
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003 645

H.264/AVC Over IP
Stephan Wenger

Abstract—H.264 is the ITU-T’s new, nonbackward compatible
video compression Recommendation that significantly outper-
forms all previous video compression standards. It consists of a
video coding layer (VCL) which performs all the classic signal
processing tasks and generates bit strings containing coded
macroblocks, and a network adaptation layer (NAL) which adapts
those bit strings in a network friendly way. The paper describes
the use of H.264 coded video over best-effort IP networks, using
RTP as the real-time transport protocol. After the description
of the environment, the error-resilience tools of H.264 and the
draft specification of the RTP payload format are introduced.
Next the performance of several possible VCL- and NAL-based
error-resilience tools of H.264 are verified in simulations.

Index Terms—Data partitioning, flexible macroblock ordering
(FMO), H264, RTP, slice interleaving.

I. INTRODUCTION

H .264 is the denomination of ITU-T’s most recent
video codec Recommendation, which is also known as

ISO/IEC14496-10 or, less formally, as MPEG-4 Advanced
Video Codec (AVC). It is a product of the joint video team
(JVT) consisting of the members of MPEG and the ITU’s Video
Coding Experts Group. H.264 consists of a video coding layer
(VCL) and a network adaptation layer (NAL). The VCL con-
sists of the core compression engine, and comprises syntactical
levels commonly known as the block-, macroblock-, and slice
level. It is designed to be as network independent as possible.
Its main design goals, implementation, and performance are
reported elsewhere in this special issue [1]. The VCL contains
several coding tools that enhance the error resilience of the
compressed video stream. Those tools are briefly introduced
later in this paper.

The NAL adapts the bit strings generated by the VCL to var-
ious network and multiplex environments. It covers all syntac-
tical levels above the slice level. In particular, it includes mech-
anisms for:

• the representation of the data that is required to decode
individual slices (data that resides in picture and sequence
headers in previous video compression standards);

• the start code emulation prevention;
• the support of supplementary enhancement information

(SEI);
• the framing of the bit strings that represent coded slices

for the use over bit-oriented networks.
As a result of this effort, it has been shown that the NAL

design specified in the Recommendation is appropriate for the
adaptation of H.264 over RTP/UDP/IP, H.324/M, MPEG-2

Manuscript received December 12, 2001; revised May 9, 2003.
The author is with Teles AG, Berlin, Germany, and also with the Technical

University of Berlin, 10587 Berlin, Germany (e-mail: stewe@cs.tu-berlin.de).
Digital Object Identifier 10.1109/TCSVT.2003.814966

transport, and H.320. An integration into the MPEG-4 system
framework is also well on its way to standardization.

The main motivation for introducing the NAL, and its sep-
aration from the VCL is twofold. First, the Recommendation
defines an interface between the signal processing technology
of the VCL, and the transport-oriented mechanisms of the
NAL. This allows for a clean design of a VCL implementa-
tion—probably on a different processor platform than the NAL.
Second, both the VCL and the NAL are designed in such a way
that in heterogeneous transport environments, no source-based
transcoding is necessary. In other words, gateways never need
to reconstruct and re-encode a VCL bit stream because of
different network environments. This holds true, of course,
only if the VCL of the encoder has provisioned the stream for
the to-be-expected or measured, end-to-end transport charac-
teristics. It is, for example, the VLC responsibility to segment
the bit stream into slices appropriate for the networks in use, to
use sufficient nonpredictively coded information to cope with
erasures, and so forth.

The paper is organized in six main sections. Section II reviews
the general constraints that apply to the transmission of com-
pressed video over IP. More specifically, the target applications
with their specific constraints and the protocol environment of
the IP-based network are discussed. Readers familiar with the
characteristics of IP networks and RTP packetization schemes
for video may want to skip this section. Section III discusses the
error-resilience tools available in H.264. Many of these tools,
such as slice structuring and intra macroblock placement, are
well known from earlier standards and previous research. How-
ever, some new technology has also emerged that deserves ad-
ditional discussion. The tools of Section III are equally suited
to IP and wireless networks, and are discussed in some depth,
whereas the error concealment and the encoder mechanisms for
error resilience, especially the loss-aware rate-distortion (R-D)
optimization, are introduced in [2]. Section IV goes over the con-
cepts of the RTP packetization for H.264, as it stands in discus-
sions in the IETF as of April 2003. It is believed that the final
RTP payload specification will be implementing most or all of
the tools discussed in this section—however, it is likely that some
of the details will be changed. In Section V, the error-resilience
tools in the VCL and NAL and the RTP payload specification
are exposed to source video material and a network simulation in
order to verify their combined performance. Emphasis is placed
on conversational, video-conferencing-like applications that dis-
allowtheuseofmostchannel-basederrorprotectionschemesdue
to delay constraints, as outlined in Section II.

II. V IDEO TRANSMISSIONOVER IP

This section discusses the environment to which an IP-based
H.264 codec may be exposed. After going over the technical

1051-8215/03$17.00 © 2003 IEEE

646 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

characteristics of key applications for IP-based video, the cur-
rently used protocol infrastructure and their characteristics are
introduced.

A. Applications

Before discussing the transmission of video over IP, it is nec-
essary to take a closer look at its intended applications. The na-
ture of which determines the constraints and the protocol envi-
ronment with which the video source coding has to cope.

Using IP as a transport, three major applications can currently
be identified.

• Conversational applications, such as videotelephony and
videoconferencing.Such applications are characterized
by very strict delay constraints—significantly less than
one second end-to-end latency, with less than 100 ms as
the (so far unreachable) goal. They are also limited to
point-to-point or small multipoint transmissions. Finally,
they imply the use of real-time video encoders and de-
coders, which allow the tuning of the coding parameters
in real-time, including the adaptive use of error-resilience
tools appropriate to the actual network conditions, and
often the use of feedback-based source coding tools.
However, the use of real-time encoders also limits the
maximum computational complexity, especially in the
encoder. Low delay constraints further prevent the use
of some coding tools that are optimized for high-latency
applications, such as bipredicted slices.

• The download of complete, pre-coded video streams.Here,
the bit string is transmitted as a whole, using reliable pro-
tocols such as ftp [3] or http [4]. The video coder can op-
timize the bit stream for the highest possible coding effi-
ciency, and does not have to obey restrictions in terms of
delay and error resilience. Furthermore, the video coding
process is normally not a real-time process; hence, com-
putational complexity of the encoder is also a less crit-
ical subject. Most of the traditional video coding research
somewhat implies this type of application.

• IP-based streaming.This is a technology that, with respect
to its delay characteristics, is somewhere in the middle
between download and conversational applications.
There is no generally accepted definition for the term
“streaming”. Most people associate it with a transmission
service that allows the start of video playback before the
whole video bit stream has been transmitted, with an
initial delay of only a few seconds, and in a near real-time
fashion. The video stream is either pre-recorded and
transmitted on demand, or a life session is compressed
in real-time—often in more than one representation with
different bit rates—and sent over one ore more multicast
channels to a multitude of users. Due to the relaxed delay
constraints when compared to conversational services,
some high-delay video coding tools, such as bipredicted
slices, can be used. However, under normal conditions,
streaming services use unreliable transmission protocols,
making error control in the source and/or the channel
coding a necessity. The encoder has only limited—if
any—knowledge of the network conditions and has to

adapt the error resilience tools to a level that most users
would find acceptable. Streaming video is sent from a
single server, but may be distributed in a point-to-point,
multipoint, or even broadcast fashion. The group size
determines the possibility of the use of feedback-based
transport and coding tools.

