
Principal Type Schemes for Gradual Programs
With updates and corrections since publication (Latest: May 16, 2017)

Ronald Garcia ∗

Software Practices Lab
Department of Computer Science
University of British Columbia

rxg@cs.ubc.ca

Matteo Cimini †

Indiana University
mcimini@indiana.edu

Abstract
Gradual typing is a discipline for integrating dynamic checking into
a static type system. Since its introduction in functional languages,
it has been adapted to a variety of type systems, including object-
oriented, security, and substructural. This work studies its applica-
tion to implicitly typed languages based on type inference. Siek
and Vachharajani designed a gradual type inference system and
algorithm that infers gradual types but still rejects ill-typed static
programs. However, the type system requires local reasoning about
type substitutions, an imperative inference algorithm, and a subtle
correctness statement.

This paper introduces a new approach to gradual type inference,
driven by the principle that gradual inference should only produce
static types. We present a static implicitly typed language, its grad-
ual counterpart, and a type inference procedure. The gradual sys-
tem types the same programs as Siek and Vachharajani, but has a
modular structure amenable to extension. The language admits let-
polymorphism, and its dynamics are defined by translation to the
Polymorphic Blame Calculus (Ahmed et al. 2009, 2011).

The principal types produced by our initial type system mask
the distinction between static parametric polymorphism and poly-
morphism that can be attributed to gradual typing. To expose this
difference, we distinguish static type parameters from gradual type
parameters and reinterpret gradual type consistency accordingly.
The resulting extension enables programs to be interpreted using
either the polymorphic or monomorphic Blame Calculi.

1. Introduction
Interest in integrating static and dynamic checking is increasing
among language researchers and industrial language designers.
(e.g. (Bierman et al. 2010; Gronski et al. 2006; Swamy et al. 2014;
Tobin-Hochstadt and Felleisen 2008; Wrigstad et al. 2010)) Among
the proposed foundations for such languages, gradual typing, due

∗ Partially funded by an NSERC discovery grant.
† Partially funded by NSF grant 1360694.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676992

to Siek and Taha (2006) has been used to integrate dynamic checks
into a variety of type structures, including object-oriented (Siek
and Taha 2007), substructural (Wolff et al. 2011), and ownership
types (Sergey and Clarke 2012). The key technical pillars of grad-
ual typing are the unknown type, ?, the consistency relation among
gradual types, and support for the entire spectrum between purely
dynamic and purely static checking. A gradual type checker rejects
type inconsistencies in programs, accepts statically safe code, and
instruments code that could plausibly be safe with runtime checks.

This paper applies the gradual typing approach to implicitly
typed languages, like Standard ML, OCaml, and Haskell, where
a type inference (a.k.a. type reconstruction) procedure is integral
to type checking. This problem was investigated first by Siek and
Vachharajani (2008), defining λ?α

→ , a gradual type inference system
and algorithm that infers gradual types, but rejects ill-typed static
programs.1 This groundbreaking paper outlines principles that a
gradual implicitly typed language should satisfy, demonstrates how
several plausible approaches fail, and ultimately produces a com-
pelling type system and type inference algorithm. Though the re-
sults satisfy the criteria for gradual typing, the type system requires
special care in its handling of type variables, subtle statements
and proofs of correctness, and a special-purpose imperative infer-
ence algorithm. These complexities make it unclear how to adopt,
adapt, and extend this approach with modern features of implic-
itly typed languages, like let-polymorphism, row-polymorphism,
and first-class polymorphism. Furthermore, extending an existing
implicitly typed language implementation with support for gradual
typing would require a rewrite or substantial overhaul of the type
inferencer.

To support the extension of implicitly typed languages with
support for gradual typing, this paper introduces a new foundation
for gradual implicit typing. In particular, we make the following
contributions:

1. We introduce a specification of static implicit typing that em-
phasizes the input-output modes of the type system. In particu-
lar the types of subterms are viewed as opaque, and we rely on
partial functions to structure the system. This structure leads to
a natural conception of gradual implicit typing that is easy to
reason about and extend. The key insight underlying the design
is to only allow fully static types to be implicit: gradual types,
in our approach, must originate in the program text.

2. Siek and Vachharajani’s type system is based explicitly on in-
ferring gradual types and emphasizing type precision, a sub-

1 Rastogi et al. (2012) also combine gradual typing and type inference,
but focus on improving performance rather than detecting inconsistencies
(Sec. 13).

stantially different conceptual foundation. Nonetheless, we
prove that the two foundations coincide: both type systems
accept exactly the same programs.

3. We define a corresponding constraint typing judgment and con-
straint solver. Central to its design is that we choose to limit the
type inference problem to deducing only static types. In addi-
tion to the standard equality constraints between static types,
we require consistency constraints between gradual types; our
solver naturally extends unification to support them.

4. To confirm the extensibility of the type system, we extend
it with support for let-polymorphism, using the standard ap-
proach off the shelf. We give the language dynamics by trans-
lating it to the Polymorphic Blame Calculus (Ahmed et al.
2009, 2011). The translation mirrors the analogous translation
of Hindley/Milner typing to System F, suggesting that recent
approaches to first-class polymorphism may also apply.

5. We observe that the principal types of the initial system mask
the distinction between static parametric polymorphism and
polymorphism due to gradual typing. To expose this difference,
we distinguish static type parameters from gradual type param-
eters and reinterpret gradual type consistency accordingly. The
resulting language can be interpreted using either a monomor-
phic or polymorphic intermediate language.

2. Implicit Typing and Type Inference
This section briefly introduces the Implicitly Typed Static Lan-
guage (ITSL). Its main purpose is to introduce the core type system
that we extend with gradual typing, as well as to briefly review the
principles of implicit typing. We highlight some particular details
of our presentation that are important to the overall approach.

A ∈ TPARAM, T ∈ TYPE, x ∈ VAR, b ∈ BOOL,
n ∈ Z, t ∈ TERM, v ∈ VALUE Γ ∈ VAR ⇀ TYPE

T ::= A | Int | Bool | T → T (types)
t ::= n | t+ t | b | if t then t else t (terms)

| x | λx.t | λx : T.t | t t | t :: T
v ::= n | b | x | λx.t | λx : T.t (syntactic values)

Figure 1. Static Language (ITSL): Syntax

Fig. 1 presents the syntax for ITSL. By implicit typing we
mean that the language is statically typed, but programmers may
omit type annotations. In particular, this language provides function
expressions λx.t that require no type annotation on their parameter,
in contrast to the annotated form λx : T.t, which it also supports.
As a convenience, the language also provides type ascriptions t ::
T , which could already be simulated as ((λx : T.x) t).

The implications of these language features become clearer in
the type system specification, presented in Fig. 2. The (Tλ:) rule
uses the type annotation on a function parameter to type its body.
The (Tλ) rule, on the other hand, types a function’s body with any
parameter type that works. The broader impact of this is that a
function like λx : Int.x has only one legal type, Int → Int, but a
function like λx.x can be given many types, specifically any type of
the form T → T . This flexibility reduces the annotation overhead
for programmers while retaining static safety, and increases the
expressiveness of the language if a polymorphic let construct is
added (see Sec. 10).

Presentation Style There are some notable differences between
the presentation in Fig. 2 and the typical textbook presentation
(c.f. (Pierce 2002)). They do not affect the meaning of this type
system definition, but they play an important structuring role that
we exploit when we extend it to support gradual typing.

(Tx) x : T ∈ Γ

Γ ` x : T
(Tn)

Γ ` n : Int
(Tb)

Γ ` b : Bool

(Tapp)
Γ ` t1 : T1 Γ ` t2 : T2 dom(T1) = T2

Γ ` t1 t2 : cod(T1)

(Tif)
Γ ` t1 : T1 Γ ` t2 : T2 Γ ` t3 : T3 T1 = Bool

Γ ` if t1 then t2 else t3 : equate(T2, T3)

(T+)
Γ ` t1 : T1 Γ ` t2 : T2 T1 = Int T2 = Int

Γ ` t1 + t2 : Int

(Tλ)
Γ, x : T1 ` t : T2

Γ ` (λx.t) : T1 → T2

(Tλ:)
Γ, x : T1 ` t : T2

Γ ` (λx : T1.t) : T1 → T2
(T::)

Γ ` t : T T = T1

Γ ` (t :: T1) : T1

dom : TYPE ⇀ TYPE
dom(T1 → T2) = T1
dom(T) undefined otherwise

cod : TYPE ⇀ TYPE
cod(T1 → T2) = T2
cod(T) undefined otherwise

equate : TYPE × TYPE ⇀ TYPE
equate(T, T) = T
equate(T1, T2) undefined otherwise

Figure 2. Static Language (ITSL): Type System

The type system definition pays particular attention to the mode
of the typing judgment, in the sense of logic programming (Debray
and Warren 1988). In particular, the type context and term are in-
terpreted as inputs to the typing judgment, while the term’s type is
viewed as an output. The impact of this interpretation on the struc-
ture of the definition is as follows, and can be seen in the (Tapp)
rule. Though the structure of the terms t in the conclusions of rules
are analyzed using pattern-matching-style syntax, the type position
of each typing judgment in the premise is stated abstractly as some
type T . For instance, the type rule for application usually has a
premise Γ ` t1 : T11 → T12, but in contrast the (Tapp) rule only
assumes that the result is a type T1. In lieu of pattern matching on a
function type, the rules appeal to partial functions that are defined
only for types with the proper shape. These partial functions name
the result type of a term (e.g., cod(T1)) and assert properties that
must hold between interacting types (e.g., dom(T1) = T2).2

Our partial functions are partly responsible for imposing re-
quirements on types. For instance, reference to dom(T1) in a rule
implies that T1 = T11 → T12 for some T11, T12, so this require-
ment does not need to be explicitly stated in the rule. If dom(T1) is
undefined, then the (Tapp) rule does not apply. Using partial func-
tions to abstract away type requirements is critical to our subse-
quent development of gradual typing.

