Benchmark instances and results for the tuning scenarios in the JAIR article
ParamILS: An Automatic Algorithm Configuration Framework


Tuning scenario Training set of  benchmark instances Test set of benchmark instances Instance/seed lists used for the repetitions of ParamILS
(for the JAIR article, we used the first 25 for indepth and the first 10 for broad scenarios)
Citation Short description Parameter configuration found in the FocusedILS repetition with best training  performance, used for Figures 14 and 15 in our JAIR article
SAPS-SWGCP Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@inproceedings{GenHooProWal99,
    author = "I.~P. Gent and H.~H.~Hoos and P.~Prosser and T.~Walsh",
    title = "Morphing: Combining Structure and Randomness",
    booktitle = aaai99,
    pages = "654--660",
    year = "1999"
}
SAT-encoded graph colouring based on small world graphs.
all instances satisfiable
alpha=1.189, ps=0.033, rho=0.5, wp=0.05

in my format

result comparison against default
Spear-SWGCP Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@inproceedings{GenHooProWal99,
    author = "I.~P. Gent and H.~H.~Hoos and P.~Prosser and T.~Walsh",
    title = "Morphing: Combining Structure and Randomness",
    booktitle = aaai99,
    pages = "654--660",
    year = "1999"
}
SAT-encoded graph colouring based on small world graphs.
sat/unsat instances
sp-clause-activity-inc=1, sp-clause-decay=1.4, sp-clause-del-heur=1, sp-clause-inversion=0, sp-first-restart=3200, sp-learned-clause-sort-heur=12, sp-learned-clauses-inc=1.1, sp-learned-size-factor=0.2, sp-max-res-lit-inc=0.5, sp-max-res-runs=8, sp-orig-clause-sort-heur=8, sp-phase-dec-heur=1, sp-rand-phase-dec-freq=0.05, sp-rand-phase-scaling=1.1, sp-rand-var-dec-freq=0.001, sp-rand-var-dec-scaling=1.1, sp-res-cutoff-cls=16, sp-res-cutoff-lits=1600, sp-res-order-heur=13, sp-resolution=2, sp-restart-inc=1.9, sp-update-dec-queue=1, sp-use-pure-literal-rule=1, sp-var-activity-inc=1, sp-var-dec-heur=0, sp-variable-decay=2.0

in my format

result comparison against default
Old version of SAPS-QCP, used in ParamILS 2009  Tech report
This scenario has a problem with the split into training and test set: the training set was systematically easier than the test set; I only keep it up here for completeness, but would advise against using it
Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@inproceedings{GomSel97,
    author = "C.~P. Gomes and B. Selman",
    title = "Problem Structure in the Presence of Perturbations",
    booktitle = aaai97,
    year = "1997"
}
SAT-encoded quasigroup completion
all instances satisfiable
alpha=1.126, ps=0.2, rho=0, wp=0.05

in my format

result comparison against default
New version of SAPS-QCP, used in JAIR paper Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@inproceedings{GomSel97,
    author = "C.~P. Gomes and B. Selman",
    title = "Problem Structure in the Presence of Perturbations",
    booktitle = aaai97,
    year = "1997"
}
SAT-encoded quasigroup completion
all instances satisfiable
alpha=1.126, ps=0.2, rho=0, wp=0.05 (same as for the old version of QCP)

in my format

result comparison against default
Spear-QCP Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@inproceedings{GomSel97,
    author = "C.~P. Gomes and B. Selman",
    title = "Problem Structure in the Presence of Perturbations",
    booktitle = aaai97,
    year = "1997"
}
SAT-encoded quasigroup completion
sat/unsat instances
sp-clause-activity-inc=0.5, sp-clause-decay=1.1, sp-clause-del-heur=2, sp-clause-inversion=0, sp-first-restart=1600, sp-learned-clause-sort-heur=13, sp-learned-clauses-inc=1.4, sp-learned-size-factor=0.2, sp-max-res-lit-inc=0.5, sp-max-res-runs=8, sp-orig-clause-sort-heur=13, sp-phase-dec-heur=6, sp-rand-phase-dec-freq=0.001, sp-rand-phase-scaling=1.1, sp-rand-var-dec-freq=0.0001, sp-rand-var-dec-scaling=0.6, sp-res-cutoff-cls=8, sp-res-cutoff-lits=200, sp-res-order-heur=14, sp-resolution=1, sp-restart-inc=1.9, sp-update-dec-queue=1, sp-use-pure-literal-rule=0, sp-var-activity-inc=1.5, sp-var-dec-heur=0, sp-variable-decay=1.1

