevertheless, DCCP seems at least as pro-
tected against misbehavior as TCP.

5.1 Misbehaving-receiver attacks

Internet congestion control is voluntary today, in
the sense that few, if any, routers actually enforce con-
gestion control compliance on flows. Unfortunately,
some endpoints, particularly receivers, have incentives
to violate congestion control if that will get them
their data faster. For example, misbehaving receivers
might pretend that lost packets were received, or that
ECN-marked packets were received unmarked, avoid-
ing congestion control responses from the sender. Re-
ceivers could also acknowledge data before it arrives [20].
In TCP, the risk of a future packet loss can deter mis-
behaving receivers from this action, since missing data
violates TCP’s reliable, in-order semantics and must
often be handled by the application. However, DCCP
applications must tolerate loss in any case, making de-
liberate receiver misbehavior more likely and masking
implementation bugs.

To combat misbehaving receivers, the data sender
could verify the acknowledgements it receives and pun-

ish misbehavior. (Often it has an incentive, namely
treating its other clients fairly.) To do this the sender
provides an unpredictable nonce with each packet,
which the receiver echoes in its acknowledgements.
DCCP uses the ECN Nonce [22] for this purpose; it
encodes one bit of unpredictable information that is
destroyed by loss or ECN marking.

This need for verification affected many aspects
of the protocol, including things as fundamental as
the definition of when packets are received for the
purposes of acknowledgement.

The receiver might report each acknowledged packet’s

ECN Nonce bit individually, but this limits the com-
pressibility of acknowledgements. Instead, as with TCP,
the receiver reports an ECN Nonce Echo, in this case
the exclusive-or of the ECN Nonces on all the packets
positively acknowledged by a particular acknowledge-
ment. DCCP’s acknowledgement options encode this
single bit either via option number (as in “Ack Vector
[Nonce Echo 0]” and “Ack Vector [Nonce Echo 1]”)
or by using a bit of option data.

DCCP simplifies nonce verification somewhat rel-
ative to TCP. Nonces are assigned per packet, but TCP
acknowledgements refer to byte-based sequence num-
bers, making the identities of the acknowledged pack-
ets potentially ambiguous (if packets have overlapping
sequence numbers, for example). In practice, this is
not a major problem, but DCCP’s per-packet sequence
numbers match more cleanly with per-packet nonces.

S.1.1

Protocol descriptions must define when a packet
may be acknowledged. This often depends both on the
network and on the end host. For example, TCP data
must not be acknowledged until it is guaranteed that
the application will get that data (assuming it wants
the data); a TCP receive buffer is not allowed to drop
data after acknowledging it.’

DCCP is unreliable, though, and one reason for
this is to minimize the delivery of old data to an ap-
plication. Thus, a DCCP stack might allow the appli-
cation to request a front-drop receive buffer, explicitly
preferring new data to old.

How should such receive-buffer-dropped packets
be acknowledged? Essentially there are two separate
events: delivery from the network and delivery to the
application. Network congestion control cares about

When are packets received?

This refers only to the cumulative acknowledgement: data
acknowledged by SACKs may be dropped.

loss rate and round-trip time based on the former,
whereas the sending application cares only about the
latter. We want to tell the sending application that the
receiving application did not receive the packet’s pay-
load, while simultaneously telling the sending DCCP
stack that the drop was not due to congestion.

Since the receiving endpoint is claiming that the
network delivered the dropped packets, it must re-
port their ECN Nonces; to do otherwise would allow
a misbehaving receiver to cheat. The cleanest way to
implement this is to report valid packets as “received”
(or “received ECN marked”) when they have been re-
ceived by the DCCP protocol, irrespective of whether
they make it to the application. Note that this differs
from TCP. (The sender can assume that DCCP options
and other metadata have been processed on “received”
packets.) A separate option called Data Dropped can
report that “received” packets had their payload dis-
carded before making it to the application—because of
receive buffer overflow or payload corruption, for ex-
ample. This division of acknowledgement information
into two options, one targeted at congestion control
and the other targeted at the sending application, is a
classic example of separation of concerns.

5.1.2 Other misbehavior opportunities

Several other DCCP options present opportunities
for receiver misbehavior. For example, the Timestamp
and Elapsed Time options let a receiver declare how
long it sat on a packet before acknowledging it. The
sender can’t verify this interval, and the receiver has
reason to inflate it, since shorter round-trip times lead
to higher transfer rates with TFRC. Thus far we have
addressed such issues in an ad hoc manner.