This paper is mostly concerned with conversational services,
because here techniques from both the source coding and the
channel coding must be employed, and their interaction can
be shown. In addition, most research within JVT with respect
to IP-transport was performed assuming such an application.
Many of the discussions also apply to a streaming environment.
Readers primarily interested in download-type applications
should refer to papers that are concerned with coding efficiency
in this special issue [5].

IP networks can currently be found in two flavors: unman-
aged IP networks, with the Internet as its most prominent
example, and managed IP networks such as the wide-area
networks of some long-distance telephony companies. An
emerging third category could also be addressed: wireless
IP networks based on the third-generation mobile networks.
(Please see [2] in this Special Issue for an in-depth discussion.)

All three network types have somewhat different characteris-
tics in terms of the maximum transfer unit size (MTU size), the
probability for bit errors in packets, and the need to obey the the
Transmission Control Protocol (TCP) traffic paradigm.

1) MTU Size: The MTU size is the largest size of a packet
that can be transmitted without being split/recombined on the
transport and network layer. It is generally advisable to keep
coded slice sizes as close to, but never bigger than, the MTU
size, because this: 1) optimizes the payload/header overhead
relationship and 2) minimizes the loss probability of a (frag-
mented) coded slice due to the loss of a single fragment on
the network/transport layer and the resulting discarding of all
other fragments belonging to the coded slice in question (by the
network/transport layer protocols). The end-to-end MTU size
of a transmission path between two IP nodes is very difficult
to identify, and may change dynamically during a connection.
However, most research assumes MTU sizes of around 1500
bytes for wireline IP links (because of the maximum size of an
Ethernet packet). In a wireless environment, the MTU size is
typically considerably smaller—most research including JVT’s
wireless common conditions assume an MTU size of around
100 bytes.

2) Bit Errors: Bit-error probabilities of today’s wireline net-
works are so low that, within the scope of this work, they can
be safely ignored. (Please see [2] for a discussion on how the
H.264 test model handles the significantly higher bit error rates
found in wireless networks.)

3) Rate Control and TCP Traffic Paradigm:Since the big
Internet Meltdown of the late 1980s, the transport protocol TCP
[6], which is used to carry most Internet content such as email
and Web traffic, obeys the so-called TCP traffic paradigm [7].
It would be beyond the scope of this paper to discuss it in detail
but, in short, the TCP traffic paradigm mandates that a sender
reduces its sending bit rate to half (as a result of an adjustment
of the TCP buffer size) as soon as it observes a packet loss rate
above a certain threshold. Once the packet loss rate drops below

WENGER: H.264/AVC OVER IP 647

the threshold (plus some hysteresis), the sender may slowly in-
crease its sending bit rate again, until the packet loss rate is once
again too high and the whole process restarts. This simple, yet
effective regulation mechanism prevents the overload of routers
and ensures reasonable fairness among all senders. It should be
emphasized that due to this architecture, packet losses and net-
work dictated bit rates for connections are a very basic feature of
all best-effort IP networks, and not a result of a network failure
of some type. This mechanism was introduced as a congestion
control method and works well if the packet losses are the result
of congestion. In wireless networks, where packet losses due to
shortcomings of the link layer protocols are more common, this
algorithm does not yield the optimal results, but it is neverthe-
less one of the foundations of IP networks in general and the
Internet in particular, and should be observed by all network el-
ements to prevent future congestion related meltdowns.

Until now, most media transport protocol implementations
simply ignore the TCP traffic paradigm. Media rate control
schemes that take TCP-friendliness into account have been
reported in academia [8], but have not yet seen wide deploy-
ment in the field—mostly because, so far, no one on the public
Internet is “enforcing” the TCP traffic paradigm. This has not
yet resulted in an observable problem for the operation of the
Internet as a whole, only because the percentage of such traffic
is comparatively low—and the conforming TCP applications
behave “extra fairly” and reduce their sending bit rate by a
higher than fair amount, in order to free the bit rate for the
unfair real-time senders. With the increased popularity of
real-time services, and especially, real time media transmission,
it can be anticipated that Internet Service Providers (ISPs) will
also start to enforce a TCP-like congestion control for media
traffic as well, in order to assure a good quality of service for
the regular TCP traffic. Private managed networks often do
not have this problem, as they are either over-provisioned or
use bandwidth allocation techniques. The same is true for the
(also privately operated) wireless network and their wireline
infrastructure parts. Hence, an IP-based video sending device
needs to support both congestion control aware and unaware
transmission schemes to ensure a high quality user experience.

A final remark on the relationship of congestion control and
error-resilient coding: the goal of the congestion control mech-
anisms is to reduce the network load when higher error rates are
observed. Error-resilient video coding tends to add redundancy
to the bit stream to cope with the higher error rates—and, thus,
increase the bit rate and the network load if the same quality
level should be kept. As a result, the two main tools of the
community that are used to combat errors use contradicting ap-
proaches. Until now, the only solution for this problem that has
gained wide acceptance has been the reduction of the quality of
video in the source coder (or switching to a lower bit rate simul-
cast stream)—by reducing the sending frame rate, picture size,
picture quality and, in the worst case, dropping the video trans-
mission as a whole.

B. Protocol Environment

Luckily, for conversational and streaming applications there
is only one single commonly used protocol hierarchy.

1) Physical and Link Layer:IP networks may operate over
a variety of physical and link layer protocols and are generally
designed to abstract from those underlying protocols. There is
no need for a discussion of these two layers.

2) Network Layer: IP: On the network layer, IP networks
obviously use the Internet Protocol IP [9]. Many pages could
be filled with the design considerations, the actual design, and
the properties of IP, and literally hundreds of papers and books
have been published on the topic. For the purpose of this work,
it is sufficient to say that IP packets are transported individually
from the sender through a set of routers to the receiver. Split-
ting and re-combing of service data units (SDUs) larger than
the MTU size is handled by IP as well. The transmission time
of a packet varies from packet to packet, and routers are free
to discard packets at any time—this condition is observed by
the receiver as a packet loss. Hence, IP offers a so-called best
effort service only. The IP header is 20 bytes in size and pro-
tected by a checksum to ensure its integrity. No protection of
the payload is performed. The maximum size of an IP packet
allowed by the protocol specification is 64 kbytes, but this size
is rarely used because of MTU size constraints—please see Sec-
tion II-A-I above.

3) Transport Layer: User Datagram Protocol (UDP):On
the transport layer, IP networks commonly employ two pro-
tocols: the TCP [6] and the UDP [10]. Both include features
common to transport protocols, such as application addressing
through the port number, and error control for the payload.

TCP offers a byte-oriented, guaranteed transport service,
which is based on re-transmission and timeout mechanisms for
error control. Due to its unpredictable delay characteristics it is
not suitable for real-time communication.

UDP, on the other hand, offers a simple, unreliable datagram
transport service. The UDP header contains a checksum, which
can be used to detect and remove packets containing bit er-
rors—the mode of operation generally used. Apart from this,
UDP offers the samebest effortservice as IP does: packets may
be lost, duplicated, or re-ordered on their way from the source to
the destination. With UDP, if further error control schemes are
deemed necessary, these need to be provided at a higher layer
[also referred to asapplication layer framing (ALF)[11]]. The
UDP header is 8 bytes in size.