A particularly interesting example of this phenomenon arises in
the (Tif) rule. The requirement that T1 must be Bool is standard,
but the result type of the term is a partial function equate(T2, T3),
that is defined only when the two types are equal, in which case it
is the type itself. Typically, this rule is expressed by using pattern
matching on the results of typing t2 and t3 to force them into the
same type, and then providing that type as the final result. Instead,
we keep the result types abstract and appeal to a partial function to
“combine” them.

In summary, we use predicates only to express relationships
between types that do not imply some result type. For all cases

2 In propositions that refer to partial functions, we interpret = as Kleene
equality: both sides of the equation must either be defined and equal, or
undefined.

where we need to determine a type in terms of subterm types, we
defer to a partial function.

2.1 Type Polymorphism
As we mentioned earlier, a function like λx.x can be given the
types Int → Int, Bool → Bool, and any other type of the form
T → T . We would like to express this polymorphism somehow, but
our language does not support first-class polymorphism: each type
is concrete. For this purpose we endow the language with a set of
type parameters A, which are uninterpreted types in the sense that
the type system gives them no special treatment. As a consequence
any situation where a type parameterA is used, any other particular
type could appear. Let us formalize this observation.

Definition 1. Let SA ∈ ASUBST = TPARAM → TYPE denote
type parameter substitutions, or A-substitutions.

Notation. If S is some sort of substitution function, then we use
Ŝ(T), Ŝ(Γ), and Ŝ(t) to denote the compatible closure of substi-
tution over types, type contexts, and terms, respectively.

The A-substitutions give meaning to type parameters. With this
we can treat them as representatives for type polymorphism.

Proposition 1. If Γ ` t : T then ŜA(Γ) ` ŜA(t) : ŜA(T) for any
SA ∈ ASUBST.

Proof. Straightforward induction on derivations of Γ ` t : T .

Prop. 1 shows us that a type with parameters can be made more
specific arbitrarily. Regarding the dual consideration, we can ask
about the presence of a most general type for a program.

Definition 2 (Principal Type). If Γ ` t : T , then we say that T
is a principal type of Γ and t if whenever Γ ` t : T0 holds, then
ŜA(Γ) = Γ, ŜA(t) = t, and T0 = ŜA(T) for someA-substitution
SA.

The first two constraints on the substitution SA force any pa-
rameters that explicitly appear in the term or context to be treated
as constants, truly uninterpreted types. The third constraint formal-
izes the sense that T unambiguously represents all possible types
that can be assigned to the term-context pair.

Principal types succinctly summarize all possible types of a
program. This particular language has principal types for every
typeable program. We establish this once and for all in the gradually
typed setting.

2.2 Type Inference
While this type system specification has great appeal, the question
arises as to whether it can be effectively type checked. Indeed it can,
and a broad array of literature has discussed approaches to doing
so. We desire even more flexibility than the language provides as-
is. To do so, we generalize the problem beyond purely elided type
annotations.

To check implicit types, we must deduce types that are not
present in the program text. To represent this problem in a broader
context, we introduce notions of type variables and type expres-
sions:

X ∈ TVAR, T X ∈ TYPEEXP
T X ::= X | A | Int | Bool | T X → T X

A type variable is a placeholder for one or more possible types,
directly analogous to variables in secondary school algebra. Then a
type expression T X is just a type where some of its substructure has
been filled with type variables. This idea extends to term expres-
sions tX ∈ TERMEXP and type expression contexts ΓX ∈ VAR ⇀
TYPEEXP. We write Vars(T X) for the set of type variables in T X.

The function Vars extends to terms and type contexts in the ex-
pected way, and in the remainder of the paper we simply write
Vars(o0, o1, . . . , on) for Vars(o0)∪Vars(o1) . . .∪Vars(on), for
some n ≥ 0 and where oi can be a type, a term or a type context,
for 0 ≤ i ≤ n .

Note that type variables and type parameters are distinct con-
cepts. Type parameters actually are types, while type variables are
merely placeholders, just as variables in algebra are not numbers.
However, all types count as type expressions too (i.e. TYPE ⊂
TYPEEXP); the analogous status also holds for term expressions
and type expression contexts.3 We give all of these expression
forms meaning by substituting types for type variables.

Definition 3. Let SX ∈ XSUBST = TVAR → TYPE denote type
variable substitutions, or X-substitutions.

Observe that these substitutions produce real types, terms, and
type contexts in accordance with the source language.

Definition 4. Let SX
1 and SX

2 be two type variable substitutions and
let X ⊆ TVAR. We say that SX

2 agrees with SX
1 over X whenever

for all variables X ∈ X , it holds that SX
1(X) = SX

2(X).

In algebra, we use variables to write down equation expressions,
which are problems that may have solutions. By analogy, we use
our expressions to formalize the type inference problem and to
characterize its solutions.

Definition 5 (Type Inference Problem). Given a type expression
context ΓX and a term expression tX, the type inference problem for
ITSL asks if ŜX(ΓX) ` ŜX(tX) : T for some X-substitution SX and
type T .

Only the context and term are expressions here.
A type inferencer, then, is a decision procedure for the type

inference problem. We do not present a type inference algorithm for
this static language. However, such an algorithm can be extracted
directly from the gradual type inferencer we present below.

3. Introduction to Gradual Typing
Gradual typing is a type discipline, introduced by Siek and Taha,
to extend an existing type system with seamless support for static
and dynamic checks. Such a language supports both extremes of
checking, fully static and fully dynamic, as well as any point in
between. The gradual type system uses available type information
to detect inconsistencies between types. Typing conditions that
cannot be determined statically are checked at runtime using casts.

To achieve these goals, gradual typing extends an existing type
system with an unknown type ?. For example, the corresponding
gradual types for the language from the last section are as follows:

U ∈ GTYPE
U ::= ? | A | Int | Bool | U → U (gradual types)

Based on this definition, every static type is also a gradual type.
Fig. 3 presents the type system for λ?

→, the simply typed gradual
calculus (Siek and Taha 2006). The rules for variables and functions
are standard, but the rules for function application are not. The
(App?) rule applies when the operator has the unknown type. Since
the result could plausibly be a function, the program type checks,
and the result type of the application is unknown in turn.

The (AppU) rule applies when the operator has some function
type. Unlike static typing, the rule does not require that the operand
have the same type as the domain of the operator, but simply that
two types be consistent, written U ∼ U . We define consistency as

3 Some presentations of type inference use a single entity for both concepts.
We distinguish them for clarity and to support our development in Sec. 12.

(Var) x : U ∈ Γ

Γ ` x : U
(Abs)

Γ, x : U1 ` t : U2

Γ ` (λx : U1.t) : U1 → U2

(AppU)
Γ ` t1 : U11 → U12 Γ ` t2 : U1 U11 ∼ U1

Γ ` t1 t2 : U12

(App?)
Γ ` t1 : ? Γ ` t2 : U2

Γ ` t1 t2 : ?

Figure 3. λ?
→: Simply Typed Gradual Calculus

follows.

Int ∼ Int Bool ∼ Bool A ∼ A ? ∼ U

U ∼ ?
U11 ∼ U21 U12 ∼ U22

U11 → U12 ∼ U21 → U22

The intuition behind this definition is that two consistent gradual
types need only agree on their statically known parts. Consistency
is one of the key innovations of the gradual typing approach.

The type system must be a conservative extension of the un-
derlying type system. This means that programs without any dy-
namism must type according to the underlying static type system.
Since consistency reduces to equality in the absence of ?, it follows
that the type system conservatively extends its pre-existing simply
typed counterpart. A programmer, development environment, or
syntactically-sugared source language then introduces dynamism
by ascribing ? to program subterms (see Sec. 6).

In addition to consistency, gradual types impose a notion of type
precision as a partial order v, which indicates that one type is less
unknown than another.

U v ? U v U
U11 v U21 U12 v U22

U11 → U12 v U21 → U22

This relation coincides with the “naı̈ve subtyping” relation of
(Wadler and Findler 2009).4

To support gradual typing, programs are instrumented with
type-directed runtime checks that ensure that consistency checks
that cannot be fully resolved at type-checking time are dynami-
cally verified.

In short, a gradual type system takes an optimistic approach to
checking that two types are compatible, only statically rejecting
combinations that exhibit inconsistencies, and dynamically verify-
ing any remaining checks.

4. A Gradual Implicitly Typed Language
This section presents our conception of gradual typing for an im-
plicitly typed language. The ideas from the last two sections com-
bine to yield a design that differs from λ?α

→ in its foundations, but
is ultimately equivalent.

Fig. 4 presents the syntax of the Implicitly Typed Gradual Lan-
guage (ITGL). As with standard practice, the singular difference is
lifting of static types T to gradual types U . Every static type anno-
tation can now be replaced with a gradual type annotation.

The type system, presented in Fig. 5 builds on the ITSL type
system from Sec. 2. Most of the rules have the same structure,
except their static types have been lifted to gradual types, and the
predicates and partial functions on static types have been lifted
to consistent predicates and partial functions on gradual types. A
straightforward example of this is the (U+) rule, which replaces
type equality with type consistency, and static types with gradual
types.