5.2 Hijacking attacks

The most serious kind of attack, from a user’s point
of view, is connection hijacking, where the role of one
endpoint in a connection is taken over by a third-party
attacker without the other endpoint noticing. Hijack-
ing attacks can insert bad data into a connection, caus-
ing inappropriate application actions or confusion and
often, eventually, a more serious security breach.

An early decision was made not to include crypto-
graphic mechanisms, such as public-key cryptography,
in the base protocol, both because such mechanisms
tend to be expensive and because IPsec provides similar
functionality. This decision limits the kinds of threats
DCCP can withstand alone. Without end-to-end cryp-

tographic mechanisms, there is no in-band way to
bootstrap security that is robust against eavesdrop-
pers. An attacker that can read, insert, and remove
arbitrary network packets can hijack any connection.
We therefore explicitly limit the threats DCCP will ad-
dress: if an attacker can snoop packets, all bets are
off.

TCP addresses hijacking attacks with its sequence
numbers. An attacker that can guess a connection’s
sequence numbers can force its way into an existing
connection [15], although the partner TCP will usu-
ally notice the intrusion. Modern TCPs address this
problem with randomly-chosen initial sequence num-
bers [4]. DCCP adopts a similar solution.

5.2.1

Unfortunately, DCCP’s unreliability and per-packet
sequence numbers add a wrinkle, namely determining
sequence number validity: How can we tell whether a
packet with sequence number s is a valid part of the
current connection? It might, instead, be an old packet
dating from a previous connection with the same end-
points and ports, or an attack packet.

TCP’s receive window defines its range of valid se-
quence numbers. We note that it sometimes difficult to
set the receive window correctly, so receive windows
often limit data transfer rates [23], probably inappro-
priately.

DCCP is a congestion-control protocol, not a flow-
control protocol; applications using unreliable trans-
port would generally prefer to receive the most recent
data, making TCP-style flow control inappropriate.
Thus, instead of a receive window for flow control,
DCCP defines a Loss Window used only to define the
valid sequence number range. This will generally be
set larger than TCP’s receive window, as the goal is
to cover a number of RTTs of packets in the window.
Unlike TCP’s receive window, it always moves up so
that the greatest valid sequence number received is
somewhere in the middle of the window.

Unfortunately, DCCP’s per-packet sequence num-
bers mean that a DCCP endpoint can get out of sync
with its partner’s sequence numbers no matter how
big the Loss Window is. Imagine that the link from
A to B starts dropping all packets. Every packet sent
gets a new sequence number—even acks get sequence
numbers—so A’s packets will, by necessity, eventually
pass B’s Loss Window, even if those packets are only
probes sent to test link status.

Sequence number validity

10

DCCP connections therefore need some mecha-
nism for getting their endpoints back into sync after
a burst of loss. A DCCP endpoint cannot wholly dis-
card a packet with a bad sequence number. Instead, it
responds to its partner with a challenge, which says,
effectively, “Is your sequence number really that far
off from the sequence number I expect? My sequence
number is s.” If the partner replies “Yes” while ac-
knowledging s, the connection can be updated with
the new sequence number. All intervening packets, in-
cluding the packet that prompted the challenge, are
considered lost.

This naive mechanism provides security against hi-
jackers that cannot snoop. For instance, an attacker
still needs to guess one valid sequence number to be
successful: the acknowledgement number s. DCCP ac-
tually supports a slightly more complex identification
option, an MDS$ hash of two shared secrets (and the
sequence and acknowledgement numbers, to prevent
replay), but this provides only incrementally more se-
curity unless an out-of-band mechanism is used to ex-
change the secrets.

5.2.2 Mobility

DCCP also provides support for mobility; a mobility-
capable endpoint can move to a new IP address, then
inform its partner of the new address. This some-
what resembles Mobile IP’s semantics. (SCTP’s more
complex mechanism supports, for example, multiple
IP addresses for redundancy: retransmissions are sent
to secondary addresses.) Mobility increases both the
protocol’s functionality relative to TCP and the pos-
sibilities for attack. In particular, an attacker that can
guess sequence numbers might move a DCCP con-
nection to its own address, leaving the real endpoint
with no idea where the connection has gone. We par-
tially address this by forcing DCCP-Move packets to
carry valid identification options, such as the MD3$
hash mentioned above; an attacker that can’t gener-
ate identification options can’t inappropriately move
connections.