4) Application Layer Transport: RTP:Such an application
layer framing is implemented in the real-time transport pro-
tocol (RTP) [12]. RTP is typically used above IP/UDP. It is
session oriented, and a session is associated with a transport
address—the combination of the IP address and the UDP port
number. Each RTP packet consists of an RTP header, optional
payload headers, and the payload itself. The RTP header con-
tains the following.

• The sequence number, which is incremented by one for
each packet sent in a session and used for packet-loss de-
tection.

• The timestamp that contains timing information relative to
the establishment of the session. Timestamps are normally
used to determine the precise moment for media reproduc-
tion, but also for purposes such as the synchronization of
media streams carried in more than one session. For video,

648 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

the timestamp is usually generated using the sampling in-
stant (capture time).

• The payload type, which identifies the media codec of
the payload. For a few audio codecs, a direct mapping of
the Payload Type integer to a media codec exists. For ex-
ample, G.711 audio in a-law format is payload type 8 [13].
However, for most modern media codecs including H.264,
the association between the payload type and the media
coding must be established dynamically, per session, using
a control protocol mechanism.

• The marker bit, which is normally set for the very last
packet of a group of packets that have the same time stamp,
e.g., belonging to the same video picture. It can be em-
ployed to quickly detect the end of a group of related
packets without having to wait for the next packet to ar-
rive.

• Some administrative information that is used mostly
in conjunction with intelligent network entities such as
media mixers and translators which are outside the scope
of this paper.

The basic RTP header has a size of 12 bytes. The combined
size of the IP/UDP/RTP header is bytes. This
number is generally used later when discussing payload/over-
head constraints. However, it should be noted that, at the edge
of the IP network, header compression techniques can be used
which allow reducing the header size considerably. Within the
core network, the header size is unavoidable unless tunneling
techniques are used, and these have their own problems [14].

An RTP sender operates normally using a very simple algo-
rithm. The bit stream to be transported is divided into packets of
reasonable size, ideally at locations that allow independent re-
construction. For many more powerful media-coding schemes
including all video codecs, an additional payload header pre-
cedes this bit stream, whose format is specified in an RTP pay-
load specification—please see Section IV. For the RTP header,
the timestamp is set to the capture time, the sequence number is
increased by one, the payload type and the marker bit are set ac-
cording to their respective descriptions as above, and the packet
is sent through UDP.

At the receiver, the sequence number of the RTP header al-
lows the detection of packet losses in order to bring the packets
into their original order, and to remove duplicated packets. A
so-called “jitter buffer” is maintained, which is used to com-
pensate for the different transmission times of UDP packets.
Packets that arrive too late to be accepted into the jitter buffer
are removed and observed as a packet loss by the media de-
coder. Therefore, the size of this jitter buffer must be tuned care-
fully according to the current network conditions and the appli-
cation’s needs—if it is too big, it adds unnecessary delay, if it
is too small, the loss rate, as observed by the media decoder, is
increased—even at a constant network packet loss rate.

The RTP specification contains an accompanying simple con-
trol protocol. This protocol can be employed to inform an en-
coder about the network and transmission path characteristics
as observed by the decoder, so that an encoder optimized for
such use could adapt the error resilience and transmission bit
rate in real-time.

5) Media-Unaware RTP Payload Specifications:There are
currently a few techniques, often described as media unaware
RTP payload specifications, or meta-payloads, which can be
employed to reduce the loss rates as observed by the media
decoder. They work by sending redundant information, which
stands in fundamental contrast to the concepts behind the
TCP traffic paradigm. Hence, such schemes should be used
only to implement application-layer uneven error protection
by protecting only a few of the packets. Moreover, all these
techniques incur some additional delay, which makes them
difficult to use, or even inapplicable, to low-delay applications.
Three schemes should be introduced briefly, as they are relevant
for the transmission of compressed video.

• Packet duplication is a most basic technique where the
sender sends a to-be-protected RTP packet more than
once and, thus, raises the probability for the packet to
arrive at the receiver. Since packet duplications may also
happen due to the internal operations of the network,
all RTP receivers are prepared to remove duplicated
packets—there is neither a need to announce the capa-
bility nor any changes in the decoding system. In the
simulations of Section V, packet duplication is used to
protect the most important bits of a video stream, with
very positive results.

• Packet-based forward error correction (FEC), as speci-
fied in RFC 2733 [15], operates by calculating anXOR

checksum over a number of to be protected packets, and
sending the resulting bits as redundant information. In
practice, packet-based FEC is not used in conversational
applications due to the additionally incurred delay, but it
is believed to be a valuable tool for streaming. (See [2] for
a more in-depth discussion.)

• Audio redundancy coding (ARC, RFC2198 [16]) is, de-
spite its name, a technique that is helpful to protect any
data stream, including video. Each packet consists of the
headers, the regular packet’s payload, and a redundant rep-
resentation of the previous packet’s payload. H.264 can
make use of this technique in conjunction with data parti-
tioning—see below.

6) Application-Layer Control Protocols:Control protocols,
such as H.245 [17], SIP [18] with SDP [19], or RTSP [20], are
used to announce the availability of a media stream, to establish
the (virtual or physical) connections, to negotiate the capabili-
ties of the sender/receiver(s), and to control a running session.
In most papers on video coding, they are ignored as not being
relevant for the media transmission itself.

In H.264, however, bit streams are not necessarily self con-
tained because all the information that affects more than one
coded slice can be sent either out-of-band, e.g., though the con-
trol protocol, or in-band for applications that do not have a con-
trol channel, such as an MPEG-2 transport stream [21]. (See
Section III-E the discussion on parameter sets for more infor-
mation.) This paper cannot discuss, in depth, the mapping of
out-of-band parameter set transmissions to the various control
protocols, but readers may refer to [22] for some initial ideas on
how an SDP-like syntax (which could be utilized in SIP, SAP,
and RTSP environments) for such a transmission would look.

WENGER: H.264/AVC OVER IP 649

So far, the standardization community has not yet finalized any
mapping scheme that could be referred to.

III. ERROR-RESILIENCE TOOLS

As all video codecs developed over time, H.264 also includes
a number of error-resilience tools. As in previous video coding
standards, their application and adaptation is chosen by the en-
coder. As indicated below, many of those tools were present in
previous video compression schemes as well, and therefore, do
not need to be introduced here in much detail. However, a few
tools are either completely new in standard-based video com-
pression or are implemented in an innovated way, and hence
require more attention.

In the older video compression standards (H.261, H.263,
MPEG-1 Part 2 and MPEG-2 Part 2), the following error-re-
silience tools were already available:

• different forms of picture segmentation (slices, GOBs);
• placement of Intra MBs, intra slices, and intra pictures.

The more recent video compression standards, including the
later versions of H.263 as well as some profiles of MPEG-4 Part
2, implemented a few more tools:

• reference picture delection (with and without feedback,
picture, GOB/dlice, or MB-based);

• data partitioning.
H.264 introduces three new error-resilience tools, namely:

• parameter sets;
• flexible macroblock ordering (FMO);
• redundant slices (RS).

All tools mentioned above are discussed in Sections III-A–G;
however, especially for the older tools, the author expects some
familiarity of the reader with the technology. (See, for example,
[23] and [24].)

A. Intra Placement

Intra placement on the macroblock, slice, or picture level, is
used primarily to combat drifting effects. There are not many
new constraints with respect to these tools in H.264. The fol-
lowing aspects, however, deserve attention.

• H.264 allows Intra macroblock prediction even from
predictively coded (Inter) macroblocks. This feature is
helpful for coding efficiency, but is counterproductive
to the re-synchronization property of Intra coding. The
ConstrainedIntraPrediction Flag on the sequence level,
when set, prevents this form of prediction and restores the
re-synchronization property of Intra information.