in my format

result comparison against default
CPLEX-regions100 Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@InProceedings{LeyPeaSho00,
    author =     "K. Leyton-Brown and M. Pearson and Y. Shoham",
  title =     "Towards a Universal Test Suite for Combinatorial Auction Algorithms",
  booktitle =    "ACM Conference on Electronic Commerce (EC-00)",
  year={2000}
}
MIP-encoded combinatorial winner determination,
100 goods, 500 bids
advance=1, barrier_algorithm=3, barrier_colnonzeros=0, barrier_convergetol=1e-08, barrier_crossover=-1, barrier_limits_corrections=-1, barrier_limits_growth=1e+12, barrier_ordering=2, barrier_qcpconvergetol=1e-07, barrier_startalg=2, emphasis_memory=yes, emphasis_mip=1, emphasis_numerical=no, feasopt_mode=3, feasopt_tolerance=1e-04, lpmethod=1, mip_cuts_cliques=1, mip_cuts_covers=1, mip_cuts_disjunctive=0, mip_cuts_flowcovers=1, mip_cuts_gomory=-1, mip_cuts_gubcovers=-1, mip_cuts_implied=-1, mip_cuts_mircut=2, mip_cuts_pathcut=1, mip_limits_aggforcut=5, mip_limits_cutpasses=0, mip_limits_cutsfactor=8, mip_limits_gomorycand=800, mip_limits_gomorypass=0, mip_limits_polishtime=0, mip_limits_probetime=1e+75, mip_limits_repairtries=0, mip_limits_strongcand=5, mip_limits_strongit=0, mip_limits_submipnodelim=2000, mip_ordertype=3, mip_strategy_backtrack=0.9999, mip_strategy_bbinterval=4, mip_strategy_branch=1, mip_strategy_dive=0, mip_strategy_file=1, mip_strategy_heuristicfreq=-1, mip_strategy_lbheur=no, mip_strategy_nodeselect=2, mip_strategy_order=no, mip_strategy_presolvenode=-1, mip_strategy_probe=-1, mip_strategy_rinsheur=-1, mip_strategy_startalgorithm=6, mip_strategy_subalgorithm=2, mip_strategy_variableselect=4, network_netfind=1, network_pricing=2, preprocessing_aggregator=-1, preprocessing_boundstrength=0, preprocessing_coeffreduce=0, preprocessing_dependency=3, preprocessing_dual=-1, preprocessing_fill=20, preprocessing_numpass=-1, preprocessing_presolve=yes, preprocessing_qpmakepsd=no, preprocessing_reduce=1, preprocessing_relax=0, preprocessing_repeatpresolve=0, preprocessing_symmetry=0, qpmethod=1, read_scale=-1, sifting_algorithm=0, simplex_crash=-1, simplex_dgradient=2, simplex_limits_perturbation=0, simplex_limits_singularity=40, simplex_perturbation=no 1e-06, simplex_pgradient=-1, simplex_pricing=0, simplex_refactor=0, simplex_tolerances_feasibility=1e-06, simplex_tolerances_markowitz=0.01, simplex_tolerances_optimality=1e-06

in my format

result comparison against default
Spear-swv Training set
(302 instances)
Test set
(302 instances)
Training instance/seed lists