4 We avoid calling it “subtyping” because it does not characterize substi-
tutability.

A ∈ TPARAM, T ∈ TYPE, U ∈ GTYPE, x ∈ VAR,
b ∈ BOOL, n ∈ Z, t ∈ TERM, v ∈ VALUE

T ::= A | Int | Bool | T → T (static types)
U ::= ? | A | Int | Bool | U → U (gradual types)
t ::= n | t+ t | b | if t then t else t (terms)

| x | λx.t | λx : U.t | t t | t :: U
v ::= n | b | x | λx.t | λx : U.t (syntactic values)

Figure 4. Gradual Language (ITGL): Syntax

(Ux) x : U ∈ Γ

Γ ` x : U
(Un)

Γ ` n : Int
(Ub)

Γ ` b : Bool

(Uapp)
Γ ` t1 : U1 Γ ` t2 : U2 d̃om(U1) ∼ U2

Γ ` t1 t2 : c̃od(U1)

(Uif)
Γ ` t1 : U1 Γ ` t2 : U2 Γ ` t3 : U3 U1 ∼ Bool

Γ ` if t1 then t2 else t3 : U2 u U3

(U+)
Γ ` t1 : U1 Γ ` t2 : U2 U1 ∼ Int U2 ∼ Int

Γ ` t1 + t2 : Int

(Uλ)
Γ, x : T1 ` t : U2

Γ ` (λx.t) : T1 → U2

(Uλ:)
Γ, x : U1 ` t : U2

Γ ` (λx : U1.t) : U1 → U2
(U::)

Γ ` t : U U ∼ U1

Γ ` (t :: U1) : U1

d̃om : GTYPE ⇀ GTYPE

d̃om(U1 → U2) = U1

d̃om(?) = ?
d̃om(U) undefined otherwise

c̃od : GTYPE ⇀ GTYPE

c̃od(U1 → U2) = U2

c̃od(?) = ?
c̃od(U) undefined otherwise

u : GTYPE × GTYPE ⇀ GTYPE
T u T = T

? u U = U u ? = U

(U11 → U12) u (U21 → U22) = (U11 u U21)→ (U12 u U22)

U1 u U2 undefined otherwise

Figure 5. Gradual Language (ITGL): Type System

If we compare this type system to λ?
→, we notice that the former

has one rule for function application, (Uapp), while the latter has
two, (AppU) and (App?). In this case, the d̃om partial function
provides the necessary abstraction to combine the two rules into
one. The d̃om function is defined with two cases: folding them
into the (Uapp) rule, along with c̃od would recover the two rules of
λ?
→.

Consider the (Uif) rule. Most of the structure is as expected, but
its result type is U2 u U3, the greatest lower bound (or meet) of
U2 and U3 according to the precision relation. In fact, the meet is
the gradual partial function that corresponds to equate . To see how,
consider the two gradual types ? → Int and Bool → ?. The only
hope for some U to be a well-defined result of combining them
is for U to be Bool → Int. Naturally, one can always coerce two
inconsistent branches to type-check using type ascriptions.

Implicit types must be static types The (Uλ) rule embodies im-
plicit typing in ITGL. The corresponding ITSL rule types the body
of the function using some arbitrary type, and the gradual type sys-
tem does the same. To understand why the arbitrary type is static
rather than gradual, consider the program λx.x x. This program
has no unknown type annotations, so it is in the language of the

ITSL type system, which cannot type it. As such, the gradual type
system must reject it as well. If the gradual type system could ar-
bitrarily type x as ?, however, then this function would type check,
even though the programmer introduced no ? annotations. The key
insight is that dynamicity is introduced only via program annota-
tions. The type system itself must never introduce ? of its own ac-
cord. As we see next, this insight has broader implications.

4.1 Gradual Inference of Static Types
As with ITSL, we generalize type inference, taking into account the
insight that our type system need only infer static types. To state the
gradual type inference problem, we introduce corresponding type
expressions, term expressions, and type context expressions. For
brevity, we present only the gradual type expressions.

U X ∈ GTYPEEXP
U X ::= ? | X | A | Int | Bool | U X → U X

Gradual type expressions U X now include ?, since we are in a
gradually-typed language. However, we do not update the defini-
tion of X-substitutions: type variables map to static types. This
property generalizes the reasoning underlying the (Uλ) rule: we
only allow gradual types to be explicitly introduced in a program as
a means to ensure that the type system cannot introduce dynamism
without prompt and thereby compromise inconsistency checking.

Definition 6 (Gradual Type Inference Problem). Given a gradual
type expression context ΓX and a term expression tX, the gradual
type inference problem asks if there is an X-substitution SX and
gradual type U such that ŜX(ΓX) ` ŜX(tX) : U .

In contrast, λ?α
→ (Siek and Vachharajani 2008) infers gradual

types, albeit with restrictions. In the next section, we reconcile this
difference.

5. λ?α
→ types the same programs

Siek and Vachharajani (2008) analyze the concept of gradual type
inference and design a language λ?α

→ that formalizes and substanti-
ates their approach. The λ?α

→ language and types correspond to our
gradual type expressions, but the type theoretic foundations differ
substantially. In particular, λ?α

→ is based on inferring gradual types,
not just static types, but in a controlled manner. To formalize this,
we introduce a new notion of substitutions.

SG ∈ GSUBST = TVAR → GTYPE
X ∈ P(TVAR)

The λ?α
→ type system is presented in Fig. 6.5 It is based on the

judgment SG; ΓX ` tX : U X | X , which intuitively means that
SG and ŜG(U X) solve a constrained variant of the type inference
problem ΓX and tX for λ?

→ (Sec. 3), where extra variables X and
their mappings are involved in the typing process. More precisely
it means that in λ?

→, ŜG(ΓX) ` ŜG(tX) : ŜG(U X) and moreover
every type variable X used to type tX (i.e. present in tX or X) must
map to some SG(X) such that SG(X) v U for every gradual
type U that it is consistent with according to the typing derivation.
The first criteria is essentially the standard type inference problem,
but with gradual types in the substitution; the second criteria is their
approach to preventing the type system from introducing unplanned
dynamism. Every type variable’s mapping is constrained by the
static types it interacts with, but types that originate in the program
text are unconstrained.

5 The presentation has been adjusted to match this paper.

SG; ΓX ` tX : UX | X ⊥(X ,Vars(tX))

(Gx) x : UX ∈ ΓX

SG; ΓX ` x : UX | ∅
(Gn)

SG; ΓX ` n : Int | ∅

(Gb)
SG; ΓX ` b : Bool | ∅

(Gapp)

SG; ΓX ` t1 : UX
1 | X1 SG; ΓX ` t2 : UX

2 | X2

SG |= UX
1 ' U

X
2 → X ⊥({X } ,X1,X2)

SG; ΓX ` t1 t2 : X | {X } ∪ X1 ∪ X2

(Gλ:)
SG; ΓX, x : UX

1 ` t : UX
2 | X

SG; ΓX ` (λx : UX
1 .t) : UX

1 → UX
2 | X

SG |= UX ' UX

SG |= Bool ' Bool SG |= Int ' Int

SG |= A ' A SG |= UX ' ? SG |= ? ' UX

SG |= UX
11 ' U

X
21 SG |= UX

12 ' U
X
22

SG |= UX
11 → UX

12 ' U
X
21 → UX

22

SG |= ŜG(X) v UX
2

SG |= X ' UX
2

SG |= ŜG(X) v UX
1

SG |= UX
1 ' X

SG |= U v UX

ŜG(X) = U

SG |= U v X SG |= Bool v Bool SG |= Int v Int

SG |= A v A SG |= U v ?

SG |= UX
11 v U

X
21 SG |= UX

12 v U
X
22

SG |= UX
11 → UX

12 v U
X
21 → UX

22

Figure 6. λ?α
→ : Type System

Notation. We write ⊥
(∏

i<n Xi
)

to mean that the given variable
sets are mutually disjoint, i.e., ∀i < n.∀j < n.i 6= j ⇒ Xi∩Xj =
∅.

Most of the typing rules are standard in structure. The (Gapp)
rule for function application is the most interesting. Where λ?

→ im-
poses a consistency relation between the type of the operand and
the operator, this type system appeals to a judgment
SG |= U X

1 ' U X
2 , which means that ŜG(U X

1) ∼ ŜG(U X
2) and more-

over that SG respects the aforementioned lower-bound criteria for
all variables in U X

1 and U X
2 . The judgment decomposes type ex-

pressions to check for consistency. Upon reaching a type variable,
it appeals to the judgment SG |= U v U X

2 , which means that
U v ŜG(U X

2). The key rule of this judgment is the variable case. If
U v SG(X), then the converse—which is our global criterion—
holds only if the two types are equal.

This type system satisfies the goals of gradual type inference,
but its structure is unorthodox. A substitution is incorporated ex-
plicitly into the judgment, instead of simply appearing in the
statement of the type inference problem. This non-modular struc-
ture leaks into the corresponding constraint typing relation and
constraint-solver. The result is a type inference procedure that dif-
fers significantly from a common type inferencer: existing type

inference systems and procedures would be hard to extend with
this approach.

Fortunately, and surprisingly, the type inference problems for
λ?α
→ and ITGL coincide, even though λ?α

→ is allowed to infer grad-
ual types. The key to understanding this is that the λ?α

→ type system
must reject any program that has a static inconsistency even after
taking its type annotations into account. The type system cannot
infer a ? that resolves such a conflict. As such, any ? that appears in
an inferred type must be superfluous and replaceable with a static
type. The propositions below formalize this insight.6

Definition 7. We use the name unknown substitution to refer to
those A-substitutions S? : TPARAM → GTYPE such that either
S?(A) = A or S?(A) = ?.

We use unknown substitutions to show that ? is never needed in
practice. The property we exploit is that all substitutions SG can be
factored into some X-substitution composed with some unknown
substitution SG = Ŝ? ◦ SX, and any such factoring will do.

Proposition 2.

1. Suppose SG = Ŝ? ◦ SX. Then SG |= ŜG(U X
1) v U X

2 implies
SX |= ŜX(U X

1) v U X
2 .

2. Suppose SG = Ŝ? ◦ SX. Then SG |= U X
1 ' U X

2 implies
SX |= U X

1 ' U X
2 .

3. Suppose SG = Ŝ? ◦ SX. Then SG; ΓX ` tX : U X implies
SX; ΓX ` tX : U X.

Proof. By induction on derivations.

Prop. 2 tells us that with regards to solving the type inference
problem for λ?α

→ , we need only look to X-substitutions SX, just as
for ITGL. Thus, we restrict consideration toX-substitutions for the
λ?α
→ type system, which allows us to connect the two type systems

more directly.