• H.264 has two forms of slices that contain only Intra mac-
roblocks: Intra slices and IDR slices. IDR slices must al-
ways form a complete IDR picture—that is, all slices of
an IDR picture must be IDR slices, and an IDR slice can
only be part of an IDR picture. An IDR picture invalidates
all short-term reference memory buffers, and, hence, has
a stronger re-synchronization property than a picture that
contains only Intra slices (which would, at the first glance,
correspond in its re-synchronization property to an intra
picture of older video compression standards). An Intra
picture cancels drift for the duration of that picture, but

if subsequent pictures reference information of pictures
older than the Intra picture then drift would be re-estab-
lished even in case of an error-free transmission of the
Intra and all subsequent pictures.

The test model for error-prone environments uses a
loss-aware rate/distortion optimized coder that is discussed
in detail in [2], and sets the ConstrainedIntraPrediction flag.
Earlier experiments based on H.263 [25] suggest that simpler
algorithms, such as random or pseudo-random intra placement
also yield acceptable results, at a relatively small bit rate
penalty [26]. However, even applications using such a simpler
algorithm will typically have to set the ConstrainedIntraPredic-
tion flag.

B. Picture Segmentation

H.264 supports picture segmentation in the form of slices. A
slice is formed by an integer number of MBs of one picture. No
constraints are imposed on the encoder regarding the number
of macroblocks in a slice—a slice can encompass as little as a
single macroblock or as much as all macroblocks of a picture.
However, every macroblock in a picture must be coded in ex-
actly one slice (see the discussions of RSs later for a single ex-
ception). Macroblocks are assigned to slices in raster scan order,
unless FMO is used (see Section III-F).

As in older video coding standards, slices interrupt the in-pic-
ture prediction mechanisms. Since all information traditionally
found in the picture header is considered to be available at the
decoder—which is ensured by the parameter set mechanism dis-
cussed later—the availability of one coded slice implies that the
MBs of that slice can be reconstructed.

The main motivation for slices is the adaptation of the coded
slice size to different MTU sizes, but they can also be used to
implement schemes such as interleaved packetization (see [27]
for details).

C. Reference Picture Selection

Reference picture selection, regardless of whether it is on a
per picture, per slice, or per macroblock basis, can be used as
an error-resilience tool in the same way it is used in H.263
[28]. In feedback-based systems, the encoder receives infor-
mation about lost or damaged picture areas, and can react by
choosing older—known as correct reference MBs for predic-
tion—instead of using more expensive intra information. For
systems without feedback, video redundancy coding may be
employed [29]. An analysis of the efficiency of feedback-based
error resilience when using H.264 can be found in [2].

D. Data Partitioning

Normally, all symbols of a macroblock are coded together in
a single bit string that forms a slice. Data partitioning, however,
creates more than one bit strings (called partitions) per slice, and
allocates all symbols of a slice into an individual partition that
have a close semantic relationship with each other.

In H.264, three different partition types are used.

• Header information, including MB types, quantization pa-
rameters, and motion vectors.This information is the most

650 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

important, because without it, symbols of the other parti-
tions cannot be used. This partition type is called type A
partition in H.264.

• The Intra Partition, called type B partition.It carries Intra
CBPs and Intra coefficients. The type B partition requires
the availability of the type A partition of a given slice to
be useful. In contrast to the Inter information partition
(below), the Intra information can stop further drift and,
hence, is more important than the Inter Partition.

• The Inter Partition, called type C partition.It contains
only Inter CBPs and Inter coefficients but is, in many
cases, the biggest partition of a coded slice. Inter Partitions
are the least important because their information does not
re-synchronize the encoder and the decoder. In order to be
used, they require the availability of the type A partition,
but not the type B partition.

When data partitioning is used, the source coder puts symbols
of different types to three different bit buffers. Furthermore, the
slice size must be adjusted in such a way that the biggest par-
tition does not lead to a packet bigger than the MTU size. For
this reason, it is the source coder and not the NAL that has to
implement data partitioning.

In the decoder, all partitions need to be available to start stan-
dard-conformant reconstruction. However, if the Inter or the
Intra partitions are missing, the available header information
can still be used to improve the efficiency of error concealment.
More specifically, due to the availability of the MB types and the
motion vectors, a comparatively high reproduction quality can
be achieved, as it is only the texture information that is missing.

E. Parameter Sets

Calling parameter sets an error-resilience tool is not entirely
appropriate—they are generally used in all H.264 bit streams
and hence described elsewhere in this special issue [1]. In short,
the sequence parameter set contains all information related to a
sequence of pictures (defined as all pictures between two IDR
pictures), and a picture parameter set contains all information
related to all the slices belonging to a single picture. Multiple
different sequence and picture parameter sets can be available at
the decoder in numbered storage positions. The encoder chooses
the appropriate picture parameter set to use by referencing the
storage location in the slice header of each coded slice. The
picture parameter set itself contains a reference to the sequence
parameter set to be used.

The intelligent use of the parameter set mechanism greatly
enhances error resilience. The key of using parameter sets in an
error-prone environment is to ensure that they arrive reliably,
and in a timely fashion at the decoder. They can, for example,
be sent out-of-band, using a reliable control protocol, and early
enough, so that the control protocol time to get them to the de-
coder before the first slices that references that new parameter
set arrives over the real-time communication channel [22].

Alternatively, they can be sent in-band, but with appropriate
application layer protection (e.g., by sending multiple copies,
so to enhance the probability that at least one copy arrives at the
destination). A third option is that an application hard-codes a
few parameter sets in both encoder and decoder, which would
be the only operation points of the codec.

Fig. 1. A picture with a size of 6� 4 MBs and two slice groups. The shaded
MBs belong to slice group 0, the white MBs to slice group 1. Obviously, when
losing one of the two slice groups, each lost (inner) MB has four neighboring
MBs which can be used to conceal the lost information.

F. Flexible Macroblock Ordering

Flexible macroblock ordering, available in the Baseline and
Extended, but not in the Main profile, allows to assign MBs to
slices in an order other than the scan order (please see [30]–[32]
for an in-depth discussion of FMO). To do so, each MB is stat-
ically assigned to a slice group using a macroblock allocation
map (MBAmap). Within a slice group, MBs are coded using
the normal scan order. In-picture prediction mechanisms, such
as Intra prediction or motion vector prediction, however, are
only allowed if the spatially neighboring MBs belong to the
same slice group. To illustrate this relationship, please consider
Fig. 1. All MBs of the picture are allocated either slice group
0 or slice group 1, depicted in grey and white, respectively,
in a checker-board fashion. Assume that the picture is small
enough to fit into two slices, one encompassing all macroblocks
of slice group 0, the other encompassing all MBs of slice group
1. Assume further that, during transmission, the packet con-
taining the information of slice group 1 got lost. Since every
lost MB has several spatial neighbors that belong to the other
slice, an error-concealment mechanism has a lot of informa-
tion it can employ for efficient concealment. Experiments have
shown that, in video conferencing applications with CIF-sized
pictures, and at loss rates up to 10%, the visual impact of the
losses can be kept so low that it takes a trained eye to identify
the lossy environment—an efficiency level that was not achiev-
able before with source-coding based tools. The price of the
use of FMO is a somewhat lower coding efficiency (because
of the broken in-picture prediction mechanisms between non-
neighboring MBs) and, in highly optimized environments, a
somewhat higher delay.