Test instance/seed list
@inproceedings{babic07structural-abs,
  author = {Domagoj Babi\'c and Alan J. Hu},
  title = {{Structural Abstraction of Software Verification Conditions}},
  booktitle = {Computer Aided Verification:  19th International Conference, CAV 2007},
  year = {2007},
  pages={366--378}
}
SAT-encoded software verification  sp-clause-activity-inc=1, sp-clause-decay=1.4, sp-clause-del-heur=2, sp-clause-inversion=0, sp-first-restart=100, sp-learned-clause-sort-heur=16, sp-learned-clauses-inc=1.4, sp-learned-size-factor=0.1, sp-max-res-lit-inc=4, sp-max-res-runs=2, sp-orig-clause-sort-heur=12, sp-phase-dec-heur=0, sp-rand-phase-dec-freq=0.0001, sp-rand-phase-scaling=0.6, sp-rand-var-dec-freq=0.0001, sp-rand-var-dec-scaling=0.9, sp-res-cutoff-cls=8, sp-res-cutoff-lits=200, sp-res-order-heur=16, sp-resolution=1, sp-restart-inc=1.3, sp-update-dec-queue=1, sp-use-pure-literal-rule=0, sp-var-activity-inc=1, sp-var-dec-heur=6, sp-variable-decay=1.1

in my format

result comparison against default
Spear-ibm We cannot provide these instances online due to copyright issues. You can acquire them from the IBM Formal Verification Benchmarks Library. We used 40 random subsets of these instances. Here are the names of our 382 training instances and names of our 383 test instances. Training instance/seed lists

Test instance/seed list
@inproceedings{zarpas05benchmarking,
 author = {Emanuel Zarpas},
 title = {{Benchmarking SAT Solvers for Bounded Model Checking}},
 booktitle = {SAT '05: Proc.~of the 8th International Conference on
     Theory and Applications of Satisfiability Testing},
 year = {2005},
 pages = {340--354}
}
SAT-encoded hardware verification (BMC) sp-clause-activity-inc=1, sp-clause-decay=1.1, sp-clause-del-heur=0, sp-clause-inversion=1, sp-first-restart=1600, sp-learned-clause-sort-heur=1, sp-learned-clauses-inc=1.5, sp-learned-size-factor=0.8, sp-max-res-lit-inc=1, sp-max-res-runs=2, sp-orig-clause-sort-heur=10, sp-phase-dec-heur=0, sp-rand-phase-dec-freq=0.0001, sp-rand-phase-scaling=1, sp-rand-var-dec-freq=0.0001, sp-rand-var-dec-scaling=0.6, sp-res-cutoff-cls=20, sp-res-cutoff-lits=200, sp-res-order-heur=13, sp-resolution=0, sp-restart-inc=1.1, sp-update-dec-queue=0, sp-use-pure-literal-rule=0, sp-var-activity-inc=0.5, sp-var-dec-heur=6, sp-variable-decay=2.0

in my format

result comparison against default
SAPS-random Training set
(363 instances)
Test set
(363 instances)
Training instance/seed lists

Test instance/seed list
See, e.g.
@inproceedings{LeBSim04,
  author    = {{Le~Berre}, D.  and Simon, L. },
  title     = {Fifty-five solvers in {Vancouver}: The {SAT} 2004 competition},
  booktitle = sat04,
  year      = {2004},
  pages     = {321--344}
}
All satisfiable instances in the RANDOM category from all SAT competitions until 2007 alpha=1.256, ps=0.066, rho=0.333, wp=0.01

in my format

result comparison against default
SAPS-crafted Training set
(189 instances)
Test set
(188 instances)
Training instance/seed lists

Test instance/seed list
See, e.g.
@inproceedings{LeBSim04,
  author    = {{Le~Berre}, D.  and Simon, L. },
  title     = {Fifty-five solvers in {Vancouver}: The {SAT} 2004 competition},
  booktitle = sat04,
  year      = {2004},
  pages     = {321--344}
}
All satisfiable instances in the CRAFTED category from all SAT competitions until 2007 alpha=1.066, ps=0,
rho=1, wp=0.02