Proposition 3 (Completeness). If SX; ΓX ` tX : U X | X then
ŜX(ΓX) ` ŜX(tX) : U for some U such that ŜX(U X) v U .

Proof. By induction on SX; ΓX ` tX : U X | X .

The intuition behind this proposition is that since λ?α
→ imposes

only a consistency on the type of (Gapp), the result type can be an
arbitrary static type if the codomain of the operator is ?; in contrast,
ITGL propagates the gradual domain of the operator verbatim.

Proposition 4 (Soundness). If ŜX(ΓX) ` ŜX(tX) : U then given
any finite X0 that contains Vars(tX,ΓX),
SX
0; ΓX ` tX : U X | X where ⊥(X0,X) for some SX

0 that agrees
with SX except at X , and ŜX

0(U X) = U .

Proof. By induction on ŜX(ΓX) ` ŜX(tX) : U .

We have designed an interesting gradual type system with sup-
port for implicit typing, and have established that it types the same
programs as λ?α

→ . In Section 7 we deduce a type inference process
that corresponds naturally to our type system and conservatively
extends the corresponding static procedure.

6 These theorems consider only the corresponding subset of ITGL.

6. Application: Interlanguage Migration
Now that we have seen the syntax and static semantics of ITGL, the
question remains: what can we do with it? We have already seen
that ITGL conservatively extends ITSL, accepting and rejecting
programs in the ITSL syntax exactly as that type system does.
Furthermore, the last section demonstrates that ITGL subsumes
λ?α
→ , and Siek and Vachharajani (2008) demonstrate how statically-

inclined programmers can leverage the flexibility of gradual typing
to write programs that would not be accepted by a purely static
type system. As such, ITGL shares λ?α

→ ’s example programs, and
we defer to that paper for static-leaning applications.

In this section, we consider the converse question: how does
ITGL serve the dynamically-inclined programmer? Gradual typ-
ing’s goal is to serve both communities, filling the space between
static and dynamic while subsuming both. We demonstrate how
ITGL addresses the dynamic side of this goal. We present a dy-
namic counterpart to ITSL and demonstrate by a result of Siek and
Taha (2006), that it amounts to a syntactic discipline over ITGL. We
then present a hybrid surface language that is suitable for migration
between dynamic and static programs. These language designs are
straightforward embeddings into ITGL.

6.1 A Dynamic Language
If we reconsider the ITSL static language, the syntax of its natural
dynamic counterpart, which we call DL, simply amounts to eliding
type information:

e ∈ DYNAMIC
e ::= n | e+ e | b | if e then e else e (terms)

| x | λx.e | e e

It’s immediately clear that DYNAMIC ⊂ TERM: every DL program
looks exactly like an ITSL program, but looks can be deceiving. In
particular, one consistent property of dynamic languages is that any
program in the syntax of the language has semantics. In contrast,
ITSL only gives meaning to programs that are well-typed. For
instance, (λx.x x) is a fine DL program, but it is not a legal
ITSL program because it is not well-typed. The field of linguistics
has a term for this: two similar-looking expressions, sometimes in
different languages, that might be mistaken for having the same
meaning, but do not, are called false friends (Crystal 2008). In
natural languages they lead to misunderstandings between native
speakers of different languages: in programming languages, the
phenomenon recurs.

How do we reconcile these syntactic similarities but semantic
differences between ITSL and DL? The key lies in ITGL: we define
both languages by translation to ITGL. The translation for ITSL is
trivial because it embeds immediately. The translation for DL (Siek
and Taha 2006), on the other hand, has substance:

G[[·]] : DYNAMIC → TERM
G[[n]] = n :: ? G[[b]] = b :: ? G[[x]] = x :: ?

G[[e1 + e2]] = (G[[e1]] + G[[e2]]) :: ?
G[[if e1 then e2 else e3]] = (if G[[e1]] then G[[e2]] else G[[e3]]) :: ?

G[[λx.e]] = (λx : ?.G[[e]]) :: ?
G[[e1 e2]] = (G[[e1]] G[[e2]]) :: ?

Under this translation, G[[λx.x x]] = (λx : ?.(x ::?) (x ::?) ::?) ::?,
which is a well-typed ITGL program, as are all embeddings of DL
programs.

Proposition 5 (Siek and Taha (2006)). Let X be the free variables
of e and Γ = {x : ? | x ∈ X }. Then Γ ` G[[e]] : ?.

As we desire, all terms in DYNAMIC are well-defined DL pro-
grams.

6.2 A Hybrid Language for Interlanguage Migration
Armed with a translational semantics for DL and a (trivial) trans-
lational semantics for ITSL, we can now combine them. The re-
sult is a hybrid multi-language semantics, which we call HL,
that seamlessly supports migration between the DL and ITSL
languages (Matthews and Findler 2009; Tobin-Hochstadt and
Felleisen 2006; Wadler and Findler 2009):

ed ∈ DYNAMIC es ∈ STATIC
es ::= n | es + es | b | if es then es else es (static)

| x | λx.es | λx : T.es | es es | es :: T
| xedy

ed ::= n | ed + ed | b | if ed then ed else ed (dynamic)
| x | λx.ed | ed ed | pesq

The HL syntax combines ITSL and DL, allowing each to include
the other. Its semantics is defined by combining the two translations
to ITGL, yielding a coarse-grained gradual language where each
type is either precisely static or completely unknown.

Taking the dynamic language as primary, HL clearly differenti-
ates between the dynamic program (λx.x x), the hybrid program
pλx.xx xyq and the static non-program pλx.x xq.

DL and HL have close ties to research on using types to im-
prove the performance of dynamic languages (Cartwright and Fa-
gan 1991; Rastogi et al. 2012; Swamy et al. 2014). By analogy,
the goal in that approach is to transform a DL program into a cor-
responding HL program by automatically inserting transitions to
the static language for as much code as possible while retaining
well-typing and behaviour. This problem has been approached us-
ing type-based analyses that do infer unknown types.

7. Constraints and Constraint Generation
We have specified an implicit type system, demonstrated its ex-
pressiveness, and formalized the type inference problem for it: now
we must solve the problem. To do so, we follow the approach of
(Wand 1987a): generate constraints for typeability and solve them.
Guided by the definition of the ITGL type system and properties of
our gradual partial functions and predicates, we define a constraint
typing judgment, which indicates what constraints must hold for a
particular type expression-and-context pair to be typeable.

7.1 Constraint Typing Judgments
We first introduce a set of constraints C that need to be solved
during type inference (Fig. 7). There are two kinds of constraints:
the standard equality constraints on static types, and new consis-
tency constraints on gradual types. Ultimately we want to deter-
mine whether a set of constraints can be instantiated affirmatively
using some substitution.

Definition 8 (Constraint Satisfaction).

1. SX |= U X
1 ∼̇ U X

2 if and only if ŜX(U X
1) ∼ ŜX(U X

1);
2. SX |= T X

1
.
= T X

2 if and only if ŜX(T X
1) = ŜX(T X

2);
3. SX |= C? if and only if SX |= C for each C ∈ C?.

Constraint Typing Fig. 7 presents the constraint typing judgment
ΓX ` tX : U X | C? | X . It means that the type expression context ΓX

and term expression tX, can be given type expression U X so long as
the constraints C? can be satisfied, where X are any extra variables
needed to express the constraints. Since it involves type variables,
the constraint typing judgment denotes a problem.

Definition 9 (Constraint Typing Problem). Given a gradual type
expression context ΓX and a term expression tX, the constraint typ-
ing problem asks if there is a SX such that ΓX ` tX : U X | C? | X
and SX |= C?.

ΓX ` tX : UX | C? | X ⊥(X ,Vars(tX,ΓX))

(Cx) x : UX ∈ ΓX

ΓX ` x : UX | ∅ | ∅
(Cn)

ΓX ` n : Int | ∅ | ∅

(Cb)
ΓX ` b : Bool | ∅ | ∅

(C+)

ΓX ` tX1 : UX
1 | C

?
1 | X1 ΓX ` tX2 : UX

2 | C
?
2 | X2

⊥(X1,X2) C? = C?1 ∪ C
?
2 X = X1 ∪ X2

ΓX ` tX1 + tX2 : Int | C? ∪ {UX
1 ∼̇ Int, UX

2 ∼̇ Int } | X

(Cif)

ΓX ` tX1 : UX
1 | C

?
1 | X1 ΓX ` tX2 : UX

2 | C
?
2 | X2

ΓX ` tX3 : UX
3 | C

?
3 | X3 UX

2 u U
X
3
.
= UX

4 | C
?
4 | X4

⊥(X1,X2,X3,X4) X = X1 ∪ X2 ∪ X3 ∪ X4

C? = C?1 ∪ C
?
2 ∪ C

?
3 ∪ C

?
4

ΓX ` if tX1 then tX2 else tX3 : UX
4 | C

? ∪ {UX
1 ∼̇ Bool } | X

(Capp)

ΓX ` tX1 : UX
1 | C

?
1 | X1 ΓX ` tX2 : UX

2 | C
?
2 | X2

c̃od(UX
1)

.
= UX

3 | C
?
3 | X3 d̃om(UX

1) ∼̇ UX
2 | C

?
4 | X4

⊥(X1,X2,X3,X4) X = X1 ∪ X2 ∪ X3 ∪ X4

C? = C?1 ∪ C
?
2 ∪ C

?
3 ∪ C

?
4

ΓX ` tX1 t
X
2 : UX

3 | C
? | X

(Cλ)
ΓX, x : X ` tX : UX | C? | X ⊥(X , {X })

ΓX ` (λx.tX) : X → UX | C? | X ∪ {X }

(Cλ:)
ΓX, x : UX

1 ` t
X : UX

2 | C
? | X

ΓX ` (λx : UX
1 .t

X) : UX
1 → UX

2 | C
? | X

(C::)
ΓX ` tX : UX | C? | X

ΓX ` (tX :: UX
1) : UX

1 | C
? ∪ {UX ∼̇ UX

1 } | X

C ∈ CONSTRAINT

C? ∈ P(CONSTRAINT)