G. RSs

RSs allow an encoder to place, in addition to the coded MBs
of the slice itself, one or more redundant representations of the
same MBs into the same bit stream. The key difference between
a transport based redundancy, such as packet duplication as dis-
cussed in Section II-B-V), and the use of RSs is that the redun-
dant representation can be coded using different coding param-
eters. For example, the primary representation could be coded
with a numerically low QP (and hence in good quality), whereas
the RS could be coded with a numerically high QP (hence, in a
much coarser quality, but also utilizing fewer bits). A decoder
reacts to RSs by reconstructing only the primary slice, if it is
available, and discarding the RS. However, if the primary slice
is missing (e.g., as the result of a packet loss), the RS can be re-

WENGER: H.264/AVC OVER IP 651

constructed. RSs were introduced to support highly error-prone
mobile environments, but are equally efficient in IP-based envi-
ronments (see [33]).

IV. RTP PACKETIZATION

This section discusses the draft RTP payload specification for
H.264. At the time of writing, this document contains several
sections that will change, for example advanced use forms of
aggregation packets and fragmentation. Hence, only the most
basic features are discussed here—these are the features which
are later used in the simulations section of this paper. However,
before discussing the packetization scheme itself, the NAL unit
concept of H.264 shall be recapitulated.

A. H.264’s NAL Unit Concept

Earlier video compression standards were always centered
around the concept of a bit stream. Higher layer syntax elements
were separated by start codes to allow re-synchronization to the
bit stream in case of corruption—be it the result of an erasure or
of bit errors. H.264, when employing its optional Annex B, also
allows such a framing scheme, primarily to support a few legacy
protocol environments such as H.320 or MPEG-2 transport. The
RTP packetization, however, employs the native NAL interface
that is based on NAL units (NALUs).

A NALU is a byte string of variable length that contains
syntax elements of a certain class. There are, for example,
NALUs carrying a coded slice, a type A, B, C data partition, or
a sequence or picture parameter set. Each NALU consists of a
1-byte header with three fixed-length bitfields, and a variable
number of bytes containing the coded symbols. The header has
the following format:

The NALU type (T) is a 5-bit field that characterizes the
NALU as one of 32 different types. Types 1–12 are currently
defined by H.264. Types 24 to 31 are made available for uses
outside of H.264, and the RTP payload specification employs
some of these values to signal aggregation and fragmentation
packets—see below. All other values are reserved for future
use by H.264. The nal_reference_idc (R) can be employed to
signal the importance of a NAL unit for the reconstruction
process. A value of 0 indicates that the NAL unit is not used
for prediction, and hence could be discarded by the decoder
or by network elements without risking drifting effects—even
though with a negative impact for the user (the same impact that
the discarding of B-frames has in previous video compression
standards). Values higher than 0 indicate that the NALU is
required for a drift-free reconstruction, and the higher the value,
the higher the impact of a loss of that NALU (in the encoder’s
opinion) would be. Network elements can use the nal_refer-
ence_idc to protect important packets more forcefully than less
important ones. The forbidden_bit, finally, is specified to be
zero in H.264 encoding. Network elements can set this bit to 1
when they identify bit errors in the NALU. The forbidden_bit is
primarily useful in heterogeneous network environments (such
as combined wireline/wireless environments), where some
decoders may be prepared to operate on NALUs containing
bit errors and others do not. Consider a wireless to wireline
gateway, with a non-IP protocol environment on the wireless

side and a bit-error-free IP environment on the wireline side.
Furthermore, consider a decoder to be connected to the wireline
side of that gateway. Assume a NALU arrives on the wireless
side that fails a checksum test. The gateway could choose to
remove that NALU from the NALU stream, so to make sure
that all NALUs arriving at the receiver would be bit-error free.
It could also forward the known-as-corrupt NALU in an UDP
packet to the receiver—however, that packet would pass the
UDP checksum test (as it was packetized by the gateway for
the transport over the reliable wireline link), and a decoder
would not have a chance to prepare itself for the corrupted data.
In this case, the gateway sets the forbidden_bit. An intelligent
decoder could now attempt to reconstruct the NALU (knowing
that it may include bit errors) whereas a less intelligent decoder
would simply discard such a NALU.

B. Packetization Design Constraints

The design constraints for the H.264 RTP payload specifica-
tion design can be summarized as follows.

1) It should have low overhead, so that MTU sizes of 100
bytes (or less) to 64 kbytes are feasible.

2) It should be easy to distinguish “important” from “less
important” RTP packets, without decoding the bit stream
carried in the packet.

3) The payload specification should allow the detection of
data that became undecodable due to other losses, without
a need to decode the bit stream. Gateways, for example,
should be able to detect the loss of a type A partition and
if desired, react to this by not sending the type B and type
C partitions.

4) It should support NALU fragmentation into multiple RTP
packets.

5) It should support NALU aggregation—more than one
NALU to be transported in a single RTP packet.

Since the NAL concept of H.264 was designed with IP net-
works in mind, many of the design constraints are already re-
flected in the H.264 design. In particular, there is no need for
an additional payload header when using simple packetization
forms—the NALU header co-serves as the RTP header. This
feature satisfies the design constraints 1, 2, and 3. To support
constraints 4 and 5, code points of the NALU type are em-
ployed that were reserved by JVT for external use. These code
points are employed to mimic a special form of NALU type,
and thus to minimize the overhead even for those advanced fea-
tures. Both the fragmentation and the aggregation features are
defined in such a way that media aware network elements can
perform fragmentation, aggregation, and the respective inverse
functions without parsing the media stream beyond the NALU
header byte.

C. Simple Packetization

All forms of packetizations of H.264 NALUs are called
“simple packetization” schemes that put exactly one NALU
in one RTP packet. The packetization rules for this mode are
indeed very simple: put a NALU (including its NALU header,
which co-serves as the payload header) into the payload of an
RTP packet, set the RTP header values as defined in the RTP

652 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

specification itself [12], and send it. Ideally, the VCL should
never generate NALUs that are bigger than the MTU size,
in order to avoid IP-layer fragmentation. This can easily be
achieved by employing slices. However, as long as the NALUs
are smaller than 64 kbytes, IP performs the fragmentation and
the recombination of fragmented packets—hence even by using
simple packetization most pre-recorded NALU streams can be
conveyed.

At the receiver’s side, duplicated packets, as identified by the
RTP sequencing information, are discarded, and the NALUs are
extracted from the RTP packets. The timing information of the
RTP packets is also required for a time-exact rendering, and
overwrites the timing information that can be part of an SEI
NALU. The baseline and extended profiles allow the out-of-
order decoding of slices. Thus, re-ordering of packets in the
jitter buffer is not required. When the main profile is used (which
implies that out-of-order slices are not allowed) the re-ordering
of packets, by using the RTP sequencing information, is re-
quired. The introduction of a decoding order number (DON)
concept is currently under discussion in the IETF. This would
formalize the reaction of the receiver to the out-of-order recep-
tion of NALUs that belong to different pictures.

When uneven protection schemes are available in the net-
work, using data partitioning is a very efficient way to improve
the error resilience without adding much overhead [34]. The
data partitions are protected according to their importance for
reconstruction—partition A is protected better than partition B,
and partition C is sent best-effort. The partitions B and C are use-
less when the corresponding type A partition is missing. Hence,
an RTP receiver could discard RTP packets containing lonely
type B and/or C partitions. This feature is particularly useful for
media-aware gateways. When a gateway senses a type A parti-
tion is being lost, it is free to discard type B and C partitions be-
longing to the same slice and, hence, lowers the network burden
and eases the congestion of the network.