But mobility might open the door for other kinds of
attacks. For example, DCCP totally ignores inappro-
priate DCCP-Move packets. This has a security basis:
if DCCP responded (for instance, by sending resets),
attackers could extract information from a connec-
tion, such as currently valid sequence numbers, simply
by sending inappropriate Move packets.

$5.2.3 Summary

To summarize DCCP’s anti-hijacking properties:

e Connections are meant to be safe against at-
tackers who cannot guess valid sequence numbers (for
instance, by snooping).

e DCCP does not leak sequence numbers to IP
addresses not already involved in the connection.

e DCCP never reveals the shared secrets used to
generate identification options.

Note also the limited coverage of the MDS$ hash,
namely the shared secrets and the sequence and ac-
knowledgement numbers. It might seem better to cover
the whole packet, preventing data manipulations; but
this would break DCCP’s ability to traverse conven-
tional network address translators, which modify pack-
ets’ addresses, ports, and checksums. This illustrates
the tangled world in which a modern transport pro-
tocol must live. True end-to-end security should be
provided by IPsec, but under certain circumstances
IPsec is not usable; and in some cases application-level
authentication would provide most of the benefits. A
transport protocol needs to remain as agnostic to these
issues as possible while still being robust.

5.3 Denial-of-service attacks

In a transport-level denial-of-service attack, an at-
tacker tries to break an endpoint’s network stack by
overwhelming it with data or calculations. For exam-
ple, an attacker might send thousands of TCP SYN
packets from fake (or real) addresses, filling up the
victim’s memory with useless half-open connections.
Generally these attacks are executed against servers
rather than clients. DCCP addresses potential denial-
of-service attacks by pushing state to the clients when
possible, and by allowing endpoints to rate-limit re-
sponses to invalid packets.

First, half-open connections: When responding to
a DCCP-Request packet, a server can encapsulate all
of its connection state into an “Init Cookie” option,
which the client must echo when it completes the three-
way handshake. Like TCP’s SYN cookies [5], this lets
the server keep no information whatsoever about half-
open connections; unlike SYN cookies, it can encap-
sulate lots of state.

DCCP servers can also require that cooperating
clients hold the Time-Wait state for a connection. (This
state remains at one of the two endpoints for at least

11

two minutes, to prevent confusion in case the network
delivers packets late.) A DCCP connection is closed
with the sequence Close-Reset. The receiver of Close,
and sender of Reset, need not hold the Time-Wait state,
and the protocol is designed so that a server can force
the client to send the Close.

Attackers might also overwhelm a DCCP endpoint
by making it perform expensive calculations or ac-
tions, such as checking or generating MDS5 hashes in
DCCP’ mobility or challenge mechanisms. The first
line of defense here is the sequence number validity
checks; if a connection is currently live and active,
then there is no way the other endpoint can have lost
sequence number validity, and so any packets with in-
valid sequence numbers that require checking or hash
generation can be ignored. In the case where an at-
tacker can cause a sequence number validity failure
(by flooding a link for example), we require a chal-
lenge to include an MDS35 identification hash. Receipt
of a bad challenge may cause the receiver to ignore
challenges for a short time; thus while a determined
attacker can prevent the DCCP session recovering, the
other sessions and tasks the victim is handling are pro-
tected.

6 Conclusions

It might reasonably be assumed that designing an
unreliable alternative to TCP would be a rather simple
process; indeed we made this assumption ourselves.
However, TCP’s congestion control is so tightly cou-
pled to its reliable semantics that few TCP mechanisms
are directly applicable without substantial change. For
example, the cumulative acknowledgement in TCP
serves many purposes, including reliability, liveness,
flow control and congestion control. There does not
appear to be a simple equivalent mechanism for an
unreliable protocol.

The current Internet is a hostile environment, and
great care needs to be taken to design a protocol that
is robust. TCP has gained robustness over time, and it
is important to learn from its mistakes. However, the
problem for an unreliable protocol is actually harder
in many ways; the application semantics are not so
well constrained, and there seem to be more degrees
of freedom for an attacker.

The current Internet is also a confused environ-
ment; unless a protocol wishes to condemn itself to
irrelevance, its design must make it easy to deploy in
a world of NATs, firewalls and justifiably paranoid

network administrators.

In this paper we have attempted to sketch out many
of the issues that arose in the design of DCCP, some
of them obvious, others more subtle. We have deliber-
ately avoided describing all the details of DCCP; the
interested reader is referred to the DCCP specification.
We note that DCCP is still a work-in-progress; it may
change further, but many of the fundamental issues
we’ve discussed should be relevant for any protocol
attempting to operate in this space.