C ::= UX ∼̇ UX | T X .
= T X

Figure 7. Constraint Typing Judgment

c̃od(UX
1)

.
= UX

2 | C
? | X ⊥(X ,Vars(UX

1))

c̃od(X)
.
= X2 | {X

.
= X1 → X2 } | {X1, X2 }

c̃od(UX
1 → UX

2)
.
= UX

2 | ∅ | ∅ c̃od(?)
.
= ? | ∅ | ∅

Figure 8. Constraint Codomain Judgment

d̃om(UX
1) ∼̇ UX

2 | C
? | X ⊥(X ,Vars(UX

1 , U
X
2))

d̃om(X) ∼̇ UX
2 | {X

.
= X1 → X2, X1 ∼̇ UX

2 } | {X1, X2 }

d̃om(UX
11 → UX

12) ∼̇ UX
2 | {U

X
11 ∼̇ U

X
2 } | ∅

d̃om(?) ∼̇ UX
2 | { ? ∼̇ UX

2 } | ∅

Figure 9. Constraint Domain Consistency Judgment

UX
1 u U

X
2
.
= UX

3 | C
? | X ⊥(X ,Vars(UX

1 , U
X
2))

Int u Int
.
= Int | ∅ | ∅ Bool u Bool

.
= Bool | ∅ | ∅

A uA .
= A | ∅ | ∅ UX

1 u ? .
= UX

1 | {U
X
1 ∼̇ ? } | ∅

? u UX
2
.
= UX

2 | { ? ∼̇ UX
2 } | ∅

X1 u UX
2
.
= X1 | {X1 ∼̇ UX

2 } | ∅

UX
1 /∈ TVAR

UX
1 uX2

.
= X2 | {UX

1 ∼̇ X2 } | ∅

UX
11 u U

X
21

.
= UX

1 | C
?
1 | X1 UX

12 u U
X
22

.
= UX

2 | C
?
2 | X2

C? = C?1 ∪ C
?
2 ⊥(X1,X2) X = X1 ∪ X2

(UX
11 → UX

12) u (UX
21 → UX

22)
.
= UX

1 → UX
2 | C

? | X

Figure 10. Constraint Meet Judgment

Auxiliary Constraint Typing Constraint typing appeals to three
auxiliary constraint judgments, which reduce complex conditions
to consistency constraints on gradual types and equality constraints
on static types. They are presented in Figs. 8,9, and 10.

The c̃od(U X
1)

.
= U X

2 | C? | X judgment means that the
codomain of gradual type expression U X

1 is U X
2 so long as the con-

straints C? can be satisfied. The d̃om(U X
1) ∼̇ U X

2 | C? | X judg-
ment means that the domain of gradual type expression U X

1 is con-
sistent with U X

2 so long as the constraints C? can be satisfied. Fi-
nally theU X

1 u U X
2
.
= U X

3 | C? | X judgment means that the meet of
gradual type expressionsU X

1 andU X
2 isU X

3 so long as the constraints
C? can be satisfied. In each case, X names any extra type variables
needed to express the constraints. The rules for these judgments are
based on the properties of the corresponding gradual operations.

These constraint judgments are not defined for all inputs. For in-
stance, the constraint meet judgment is not defined for Int and Bool.
Any result would be contrived, so rather than relating these type
expressions to an arbitrary variable and unsatisfiable constraint, the
judgment simply fails to hold.

7.2 Correctness and Decidability of Constraint Typing
We must prove for each constraint judgment that if a substitution
can satisfy the given constraints, then that substitution, and the
program type that it produces, solves the type inference problem.

Proposition 6 (Constraint Soundness).
If ΓX ` tX : U X | C? | X and SX |= C? then
ŜX(ΓX) ` ŜX(tX) : ŜX(U X).

Proof. By induction on ΓX ` tX : U X | C? | X with lemmas to ad-
dress auxiliary constraint judgments.

Proposition 7 (Constraint Completeness).
If ŜX(ΓX) ` ŜX(tX) : U then for finite X0 s.t. Vars(ΓX, tX) ⊆ X0,
ΓX ` tX : U X | C? | X where ⊥(X0,X), and furthermore there
is an SX

0 that agrees with SX except at X , where SX
0 |= C? and

ŜX
0(U X) = U .

Proof. By induction on ŜX(ΓX) ` ŜX(tX) : U . with lemmas to ad-
dress auxiliary constraint judgments.

The constraint completeness proposition must account for the
extra variables X used by constraint typing, which do not neces-

sarily hold for an arbitrary substitution that solves the type infer-
ence problem. The key is that given an arbitrary substitution SX

that solves the type inference problem, it’s always possible to mas-
sage it into a slightly different SX

0 that produces the same solution
but also satisfies the constraints.

8. Gradual Unification
In this section we present a procedure that generalizes unifica-
tion (Robinson 1965) to account for consistency constraints and
relates constraints to solutions, where possible. Since each rule of
the judgment is invertible and simplifies the constraints, together
they induce a straightforward decision procedure (bottom-up proof
search) for gradual constraints.

Proposition 8 (Consistency Inversion).

1. If U1 ∼ U2 then U2 ∼ U1;
2. If T1 ∼ T2 then T1 = T2;
3. ifU11 → U12 ∼ U21 → U22; thenU11 ∼ U21 andU12 ∼ U22;

Proof. Straightforward.

Fig. 11 presents the gradual unification judgment C? U SX,
which means that the X-substitution SX satisfies the constraints in
C?. Recall that satisfaction was defined in Sec. 7.1. Throughout,
we assume that C? ∪ {C } implies C /∈ C?.

Most of the cases are straightforward. The most interesting case
is for X ∼̇ U X

1 → U X
2 . Since X represents a static type, we

expand it to X1 → X2 and make each component consistent to
its corresponding gradual type. Equality would not work in general
since the type on the right hand side is gradual. Furthermore, the
added consistency checks ensure that any ?s contained within the
underlying types are ignored.

We let SA : TVAR → TPARAM denote an injective map from
type variables to type parameters. This function is responsible for
transforming any unconstrained type variables into type parame-
ters.

Notation.

1. The notation X fresh means that if the consequent of the rule
is C? U SX, then ⊥ (X ,Vars(C?)).

2. The notation [X 7→ T] stands for Sid [X 7→ T], the type
substitution that is identity everywhere except for X , which it
maps to T .

Proposition 9 (Unification Soundness). If C? U SX then
SX |= C?.

Proof. By induction on the structure of C? U SX.

Proposition 10 (Unification Completeness). If SX
1 |= C? then

C? U SX
2 for some SX

2 and furthermore SX
1 = ŜA ◦ SX

2 for some
SA.

Proof. By induction on the breakdown of constraint sets C? by the
unification rules. This is dependent on the decomposition structure
being well-founded.

Proposition 11 (Unification is Decidable). Backward proof search
on C? U SX driven by C? is decidable.

Proof. Consider the relation on constraint sets determined by how
each rule (read bottom-up) transforms them. Given soundness and
completeness, it suffices to prove that this relation is well-founded.

Unlike other unification relations, the search structure cannot be
lexicographically ordered on the number of type variables. Instead,

U ∈ P(CONSTRAINT)× XSUBST

∅ U SA

C? U SX UX ∈ { Int,Bool } ∪ TVAR ∪ TPARAM

C? ∪ {UX ∼̇ UX } U SX

C? U SX

C? ∪ { ? ∼̇ UX } U SX

C? U SX

C? ∪ {UX ∼̇ ? } U SX

C? ∪ {UX
11 ∼̇ U

X
21, U

X
12 ∼̇ U

X
22 } U SX

C? ∪ {UX
11 → UX

12 ∼̇ U
X
21 → UX

22 } U SX

C? ∪ {X ∼̇ UX } U SX

UX /∈ TVAR

C? ∪ {UX ∼̇ X } U SX

C? ∪ {X .
= UX } U SX

UX ∈ { Int,Bool } ∪ TVAR ∪ TPARAM

C? ∪ {X ∼̇ UX } U SX

{X1, X2 } fresh X /∈ Vars(UX
1 → UX

2)

C? ∪ {X .
= X1 → X2, X1 ∼̇ UX

1 , X2 ∼̇ UX
2 } U SX

C? ∪ {X ∼̇ UX
1 → UX

2 } U SX

C? U SX T X ∈ { Int,Bool } ∪ TVAR ∪ TPARAM

C? ∪ {T X .
= T X } U SX

C? ∪ {T X
11

.
= T X

21, T
X
12

.
= T X

22 } U SX

C? ∪ {T X
11 → T X

12
.
= T X

21 → T X
22 } U SX

C? ∪ {X .
= T X } U SX

T X /∈ TVAR

C? ∪ {T X .
= X } U SX

̂[X 7→ T X](C?) U SX X /∈ Vars(T X)

C? ∪ {X .
= T X } U ŜX ◦ [X 7→ T X]

Figure 11. Unification

we can represent the set of constraints as a directed graph of
constraint paths and show that a metric on the graph decreases at
every step.

9. Principal Types
We establish our notion of principal types using the standard no-
tion, adapted to account for the separation between type variables
and type parameters.

Definition 10 (Solution Pre-order). Let (SX
1, U1) and (SX

2, U2)
be solutions for the same gradual type inference problem. Then
(SX

1, U1) ≤ (SX
2, U2) if and only if SX

2 = ŜA ◦ SX
1 and U2 =

ŜA(U1) for some A-substitution SA.

Definition 11 (Principal Solution). (SX, U) is a principal solution
for a gradual type inference problem if and only if it is least among
all other solutions to the problem. It directly follows that U is a
principal type.

Proposition 12 (Principal Types). Suppose ΓX ` tX : U X | C? | X .
Then SX

1 |= C? for some SX
1, implies that C? U SX

2, and
(SX

2, Ŝ
X
2(U X)) is a principal solution for ΓX and tX.

Proof. Follows from Props. 7 and 10.