D. NALU Fragmentation

There may be cases, e.g., when using pre-encoded content,
where the encoder cannot react to the MTU size demands of the
underlying networks and many NALUs bigger than the MTU
size would have to be transmitted. IP layer fragmentation is
available to handle this case for NALU sizes up to 64 kbytes.
However, when relying on IP fragmentation, obviously no ap-
plication layer protection of the fragments can be used. This
would render most of the concepts related to uneven protection
schemes, e.g., those based on data partitioning or to the use of
nonreferenced NALUs, inefficient or even counter-productive.

For this reason, and for the sheer fact that (without IP-V6
Jumbograms) UDP datagrams cannot be bigger than 64
kbytes—a coded slice size that may simply be too small for
applications such as digital cinema—an application layer
fragmentation scheme is part of the RTP packetization scheme.

The fragmentation scheme is currently undergoing
fine-tuning in the IETF. The following basic features are
expected to be part of the ratified RFC.

• The fragments of a fragmented NALU are transmitted
in ascending order of RTP sequence numbers—no RTP

Fig. 2. NALU header.

packets containing (parts of) other NALUs are allowed be-
tween the fragments of a given NALU.

• A signaling mechanism exists which indicates the first and
the last fragment of a fragmented NALU.

• Another signaling mechanism is available that allows the
detection of a sequence of lost fragments between NALU
boundaries.

E. NALU Aggregation

Some H.264 NALUs, e.g., SEI NALUs, or the parameter set
NALUs are typically very small—a few bytes at most. It would
be helpful to aggregate them with other NALUs into a single
RTP packet so to reduce the overhead for the IP/UDP/RTP
headers. For this reason, an aggregation scheme has been
introduced.

Two basic types of aggregation packets exist:

• single-time aggregation packets (STAPs) contain NALUs
with identical timestamp;

• multi-time aggregation packets (MTAPs) can contain
NALUs with different timestamps.

STAPs are normally used in low-delay environments, where
any form of interleaving of information belonging to multiple
pictures is undesirable. They are of a relatively simple design—a
1-byte header of the same format as the NALU header (see
Fig. 2), indicating that this packet is an STAP, is followed by one
or more STAP aggregation units. Each aggregation unit consists
of a length indication of the following NALU, and is followed
by the NALU itself. The use of STAPs is assumed in some of
the simulations in Section V.

MTAPs are more useful in high delay environments such
as streaming. They allow for some sophisticated packetization
schemes that greatly enhance the performance of H.264 based
streaming—see, for example, [33]. The basic structure of an
MTAP is similar to an STAP; however, the aggregation unit also
contains a timestamp (coded relative to the RTP timestamp in
order to save bits), and a decoding order number that is used to
indicate the decoding order of the NALUs in the MTAP. Since
the mechanisms behind both concepts are still undergoing
design changes, no further discussion seems to be appropriate
at this time.

V. CURRENT PERFORMANCEFIGURES

This section contains the results of some simulations per-
formed with the current release of the TML software, JM 1.0
[35] and JM 1.7 in case of the FMO simulations [36], and a set
of network simulation tools that are generally used by JVT. Note
that JM 1.0 and JM 1.7 are roughly equivalent in the R-D perfor-
mance, and therefore, it is believed the comparisons made later
are valid.

WENGER: H.264/AVC OVER IP 653

A. JVT’s Testing Environment

In order to efficiently and objectively compare the perfor-
mance of newly proposed coding tools to the reference design,
a set of common testing conditions (CCs) is maintained by JVT,
which have to be employed by all performance tests. Each CC
document is concerned with a certain application and its trans-
port environment. The CC document relevant to this work is
[37]. When testing video over IP, the packet lossy nature of the
IP network has to be simulated. For this, the CC document man-
dates a very simple tool, which discards some IP packets de-
pending on the information available in a supplied error pattern
file. Four error pattern files with average packet loss rates of
roughly 3%, 5%, 10%, and 20% are used—see [38] for details
on their characteristics and how they were generated.

The current CC document acknowledges the fact that a feed-
back-based operation can largely increase the reproduced pic-
ture quality. However, due to the difficulties in the simulation
environment, only simplex video transmission is assumed. This
restriction makes the CCs applicable to all video over IP sce-
narios including those without an available feedback channel
(i.e., broadcast). Please note the assumption that some form of
quality monitoring of the forward video channel is available. On
IP networks, using RTP this is the case through RTCP, which
scales to very large receiver groups of tens of thousands of re-
ceivers. In those environments where true simplex communica-
tion is necessary, a reasonable error rate has to be “guessed” by
the service provider, and taken into account when adapting the
error resilience (in the video coding or on the transport channel,
or both combined).

B. Simulations

Due to space and time constraints, only a small subset of the
simulation results required by the CCs are presented in Sec-
tion V-B-I. More results can be found in the JVT document
archives [39].

1) Simulation Environment:Simulations are presented
using two sequences.

• Foreman, in QCIF size, and with a frame skip of three
pictures, corresponding to a target frame rate of 7.5 fps.
The bit rate for the complete packet stream, including the
complete overhead for IP/UDP/RTP is kept close to, but
below 64 kbit/s. This is achieved by choosing the lowest
numerical quantizer value that fits this requirement. For
Foreman, a total of 100 coded frames corresponding to
13.33 s of video are used.

• Paris, in CIF size, and with a frame skip of 1 picture, cor-
responding to a target frame rate of 15 fps. The gross bit
rate is kept below 384 kbit/s. Here, a total of 200 coded
frames, corresponding to 10 s of video, are tested.

The codec release JVT1.0, dated 2/5/02, is employed. To gen-
erate the RTP stream using the simple packetization (one NALU
per RTP packet), no changes to the software were necessary.
However, small stand-alone tools for tasks such as the duplica-
tion of Type-A partitions or to implement aggregation packets
for interleaved packetization were required, and implemented as
a set of C programs.

Fig. 3. Simulation results for the foreman sequence.

Fig. 4. Simulation results for the paris sequence.

The simulation parameters were set as follows, except where
noted otherwise in the description of the experiments:

• no Intra GOB refresh used;
• QP kept constant at a value to match the bit rate require-

ments;
• motion resolution 1/4 pel;
• all macroblock types enabled;
• only one single reference frame—no multiframe predic-

tion used;
• no B-slices used;
• UVLC-type entropy coding (note that later releases of the

H.264 draft use the term CA-VLC for an optimized ver-
sion of the UVLC entropy coding);

• error concealment as discussed in [2] is used.
With these common parameters, the encoder settings were

chosen so that they are at the lower end of the complexity scale
of the encoder, and quite realistic for a real-time implementation
(see [40] for an evaluation of the real-time properties of such a
simple setting).

2) Experiments Performed:The wealth of error-resilience
tools of both the VCL and the NAL, and their dependence on
each other, make it impossible to evaluate each tool individu-
ally. Reasonable combinations have to be chosen in order to get
some impression of the performance of H.264 over IP.

A total of six experiments were performed.
Fig. 3 plots the results of all six experiments for the Foreman

sequence, and Fig. 4 for the Paris sequence, both at the packet
loss rates of 0%, 3%, 5%, 10%, and 20%.

For the diagrams, a regular PSNR measurement was used.
The PSNR was only calculated for the pictures that were actu-
ally reconstructed (in whole or in part with error concealment).