Acknowledgements

DCCP has benefitted from conversations and feed-
back with many people, including Jitendra Padhye
(our coauthor on some of the DCCP documents), Aaron
Falk, and members of the DCCP Working Group, the
Transport Area Working Group, and the End-to-End
Research Group.

References

[1] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst,
and M. Sooriyabandara. TCP performance implica-
tions of network path asymmetry. RFC 3449, Internet
Engineering Task Force, Dec. 2002.

H. Balakrishnan, H. Rahul, and S. Seshan. An inte-
grated congestion management architecture for inter-
net hosts. In Proc. SIGCOMM 1999, Aug. 1999.

H. Balakrishnan and S. Seshan. The Congestion Man-
ager. RFC 3124, Internet Engineering Task Force, June
2001.

S. Bellovin. Defending against sequence number at-
tacks. RFC 1948, Internet Engineering Task Force,
May 1996.

D. J. Bernstein. SYN cookies. Web page. http://
cr.yp.to/ syncookies. htni.

E. Blanton, M. Allman, K. Fall, and L. Wang. A
conservative selective acknowledgment (SACK)-based
loss recovery algorithm for TCP. RFC 3517, Internet
Engineering Task Force, Apr. 2003.

S. Floyd, M. Handley, and E. Kohler. Problem
statement for DCCP. Internet-Draft draft-ietf-dccp-
problem-00, Internet Engineering Task Force, Oct.
2002. Work in progress.

S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast appli-
cations. In Proc. SIGCOMM 2000, Aug. 2000.

S. Floyd and E. Kohler. Profile for DCCP Congestion
Control ID 2: TCP-like congestion control. Internet-
Draft draft-ietf-deccp-ccid2-02, Internet Engineering
Task Force, May 2003. Work in progress.

12

[10] S. Floyd, E. Kohler, and J. Padhye. Profile for DCCP
Congestion Control ID 3: TFRC congestion control.
Internet-Draft draft-ietf-decp-ccid3-02, Internet Engi-
neering Task Force, May 2003. Work in progress.

C. Huitema. The case for packet level FEC. In Proto-
cols for High-Speed Networks, pages 109-120, 1996.

V. Jacobson. Congestion avoidance and control. In
SIGCOMM 1988, Aug. 1988.

E. Kohler, M. Handley, S. Floyd, and]J. Padhye. Data-
gram Congestion Control Protocol (DCCP). Internet-
Draft draft-ietf-dccp-spec-02, Internet Engineering
Task Force, May 2003. Work in progress.

L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson,
and G. Fairhurst. The UDP-Lite protocol. Internet-
Draft draft-ietf-tsvwg-udp-lite-01, Internet Engineer-
ing Task Force, Dec. 2002. Work in progress.

R. T. Morris. A weakness in the 4.2BSD Unix TCP/IP
software. Computer Science Technical Report 117,
AT&T Bell Laboratories, Feb. 1985.

J. Padhye and S. Floyd. On inferring TCP behavior. In
Proc. SIGCOMM 2001, pages 287-298, Aug. 2001.

V. Paxson, M. Allman, S. Dawson, W. Fenner,
J. Griner, I. Heavens, K. Lahey, J. Semke, and B. Volz.
Known TCP implementation problems. RFC 2525,
Internet Engineering Task Force, Mar. 1999.

R. Stewart et al. Stream Control Transmission Proto-
col. RFC 2960, Internet Engineering Task Force, Oct.
2000.

K. K. Ramakrishnan, S. Floyd, and D. Black. The
addition of explicit congestion notification (ECN) to
IP. RFC 3168, Internet Engineering Task Force, Sept.
2001.

S. Savage, N. Cardwell, D. Wetherall, and T. An-
derson. TCP congestion control with a misbehaving
receiver. ACM Computer Communication Review,
29(5), 1999.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. RTP: A transport protocol for real-time appli-
cations. RFC 1889, Internet Engineering Task Force,
Jan. 1996.

N. Spring, D. Wetherall, and D. Ely. Robust ECN sig-
naling with nonces. Internet-Draft draft-ietf-tsvwg-
tcp-nonce-04.txt, Internet Engineering Task Force,
Oct. 2002. Work in progress.

Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On
the characteristics and origins of Internet flow rates.
In Proc. SIGCOMM 2002, Aug. 2002.

(23]