This proposition establishes that our type inference procedure
produces the best type possible, which implies that the type system
indeed has a well-defined notion of “best” types.

10. Let Polymorphism
Implicitly typed functional programming languages usually sup-
port let-polymorphism, introduced by Milner (1978). Siek and
Vachharajani (2008) left this as an open problem for gradual type
inference. Here we demonstrate that supporting let polymorphism
follows the same approach as for a static implicitly typed lan-
guage (Ohori 1989; Wright 1995; Wright and Felleisen 1994).

To extend ITGL with let-polymorphism, we introduce two new
rules:

(Uletp)

Γ ` v : U1

Γ ` [v/x]t : U2

Γ ` let x = v in t : U2

(Ulet)

t1 /∈ VALUE
Γ ` (λx.t2) t1 : U

Γ ` let x = t1 in t2 : U

If the bound expression is a syntactic value, then it is treated
polymorphically; otherwise, the value is given a monomorphic type
according to the standard let translation.7 These typing rules yield
the corresponding constraint generation rules.

(Cletp)

ΓX ` vX : UX
1 | C

?
1 | X1

ΓX ` [vX/x]tX : UX
2 | C

?
2 | X2 ⊥(X1,X2)

ΓX ` let x = vX in tX : UX
2 | C

?
1 ∪ C

?
2 | X1 ∪ X2

(Clet)
tX1 /∈ VALUE ΓX ` (λx.tX2) tX1 : UX | C? | X

ΓX ` let x = tX1 in tX2 : UX | C? | X

The substitution-based presentation of let polymorphism is sim-
ple and clear, but impractical for implementations, so we also
present an equivalent presentation based on type schemes, represen-
tatives of type polymorphism in the language. In the next section,
we use this type system to endow ITGL with dynamic semantics.

The Schematic ITGL type system is modeled after (Milner
1978). It has the same terms and types as the original, but the typing
judgment changes. The key difference is that the type context now
maps variables to type schemes ∀X.U X instead of types.

σ ∈ TYPESCHEME

Γ∀ ∈ VAR ⇀ TYPESCHEME

σ ::= ∀X.U X

This allows us to type polymorphic let expressions, without resort-
ing to substitution, by introducing polymorphic assumptions. We
can represent a type U as a vacuous type scheme ∀∅.U . By con-
vention, all type schemes must be closed. The type system then
requires a few changes (Fig. 12).

The (σλ:) and (σλ) rules now introduce type schemes into the
context when typing function bodies. The (σx) rule magically in-
stantiates a variable’s corresponding type scheme to some grad-
ual type. In the substitution-based system, this variable would have
been replaced with a full syntactic value, which conveys its poly-
morphism implicitly. As we’ll see, this corresponds directly to the
translation from let-polymorphism to parametric polymorphism.
Type schemes with no type variables naturally instantiate to their
underlying type. The (σletp) rule exploits the polymorphism of
type parameters, abstracting some that are unconstrained (i.e. do
not appear in the type context) to form the type scheme that is
used to type the body. This formulation corresponds directly to the
substitution-based specification.

Definition 12. Let ∀ : GTYPE → TYPESCHEME be ∀(U) =
∀∅.U ; For notational convenience, we write ∀(Γ) ≡ ∀ ◦ Γ.

7 Here we assume a call-by-value semantics, but in general that is not
necessary.

(σλ:)
Γ∀, x : ∀∅.U1

∀̀ t : U2

Γ∀ ∀̀ λx : U1.t : U1 → U2

(σλ)
Γ∀, x : ∀∅.T1 ∀̀ t : U2

Γ∀ ∀̀ λx.t : T1 → U2

(σx)
x : ∀Xi.UX ∈ Γ∀

Γ∀ ∀̀ x : [Ti/Xi]U
X

(σlet)
Γ∀ ∀̀ (λx.t2) t1 : U t1 /∈ VALUE

Γ∀ ∀̀ let x = t1 in t2 : U

(σletp)

Γ∀ ∀̀ v1 : U1 Γ∀, x : σ ∀̀ t2 : U2

σ = ∀Xi.[Xi/Ai]U1 Ai /∈ Γ∀

Γ∀ ∀̀ let x = v1 in t2 : U2

Figure 12. Schematic Typing: Key Rules

A ∈ TPARAM, U ∈ GTYPE, X ∈ TVAR, x ∈ VAR,
b ∈ BOOL, n ∈ Z, t ∈ TERM, v ∈ VALUE

U ::= ? | X | A | Int | Bool | U → U | ∀X.U (types)
t ::= n | t+ t | b | if t then t else t (terms)

| x | λx : U.t | t t | ΛX.t | t[U]
| let x = t in t | 〈U⇐U〉 t

v ::= n | b | x | λx : U.t | ΛX.v (syntactic values)

Figure 13. Polymorphic Blame Calculus (PBC): Syntax

Proposition 13 (Schematic Substitution).
If Γ ` v : [Ai/Xi]U

X for Ai /∈ Γ and ∀(Γ), x : ∀Xi.U X ∀̀ t : U
then Γ ` [v/x]t : U

Proof. By induction on the structure of t.

Proposition 14 (Schematic Abstraction). If ∀(Γ) ∀̀ [v/x]t : U1

and ∀(Γ) ∀̀ v : U2 for some U2 then ∀(Γ) ∀̀ v : [Ai/Xi]U
X and

∀(Γ), x : ∀Xi.U X ∀̀ t : U1 for some U X, Ai /∈ ∀(Γ), and Xi.

Proof. By induction on the structure of t.

Proposition 15. Γ ` t : U if and only if ∀(Γ) ∀̀ t : U .

Proof. Both directions are by induction on the structure of the
corresponding typing judgment.

11. Dynamic Semantics
Gradually typed languages are defined by type-directed translation
to an intermediate language with runtime casts. We do not need to
develop a new intermediate cast calculus for ITGL: we can translate
it to the Polymorphic Blame Calculus (PBC) (Ahmed et al. 2009,
2011)

Fig. 13 presents the syntax of PBC, adapted to our notation.
The language extends the polymorphic lambda calculus (Girard
1972; Reynolds 1974) with support for runtime casts. At run-
time, the calculus also uses runtime sealing to encapsulate poly-
morphically typed values in an effort to enforce representation-
independence, even in the face of casts (Matthews and Ahmed
2008). The language supports first-class polymorphism using type-
abstracted terms ΛX.t and types, ∀X.U X, which resemble type
schemes, but only abstract a single type variable, and can be open.

Fig. 14 presents the type system of the polymorphic blame
calculus. For the most part the type system is standard, but it also
supports casts 〈U2⇐U1〉 t. To type casted terms, the polymorphic
blame calculus presents a more complex consistency relation, but
in the absence of first-class polymorphism, it reduces to ∼.

(∀x) x : U ∈ Γ

Ω | Γ ` x : U
(∀n)

Ω | Γ ` n : Int

(∀b)
Ω | Γ ` b : Bool

(∀app)
Ω | Γ ` t1 : U1 → U2 Ω | Γ ` t2 : U1

Ω | Γ ` t1 t2 : U2

(∀if)
Ω | Γ ` t1 : Bool Ω | Γ ` t2 : U Ω | Γ ` t3 : U

Ω | Γ ` if t1 then t2 else t3 : U

(∀+)
Ω | Γ ` t1 : Int Ω | Γ ` t2 : Int

Ω | Γ ` t1 + t2 : Int

(∀λ:)
Ω | Γ, x : U1 ` t : U2

Ω | Γ ` (λx : U1.t) : U1 → U2

(∀Λ)
Ω, X | Γ ` t : U

Ω | Γ ` ΛX.t : ∀X.U
(∀[])

Ω | Γ ` t : ∀X.U
Ω | Γ ` t[U0] : [U0/X]U

(∀let)
Ω | Γ ` t1 : U1 Ω | Γ, x : U1 ` t2 : U2

Ω | Γ ` let x = t1 in t2 : U2

(∀⇐)
Ω | Γ ` t : U1 U1 ∼ U2

Ω | Γ ` 〈U2⇐U1〉 t : U2

Figure 14. Polymorphic Blame Calculus (PBC): Type System

Fig. 15 presents a type-directed translation from the Schematic
typing judgment for ITGL to PBC. In practice, the type derivation
is produced by type inference. Most of the rules are straightforward
compositional translations. Type abstractions and applications are
introduced where necessary. Several of the rules insert casts, as
needed, in positions where consistency is needed. The 〈〈U⇐U〉〉t
function inserts a cast when the type translation is nontrivial.

Definition 13 (Context Translation).
[[ε]]X ::= ε

[[x : ∀X.UX,Γ∀]]X ::= [[Γ∀]]X

[[X,Γ∀]]X ::= X, [[Γ∀]]X

[[ε]]x ::= ε

[[x : ∀X.UX,Γ∀]]x ::= x : ∀X.UX, [[Γ∀]]x

[[X,Γ∀]]x ::= [[Γ∀]]x

Proposition 16 (Well-typed Translation). If Γ∀ ∀̀ t ; t′ : U
then [[Γ∀]]X | [[Γ∀]]x ` t′ : U .

Proof. By induction on the derivation of Γ∀ ∀̀ t ; t′ : U

In principle ITGL’s semantics can also be defined using the
substitutive approach, which essentially monomorphises programs
at the expense of code explosion. Taking this approach, the image
of the translation is the Blame Calculus (Siek et al. 2009; Wadler
and Findler 2009), which is the monomorphic fragment of the PBC.

12. Static and Gradual Polymorphism
This section revisits Siek and Vachharajani’s analysis of gradual
type inference. Their intuitions about parametric polymorphism
led them to design an inference algorithm that does not always
yield principal types. Our analysis of that variance uncovers a
distinction among type parameters. We extend our type system and
inference procedure to expose this distinction, and thereby give
firmer foundation to this idea.