654 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Against the recommendation in the common conditions docu-
ment, no penalty was introduced for lost pictures. If such were
the case, one could expect that the quality for the Experiments 1,
2, and 4 would have been significantly worse than indicated in
the diagrams, because in all those experiments a relatively large
number of complete pictures would have gotten lost, giving no
hint to the decoder that they existed. In Experiment 5, the header
partition was protected well enough that here few, if any, pic-
tures would have been lost.

1) Experiment 1: One picture, one packet, without any error-
resilience tools applied

In Experiment 1, the encoder was configured to generate op-
timum coding efficiency for an error-free environment. Only a
single slice per picture was used, and no bits were spent on ro-
bustness. Consequently, the results are the best in the error free
and the worst in all error-prone test runs. It is fair to say that at
packet loss rates above 3% unprotected H.264 video becomes
unusable. This is in line with research on other video coding
schemes that employ inter picture prediction.

2) Experiment 2: One picture, one packet, with intra mac-
roblock refresh

This experiment used a loss-aware R-D optimization process,
as discussed in detail in [2] for optimal intra placement of mac-
roblocks, and a one picture, one packet approach. Experiment
2 yields very good objective results for the Foreman sequence.
However, this is accomplished by using a very high amount of
intra MBs of significant size, which leads to a coarser quantizer
value and, hence, less spatial detail. The IP/UDP/RTP header
overhead is kept to the theoretical minimum for low-delay ap-
plications. Experiment 2 was not performed for Paris, because
most packets would exceed the MTU size, leading to a signif-
icantly higher observed packet loss rate. Clearly, at bit rates of
384 kbits/s and only 15 fps target frame rate (which yields an av-
erage coded picture size of 3.2 kbyte) coded video needs some
form of picture fragmentation, e.g., slices.

3) Experiment 3: Slices
In Experiment 3, it was tried to adjust the IP/UDP/RTP header

overhead to a similar amount as used by the Experiments 4, 5,
and 6, by employing at least three slices per picture. This has
the welcome side effect that the picture loss rate is minimized
as it is very likely that at least one slice of every coded picture
is received. For Foreman, three packets per picture were used,
for Paris the number was variable because slices were filled
until the MTU size was reached, but typically 2–4 slices per
picture were used. Due to the additional header overhead fewer
bits were available to code video, and, hence, a coarse quantizer
had to be selected to stay within the bit rate requirements. For
the Foreman sequence, this led to unfavorable PSNR results.
However, subjectively, and in contrast to the objective PSNR
results, for the Foreman sequence Experiment 3 is superior to
Experiment 2 due to the constant high frame rate. For the Paris
sequence, Experiment 3 leads to the second best PSNR results
(next to FMO), and the subjective quality is comparable to the
one of the two other experiments with applied error-resilience
tools.

4) Experiment 4: Slice interleaving
Experiment 4 uses slice Interleaving, a technique that has

turned out to be successful for other video coding standards,

and is used commercially in several video telephony systems
[22]. At least two packets per picture are used, and for the Paris
sequence, many pictures have taken four packets to stay within
the MTU size constraints. Each slice encompasses a single line
of macroblocks, similar to the way slices are commonly used in
MPEG-2. Even numbered macroblock lines, and odd numbered
macroblock lines are transported in different packets. This
allows for efficient concealment when only one of the packets is
lost, since the macroblocks above and below a lost macroblock
are available for concealment. Subjectively and for the Paris
sequence, slice Interleaving produced very good results, which
is also reflected in the PSNR values. This is particularly true
because no lost frames could be observed in this case. For
Foreman, the penalty due to the increased header overhead,
when compared to Experiment 2, led to slightly inferior results.

5) Experiment 5: Data partitioning
Experiment 5 must be distinguished from the other experi-

ments because it does not employ any intra refresh for error-re-
silience purposes. It relies completely on the superior error con-
cealment mechanisms that are available when it can be made
sure (or almost sure) that at least the header partition arrives.
This is achieved by sending the RTP packet with the header
partition twice (for the 3% error rate case) or 3 times (for the
5%, 10%, and 20% error rate cases). Of course, the quantizer is
adapted so that the complete packet stream, including the mul-
tiple header partitions, fits into the bit rate budget. No loss-aware
R-D optimization is used for this Experiment. Hence, the com-
putational encoding complexity is significantly lower than those
in the other experiments. With the JM1.1 reference software, the
encoding speed for Experiment 5 is more than twice higher than
the other experiments.

For the Foreman sequence, superior objective and subjective
results can be reported. For Paris, they are at least competitive.
Undoubtedly, the performance of Experiment 5 could be further
increased when using an optimized intra refresh method for this
scheme, but thus far time constraints have disallowed the imple-
mentation of such a mechanism.

6) Experiment 6: Flexible macroblock ordering
As a completely new coding tool, a good performance is ex-

pected, and indeed FMO outperforms all other tested mecha-
nisms at high error rates (where it is designed for). This, of
course, to a large part is the result of the error concealment
mechanisms in JM1.7, which allows the use of a very low intra
rate. In Experiment 6, the R-D optimized intra placement is
not used, instead a simple, pseudo-random intra placement is
employed, with an intra rate that was one third of the packet
loss rate (e.g., 3.3% for 10% packet loss rate). This intra rate
was chosen as a result of a large set of experiments on test se-
quences distinct from those used in the common conditions.
This results in the use of far less intra than in many other ex-
periments, yielding more available bits for the inter coefficients
and thus in a numerically smaller QP and more visible detail.
Since two slice groups are employed, the minimum number of
slices per picture is two as well. For Paris, however, most pic-
tures took four packets and the associated overhead, which re-
sulted in a very low picture loss rate. The quality of the recon-
structed video could be described as “crisper”, however some
artifacts not frequently seen in error-resilient video coding could

WENGER: H.264/AVC OVER IP 655

be observed. Unfortunately, such artifacts are only visible in mo-
tion sequences, hence it was refrained from reproducing recon-
structed pictures in this paper.

VI. CONCLUSIONS

H.264, in addition to all its coding-efficiency oriented
features, introduces a set of new tools that improve the error
resilience. In particular, the concepts of parameter sets and
NALUs on the NAL, and FMO and data partitioning on the
video coding layer have been shown to significantly improve
the performance of H.264 in the challenging best-effort IP
environment. Well-known tools, such as enhanced reference
picture selection and Intra placement can also be employed to
enhance the reproduced quality in an error-prone environment
and, in some cases, they come close to the performance level
of the new tools. However, all the intelligence of an encoder
employing the old and new coding tools would not be at
all helpful, without a good mapping of the video bits to the
payload of RTP packets. The draft RTP payload specification
for H.264, which closely integrated with the H.264 NAL,
provides guidance for the packetization. It also adds some
transport-level, low overhead mechanisms that allow for effi-
cient fragmentation and aggregation of NALUs. When using
all tools combined, superior performance can be achieved, and
high-quality compressed video over best-effort IP may finally
become a reality.

ACKNOWLEDGMENT

The author would like to thank the many implementers of the
JM codec software, which created a remarkably stable and effi-
cient tool for video coding research. He would also like to thank
VCEG and JVT for the collaborative work and the technically
outstanding discussions and contributions. The author is proud
to be able to call himself a member of these groups.

REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,”IEEE Trans. Circuits Syst.
Video Technol., vol. 13, pp. 560–576, July 2003.

[2] T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC in wire-
less environments,”IEEE Trans. Circuits Syst. Video Technol., vol. 13,
pp. 657–673, July 2003.