(σx)
x : ∀Xi.UX ∈ Γ∀

Γ∀ ∀̀ x ; x[Ti] : [Ti/Xi]U
X

(σn)
Γ∀ ∀̀ n ; n : Int

(σb)
Γ∀ ∀̀ b ; b : Bool

(σapp)
Γ∀ ∀̀ t1 ; t′1 : U1 Γ∀ ∀̀ t2 ; t′2 : U2 d̃om(U1) ∼ U2

Γ∀ ∀̀ t1 t2 ;
(〈〈d̃om(U1)→ c̃od(U1)⇐U1〉〉t′1)

(〈〈d̃om(U1)⇐U2〉〉t′2)

: c̃od(U1)

(σif)

Γ∀ ∀̀ t1 ; t′1 : U1 Γ∀ ∀̀ t1 ; t′2 : U2

Γ∀ ∀̀ t1 ; t′3 : U3 U1 ∼ Bool U = U2 u U3

Γ∀ ∀̀ if t1 then t2 else t3 ;
if 〈〈Bool⇐U1〉〉t′1
then 〈〈U⇐U2〉〉t′2 else 〈〈U⇐U3〉〉t′3 : U

(σ+)

Γ∀ ∀̀ t1 ; t′1 : U1 Γ∀ ∀̀ t1 ; t′2 : U2

U1 ∼ Int U2 ∼ Int

Γ∀ ∀̀ t1 + t2 ; (〈〈Int⇐U1〉〉t′1) + (〈〈Int⇐U2〉〉t′2) : Int

(σλ:)
Γ∀, x : ∀∅.U1

∀̀ t ; t′ : U2

Γ∀ ∀̀ λx : U1.t ; λx : U1.t
′ : U1 → U2

(σλ)
Γ∀, x : ∀∅.T1 ∀̀ t ; t′ : U2

Γ∀ ∀̀ λx.t ; λx : T1.t
′ : T1 → U2

(σlet)
Γ∀ ∀̀ (λx.t2) t1 ; t′ : U t1 /∈ VALUE

Γ∀ ∀̀ let x = t1 in t2 ; t′ : U

(σletp)

Γ∀ ∀̀ v1 ; v′1 : U1 Γ∀, x : σ ∀̀ t2 ; t′2 : U2

σ = ∀Xi.[Xi/Ai]U1 Ai /∈ Γ∀

Γ∀ ∀̀ let x = v1 in t2 ;
let x = (ΛXi.[Xi/Ai]v

′
1) in t′2 : U2

(σ::)
Γ∀ ∀̀ t ; t′ : U U ∼ U1

Γ∀ ∀̀ (t :: U1) ; 〈〈U1⇐U〉〉t′ : U1

〈〈U⇐U〉〉t = t

〈〈U2⇐U1〉〉t = 〈U2⇐U1〉 t if U1 6= U2

Figure 15. Gradual Language: Schematic Translation

To motivate their design, Siek and Vachharajani consider how
best to answer the following type inference problem:

λx : ?.(λy : X.y) x

Clearly this program is typeable, but what type should X get?
Our type inferencer makes it a type parameter, producing the type
? → A, but Siek and Vachharajani’s type inference algorithm
produces ? → ?. Their reasoning is that the type ? → A implies
parametric polymorphism, and with it the idea that the type can
be changed arbitrarily without affecting the program’s behavior.
However, this simple program gets the value of y from a value of
type ?, which, assuming a naı̈ve casting model, could trigger a cast
error depending on which type is assigned toX .8 In their view, type
signatures with type parameters should indicate static parametric
polymorphism, and this type does not.

This observation suggests a distinction that we currently sup-
press. Sometimes type parameters indicate parametric polymor-
phism in the traditional sense: irrelevant to program execution.

8 Their system precedes PBC and its dynamics had no runtime sealing.

B ∈ STPARAM, T ∈ TYPE, U ∈ GTYPE,
W ∈ CASTABLE, Y ∈ GCASTABLE
V ∈ STATICTYPE = TYPE \ CASTABLE
Z ∈ GSTATICTYPE = GTYPE \ GCASTABLE
T ::= A | B | Int | Bool | T → T
U ::= ? | A | B | Int | Bool | U → U
W ::= A | Int | Bool |W →W
Y ::= ? | A | Int | Bool | Y → Y

Figure 16. Gradual and Static Type Parameters: Syntax

Other times, type parameters indicate that a value’s only constraint
is that it may be cast to and from ?, which may introduce casts.
We distinguish this latter circumstance as an instance of gradual
polymorphism, the exact circumstance that the Polymorphic Blame
Calculus was designed to address.

To clearly delineate this type-level distinction, we extend our
languages with another class of type parameters: in addition to the
gradual type parameters A, we introduce static type parameters B
(Fig. 16).

In ITSL, these type parameters would all be equivalent. How-
ever, when we transition to gradual typing, these types are distin-
guished from their forebears.

The gradual types extend the static types as usual, thereby cre-
ating the universe of types for this language. The type distinc-
tion, however, leads to several families of static and gradual types.
Castable types W are those static types that can be passed to the
dynamic world. Their two salient properties are the absence of the
unknown type ? and the static type parameter B, which may not
pass to the dynamic world. Indeed there is a gradual counterpart Y .
The static and gradual types that do not appear in these sets make
up the static types V and gradual static types Z. These latter two
refer to those types that represent pure parametric polymorphism.

In this new model, the unknown type ? no longer represents all
possible static types, but only the types in GCASTABLE. In partic-
ular, they do not include the static types: any type that contains a
static type parameter.

The most immediate change that results from this interpretation
is that not all types are consistent with ?. In particular, Z 6∼ ? for
any Z ∈ GSTATICTYPE. In fact, it hereditarily follows that any
type containing a static type parameter B is not consistent with ?.
The relevant changes to consistency are as follows.

B ∼ B ? ∼ Y Y ∼ ?

Static type parameters are consistent to themselves, as is standard,
but now ? is consistent to only the castable gradual types Y , not all
gradual types U .

In ITSL, the consequence is that the language has more type
variables, which to date has not been a problem in practice. For
instance, the program λx.x may be given type A → A, using
the gradual type parameters, but our earlier program can at best
be given the type B → B using static type parameters.

Furthermore, this extension changes the nature of our type poly-
morphism theorem:

Definition 14.

1. Let SA ∈ ASUBST = TPARAM → CASTABLE denote the
gradual type parameter substitutions, or A-substitutions.

2. Let SB ∈ BSUBST = STPARAM → TYPE denote the static
type parameter substitutions, or B-substitutions.

3. Let SP ∈ PSUBST =
{SA ∪ SB | SA ∈ ASUBST, SB ∈ BSUBST } denote the type
parameter substitutions, or P -substitutions.

These two substitutions distill the semantics of polymorphism.
Gradual type parametersA represent castable typesW ; conversely,
static type parameters B represent all static types, including the
gradual type parameters A. In practice, we are interested in sub-
stitutions SP = SA ∪ SB which simultaneously map gradual and
static type parameters to castable types and static types, respec-
tively. These P -substitutions capture our new notion of type poly-
morphism.

Proposition 17.

1. If Γ ` t : U then ŜP (Γ) ` ŜP (t) : ŜP (U) for any
SP ∈ PSUBST.

Proof. Straightforward induction on derivations Γ ` t : U .

12.1 Type Inference for Pure Parametric Polymorphism
Now that we have described an implicitly typed language with
two tiers of parametric polymorphism, how do we infer these two
types? Conveniently, doing so requires only a small extension to
our type inference approach. Our type inferencer up to now has
simply discarded constraints that require a type to be consistent
with ?, since this was true of every type. Now we must consider
them, because they make the difference between a static parametric
type and a gradual one.

To account for the type distinction, we extend the unification
relation to be a ternary relation

U ∈ P(GCASTABLEEXP)× P(CONSTRAINT)× XSUBST,

where T | C? U SX means that the constraints C? plus (U X ∼̇ ?)
for each U X ∈ T are unified by SX. We modify the previous
unification relation as follows:

T | ∅ U ŜB ◦ [Vars(T) 7→ Ai]

T ∪ {UX } | C? U SX

T | C? ∪ { ? ∼̇ UX } U SX

T ∪ {UX } | C? U SX

T | C? ∪ {UX ∼̇ ? } U SX

̂[X 7→ T X](T) | ̂[X 7→ T X](C?) U SX X /∈ Vars(T X)

T | C? ∪ {X .
= T X } U ŜX ◦ [X 7→ T X]

First, we no longer discard constraints that U X ∼ ? because we
must now ensure that ŜX(U X) ∈ GCASTABLE to secure the type
distinction. Note that T ∈ GCASTABLEEXP imposes implicit
side-conditions on each of the rules. Second, to satisfy an empty
constraint set, the corresponding substitution SX must map all type
variables in T to gradual type parameters Ai. The remaining type
variables have no constraints, so they can safely be mapped to static
type parameters Bi.

With these few extensions, the corresponding notions of sound-
ness and completeness of unification, as well as principal types,
hold.

Proposition 18 (Principal Types). Suppose ΓX ` tX : U X | C? | X .
Then if SX

1 |= C? for some SX
1, it follows that ∅ | C? U SX

2, and
(SX

2, Ŝ
X
2(U X)) is a principal solution for ΓX and tX.

This proposition establishes that our type inference procedure
produces the best type possible, and along the way proves that the
type system has a well-defined notion of “best” types.

12.2 Dynamic Semantics
This new type distinction suggests two more interpretations of
ITGL. These interpretations differ with respect to whether or not
they enforce representation-independence at runtime, and con-
versely with respect to the complexity of the necessary runtime
support.

Our language from Sec. 11 corresponds to interpreting both
static and gradual type parameters using runtime sealing. A more
refined language could use static parametric polymorphism for
static type parameters and reserve runtime sealing only for gradual
type parameters.

Viewed from this perspective, Siek and Vachharajani interpret
all gradual type parameters as ?, leaving only the static type pa-
rameters. This language model can be translated to the (monomor-
phic) Blame Calculus, erasing static type parameters in the stan-
dard way. Note, however, that this translation of Bs to ?s implies a
syntactic reinterpretation of our programs. In particular, since our
type system does not infer gradual types, this reinterpretation cor-
responds to a refinement process on programs that introduces new
type annotations to a program that change some parameters to grad-
ual types. The λ?α

→ language interprets these types without incident
since gradual types were always inferrable, but at the cost of a com-
plex type system and inferencer.

13. Discussion
Construction of the type system and inference was systematic and
driven by underlying principles of the static type system. The struc-
ture of ITSL sheds light on the structure of the Simply Typed Grad-
ual Calculus’ type system, in particular the origin of the two typing
rules for function application.

The constraint typing judgment does not hold for every context–
term pair. This property falls out of our decision to reduce all grad-
ual predicates and functions to consistency constraints on gradual
types and equality constraints on static types. Alternatively, we
could have produced constraints that directly correspond to those
operators. Doing so would force us to also support gradual type
variables, at least to account for the meet operator when typing if
expressions. This design simplifies the constraint typing judgment,
at the expense of the unification judgment, which would have to
process more constraints, and be mindful of the order in which they
are processed. Reducing constraints up-front imposes fewer exten-
sions on the corresponding static unification judgment.

The ITGL type system can be easily shown to conservatively
extend the ITSL type system. In particular, the gradual operators all
reduce to their static counterparts when applied to static types. In
contrast, Siek and Vachharajani (2008) requires explicit reasoning
to establish this property.

Distinguishing type parameters from type variables was central
to understanding the distinction between static polymorphism and
gradual polymorphism, both of which are orthogonal to the type in-
ference problem. This distinction explains Siek and Vachharajani’s
observation about assigning the unknown type. Such types are not
principal according to their type system, but they arise naturally
from interpreting gradual type parameters in our system as ?.

The ease with which ITGL extends with let-polymorphism sug-
gests that the language may be amenable to other common features
of Hindley-Milner type systems, like row polymorphism (Wand
1987b) and restricted first-class polymorphism (Peyton Jones et al.
2007). We intend to explore some of these more advanced features
in the future. Furthermore, we believe that the connection between
this system and its underlying static language suggests that it may
be reasonable to extend an existing language implementation to
support gradual type inference.

Although ITGL can be safely translated to either the Blame
Calculus (BC) or the Polymorphic Blame Calculus (PBC), we do
not yet understand all the tradeoffs involved. The BC imposes
less runtime overhead since it does not require runtime sealing,
but the PBC enforces representation-independence. Extending the
language with first-class polymorphism, and implementing gradual
type inference in a real language, may provide further insight.

Related Work Aside from (Siek and Vachharajani 2008), the most
closely related work to ours is Rastogi et al. (2012). It presents an
approach to flow-based type inference for a variant of the Action-
Script language that combines static and dynamic checking. Al-
though both works involve graduality and inference, the two have
essential differences that make them complementary.

First, the two approaches start with different kinds of languages.
We begin with an implicitly typed functional language, for which
types are typically inferred using unification. Rastogi et al. start
from a subtyping-based object-oriented language, for which unifi-
cation is insufficient to infer types.

Second, the two approaches start from different conceptual
foundations. Rastogi et al. begin with a gradually typed language in
the style of (Siek and Taha 2006), where missing type annotations
are syntactic sugar for ? annotations, and extend it with support for
type inference. To do so, they reinterpret missing type annotations
as type variables and solve for gradual types using a flow-directed
algorithm. We begin with an implicitly typed language and extend
it with gradual typing. In doing so, we infer the same static types
as the underlying language. It is interesting to observe, however,
that Siek and Vachharajani (2008) start from similar foundations to
Rastogi et al., but arrive at a type system like ours.

Third, the two approaches have distinct goals. Rastogi et al. are
interested in reducing the performance overhead of gradual typ-
ing by removing dynamic checks where possible without chang-
ing the runtime error behaviour of programs. We are interested in
consistency-based reasoning about programs in terms of the under-
lying pre-existing type system.

Ultimately, the two approaches are complementary. In partic-
ular, we believe that techniques similar to Rastogi et al. could be
applied to ITGL to reduce runtime overhead. One open problem in
this direction is the interaction between flow-based inference and
runtime sealing.

14. Conclusion
Dynamic checking is often characterized as the practice of check-
ing at runtime those expressions that lack type annotations. Static
checking, on the other hand, is associated with introducing type an-
notations to achieve more safety. This paper investigates the com-
bination of dynamic and static checking, and finds that the tables
reverse in the foundations of gradual type inference: there can be
no dynamism without annotation.

15. Acknowledgments
The authors would like to thank Suzanna Crage, Jeremy Siek, Éric
Tanter, Sam Tobin-Hochstadt, Amal Ahmed, Bob Harper, and the
anonymous reviewers for comments and suggestions.

We thank Khurram A. Jafery and Atsushi Igarashi for contribut-
ing to updates and corrections after publication.

References
A. Ahmed, R. B. Findler, J. Matthews, and P. Wadler. Blame for all. In

Proc. 1st Workshop on Script to Program Evolution, STOP ’09, pages
1–13, New York, NY, USA, 2009. ACM. .

A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In Proc.
Symposium on Principles of Programming Languages, POPL ’11, pages
201–214, New York, NY, USA, 2011. ACM. .

G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to
C#. In T. D’Hondt, editor, Proc. 24th European Conference on Object-
oriented Programming (ECOOP 2010), number 6183 in Lecture Notes
in Computer Science, pages 76–100, Maribor, Slovenia, June 2010.
Springer-Verlag.

R. Cartwright and M. Fagan. Soft typing. In Proc. Conference on Program-
ming Language Design and Implementation, PLDI ’91, pages 278–292,
New York, NY, USA, 1991. ACM.

D. Crystal. A dictionary of linguistics and phonetics. Blackwell, 2008.
S. K. Debray and D. S. Warren. Automatic mode inference for logic

programs. Journal of Logic Programming, 5(3):207–229, Sept. 1988.
J.-Y. Girard. Interprtation fonctionelle et limination des coupures de

l’arithmtique d’ordre suprieur. PhD thesis, Universit Paris VII, 1972.
J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage:

Hybrid checking for flexible specifications. In Proc. Scheme and Func-
tional Programming Workshop, pages 93–104, 2006.

J. Matthews and A. Ahmed. Parametric polymorphism through run-time
sealing or, theorems for low, low prices! In Proc. European Conference
on Programming Languages and Systems, ESOP’08/ETAPS’08, pages
16–31, Berlin, Heidelberg, 2008. Springer-Verlag.

J. Matthews and R. B. Findler. Operational semantics for multi-language
programs. ACM Transactions on Programming Languages and Systems,
31(3):12:1–12:44, Apr. 2009.

R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, Aug. 1978.

A. Ohori. A simple semantics for ml polymorphism. In Proc. Interna-
tional Conference on Functional Programming Languages and Com-
puter Architecture, FPCA ’89, pages 281–292, New York, NY, USA,
1989. ACM. .

S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type
inference for arbitrary-rank types. Journal of Functional Programming,
17(1):1–82, Jan. 2007. .

B. C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual
type inference. In Proc. Symposium on Principles of Programming
Languages, pages 481–494, New York, NY, USA, 2012. ACM. .

J. C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque Sur La Programmation, pages 408–
423, London, UK, UK, 1974. Springer-Verlag.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, Jan. 1965. ISSN 0004-5411. .

I. Sergey and D. Clarke. Gradual ownership types. In H. Seidl, editor, Proc.
European Symposium on Programming Languages and Systems, volume
7211 of ESOP ’12, pages 579–599, Tallinn, Estonia, 2012. Springer-
Verlag.

J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor,
Proc. European Conference on Object-oriented Programming, number
4609 in ECOOP ’07, pages 2–27, Berlin, Germany, July 2007. Springer-
Verlag.

J. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-
order casts. In Proc. European Symposium on Programming Languages,
ESOP ’09, pages 17–31, Berlin, 2009. Springer-Verlag.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Proc.
Scheme and Functional Programming Workshop, pages 81–92, Sept.
2006.

J. G. Siek and M. Vachharajani. Gradual typing with unification-based
inference. In Proc. 2008 Symposium on Dynamic Languages, DLS ’08,
pages 7:1–7:12, New York, NY, USA, 2008. ACM. .

N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan, J. Chen, P.-Y. Strub, and
G. Bierman. Gradual typing embedded securely in JavaScript. In Proc.
41st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL 2014), pages 425–437, San Diego, CA, USA, Jan.
2014. ACM Press.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts
to programs. In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 964–974, New York, NY, USA, 2006. ACM. ISBN
1-59593-491-X.

S. Tobin-Hochstadt and M. Felleisen. The design and implementation of
Typed Scheme. In Proc. 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2008), pages 395–406,
San Francisco, CA, USA, Jan. 2008. ACM Press.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proc.
European Symposium on Programming Languages, ESOP ’09, pages 1–
16, Berlin, 2009. Springer-Verlag.

M. Wand. A simple algorithm and proof for type inference. Fundamenta
Infomaticae, 10:115–122, 1987a.

M. Wand. Complete type inference for simple objects. In Proc. 2nd IEEE
Symposium on Logic in Computer Science, pages 37–44, 1987b.

R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate. In
M. Mezini, editor, Proc. European Conference on Object-oriented Pro-
gramming, volume 6813 of Lecture Notes in Computer Science, pages

459–483, Lancaster, UK, July 2011. Springer-Verlag.
A. K. Wright. Simple imperative polymorphism. Lisp Symb. Comput., 8(4):

343–355, Dec. 1995. ISSN 0892-4635. .
A. K. Wright and M. Felleisen. A syntactic approach to type soundness.

Journal of Information and Computation, 115(1):38–94, Nov. 1994.
T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Östlund, and J. Vitek. In-

tegrating typed and untyped code in a scripting language. In Proc.
37th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL 2010), pages 377–388, Madrid, Spain, Jan.
2010. ACM Press.