[3] J. Postel and J. K. Reynolds, “File Transfer Protocol,” RFC959, 1985.
[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext Transfer Protocol-HTTP/1.1,” RFC 2616,
1999.

[5] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan,
“Rate-Constrained Coder Control and Comparison of Video Coding
Standards,”IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp.
688–703, July 2003.

[6] J. Postel, “Transmission Control Protocol,” RFC 793, 1981.
[7] S. Floyd, “Congestion Control Principles,” RFC2914, BCP41, 2000.
[8] S. Floydet al., “Equation-based congestion control for unicast applica-

tions,” inSIGCOMM 2000, Stockholm, Sweden, Aug. 2000, pp. 43–56.
[9] J. Postel, “Internet Protocol,” RFC 791, 1981.

[10] , “User Datagram Protocol,” RFC 768, 1980.
[11] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for

a new generation of protocols,” inSIGCOMM Symp. Communications
Architectures and Protocols, Philadelphia, PA, Sept. 1990, pp. 200–208.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 1889, 1996.

[13] H. Schulzrinne, “RTP Profile for Audio and Video Conferences With
Minimal Control,” RFC 1890, 1996.

[14] D. Wing, B. Thompson, and T. Koren, “Tunneling multiplexed com-
pressed RTP (’TCRTP’),” Internet Draft, Work in Progress, Nov. 2002.

[15] J. Rosenberg and H. Schulzrinne, “An RTP Payload Format for Generic
Forward Error Correction,” RFC 2733, 1999.

[16] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. C.
Bolot, A. Vega-Garcia, and S. Fosse-Parisis, “RTP Payload for Redun-
dant Audio Data,” RFC2198, 1997.

[17] Call Signalling Protocols and Media Stream Packetization for Packet-
Based Multimedia Communication Systems, ITU-T Recommendation
H.225.0, 1998.

[18] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: Ses-
sion Initiation Protocol,” RFC 2543, 1999.

[19] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” RFC
2326, 1998.

[20] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Pro-
tocol (RTSP),” RFC 2326, 1998.

[21] Information Technology—Generic Coding of Moving Pictures and As-
sociated Audio Information: Systems, ISO/IEC 13 818-1:2000.

[22] S. Wenger and T. Stockhammer. (2001) H.264 Over IP and H.324
Framework. [Online]. Available: ftp://ftp.imtc-files.org/jvt-ex-
perts/0109_San/VCEG-N52.doc

[23] Y. Wang and Q. Zhu, “Error control and concealment for video commu-
nication: A review,”Proc. IEEE, vol. 86, pp. 974–997, May 1998.

[24] Y. Wang, G. Wen, S. Wenger, and A. K. Katsaggelos, “Review of error
resilient techniques for video communications,”IEEE Signal Processing
Mag., vol. 17, pp. 61–82, July 2000.

[25] Video Coding for Low Bitrate Communication, Version 2, ITU-T Rec-
ommendation H.263, 1998.

[26] G. Côté and F. Kossentini, “Optimal intra coding of blocks for
robust video communication over the internet,”EUROSIP J. Image
Commun.—Special Issue on Real-time Video Over the Internet, pp.
25–34, Sept. 1999.

[27] S. Wenger, T. Stockhammer, and M. Hannuksela, “RTP pay-
load format for JVT video,” Internet Draft, Work in Progress,
draft-wenger-avt-rtp-jvt-00.txt, Mar. 2003.

[28] S. Fukunaga, T. Nakai, and H. Inoue, “Error resilient video coding by
dynamic replacing of reference pictures,” inIEEE Global Telecommu-
nications Conf., vol. 3, New York, Nov. 1996, pp. 1503–1508.

[29] S. Wenger, “Video redundancy coding inH:263+,” in Proc. AVSPN 97,
Aberdeen, U.K., 1997.

[30] S. Wenger and M. Horowitz. (2002) Scattered Slices: A New Error Re-
silience Tool for H.264. [Online]. Available: ftp://ftp.imtc-files.org/jvt-
experts/0202_Gen/JVT-B027.doc

[31] T. Stockhammer, T. Wiegand, T. Oelbaum, and F. Obermeier, “Video
coding and transport layer techniques for H.264-based transmission over
packet-lossy networks,” inProc. ICIP 2003, Barcelona, Spain, to be
published.

[32] T. Stockhammer and S. Wenger, “Standard-Compliant enhancement of
JVT coded video for transmission over fixed and wireless IP,” inProc.
IWDC 2002, Capri, Italy, Sept. 2002.

[33] M. M. Hannuksela, Y.-K. Wang, and M. Gabbouj, “Sub-picture: ROI
coding and unequal error protection,” presented at the IEEE 2002 Int.
Conf. Image Processing (ICIP’2002), Rochester, NY, Sept. 2002.

[34] T. Stockhammer, T. Oelbaum, T. Wiegand, and D. Marpe. (2001)
H.264 Simulation Results for Common Conditions for H.323/In-
ternet Case. [Online]. Available: ftp://ftp.imtc-files.org/jvt-ex-
perts/0109_San/VCEG-N50.doc

[35] H.264/AVC Codec Software Archive.. [Online]. Available:
ftp://ftp.imtc-files.org/jvt-experts/reference_software

[36] S. Wenger and M. Horowitz. (2002) Scattered Slices: Simulation Re-
sults. [Online]ftp://ftp.imtc-files.org/jvt-experts/2002_05_Fairfax/JVT-
C090.doc

[37] S. Wenger. (2001) Common Conditions for Wire-Line, Low Delay
IP/UDP/RTP Packet Loss Resilient Testing. [Online]. Available:
ftp://ftp.imtc-files.org/jvt-experts/0109_San/VCEG-N79r1.doc

[38] VCEG. (1999) Internet Error Patterns VCEG-O38r1.doc. [Online].
Available: ftp://ftp.imtc-files.org/jvt-experts/9910_Red/Q15-I16r1.zip

[39] JVT document archives.. [Online]. Available: ftp://ftp.imtc-files.org/jvt-
experts and ftp://ftp.imtc-files.org/jvt-experts

[40] A. Joch. (2001) Initial Results From a Near-Real-Time H.264 Encoder.
VCEG-O38r1.doc. [Online]. Available: ftp://ftp.imtc-files.org/jvt-ex-
perts/0112_Pat/VCEG-O38r1.doc

656 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

Stephan Wengerreceived the diploma and Dr.-Ing
degrees in computer science from Technische Uni-
versität Berlin (TU Berlin), Berlin, Germany, in 1989
and 1995, respectively.

He is with the Communications and Operating
Systems Group in the Computer Science Depart-
ment, TU Berlin. His professional work includes
positions such as a Project Manager at TELES AG,
Berlin, Germany, and Technical Advisor and Con-
sultant for several companies including Polycom,
Siemens, Microsoft, and Intel. He has also helped

start several companies in the field of multimedia coding, and serves on the
Board of Directors of UB Video Inc., a leading supplier of video compression
software. Recently, he has joined TeleSuite as their Chief Video Scientist. His
research interests are both in protocol design and media coding for multimedia
systems. He has authored or co-authored several journals and conference
publications, important standardization contributions, Internet RFCs, and book
chapters. He has held several seminars on technical and marketing topics
of multimedia communication. He is also very active in the standardization
process for new multimedia technologies, especially in the IETF and the
ITU-T, where he chairsad-hoccommittees in Q.6/16 and in the Joint Video
Team composed of video experts from MPEG and Q.6/16. He currently holds
two international patents with several pending

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