in my format

result comparison against default
CPLEX-regions200 Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
@InProceedings{LeyPeaSho00,
    author =     "K. Leyton-Brown and M. Pearson and Y. Shoham",
  title =     "Towards a Universal Test Suite for Combinatorial Auction Algorithms",
  booktitle =    "ACM Conference on Electronic Commerce (EC-00)",
  year={2000}
}
MIP-encoded combinatorial winner determination,
200 goods, 1000 bids
advance=1, barrier_algorithm=0, barrier_colnonzeros=0, barrier_convergetol=1e-08, barrier_crossover=0, barrier_limits_corrections=-1, barrier_limits_growth=1e+8, barrier_ordering=0, barrier_qcpconvergetol=1e-07, barrier_startalg=4, emphasis_memory=no, emphasis_mip=0, emphasis_numerical=no, feasopt_mode=3, feasopt_tolerance=1e-06, lpmethod=0, mip_cuts_cliques=2, mip_cuts_covers=-1, mip_cuts_disjunctive=0, mip_cuts_flowcovers=0, mip_cuts_gomory=-1, mip_cuts_gubcovers=0, mip_cuts_implied=0, mip_cuts_mircut=1, mip_cuts_pathcut=-1, mip_limits_aggforcut=3, mip_limits_cutpasses=0, mip_limits_cutsfactor=2, mip_limits_gomorycand=200, mip_limits_gomorypass=0, mip_limits_polishtime=0, mip_limits_probetime=2, mip_limits_repairtries=0, mip_limits_strongcand=10, mip_limits_strongit=0, mip_limits_submipnodelim=500, mip_ordertype=0, mip_strategy_backtrack=0.9999, mip_strategy_bbinterval=7, mip_strategy_branch=0, mip_strategy_dive=2, mip_strategy_file=1, mip_strategy_heuristicfreq=-1, mip_strategy_lbheur=no, mip_strategy_nodeselect=3, mip_strategy_order=yes, mip_strategy_presolvenode=-1, mip_strategy_probe=0, mip_strategy_rinsheur=0, mip_strategy_startalgorithm=3, mip_strategy_subalgorithm=0, mip_strategy_variableselect=4, network_netfind=2, network_pricing=0, preprocessing_aggregator=-1, preprocessing_boundstrength=-1, preprocessing_coeffreduce=2, preprocessing_dependency=2, preprocessing_dual=0, preprocessing_fill=10, preprocessing_numpass=-1, preprocessing_presolve=yes, preprocessing_qpmakepsd=yes, preprocessing_reduce=3, preprocessing_relax=-1, preprocessing_repeatpresolve=-1, preprocessing_symmetry=0, qpmethod=0, read_scale=0, sifting_algorithm=3, simplex_crash=1, simplex_dgradient=2, simplex_limits_perturbation=0, simplex_limits_singularity=10, simplex_perturbation=no 1e-06, simplex_pgradient=4, simplex_pricing=0, simplex_refactor=0, simplex_tolerances_feasibility=1e-06, simplex_tolerances_markowitz=0.01, simplex_tolerances_optimality=1e-06

in my format

result comparison against default
CPLEX-conic.sch We cannot provide these instances online due to copyright issues. You can acquire them from the Berkeley Computational Optimization Lab.
Here are the names of our 172 training instances and names of our 171 test instances.
Training instance/seed lists

Test instance/seed list
@TECHREPORT{AAG:csch:tr,
author = {S. M. Akt{\"u}rk and A. Atamt{\"u}rk and S. G{\"u}rel},
title = {A Strong Conic Quadratic Reformulation for Machine-Job
Assignment with Controllable Processing Times},
type = {Research Report},
number = {BCOL.07.01},
month = {April},
year = {2007},
institution = {University of California-Berkeley}
}
MIP-encoded Reformulation for Machine -Job Assignment advance=1, barrier_algorithm=0, barrier_colnonzeros=0, barrier_convergetol=1e-08, barrier_crossover=0, barrier_limits_corrections=-1, barrier_limits_growth=1e+8, barrier_ordering=1, barrier_qcpconvergetol=1e-07, barrier_startalg=1, emphasis_memory=yes, emphasis_mip=1, emphasis_numerical=no, feasopt_mode=0, feasopt_tolerance=1e-06, lpmethod=3, mip_cuts_cliques=2, mip_cuts_covers=-1, mip_cuts_disjunctive=1, mip_cuts_flowcovers=1, mip_cuts_gomory=1, mip_cuts_gubcovers=1, mip_cuts_implied=0, mip_cuts_mircut=-1, mip_cuts_pathcut=1, mip_limits_aggforcut=3, mip_limits_cutpasses=0, mip_limits_cutsfactor=4, mip_limits_gomorycand=100, mip_limits_gomorypass=0, mip_limits_polishtime=0, mip_limits_probetime=5, mip_limits_repairtries=0, mip_limits_strongcand=10, mip_limits_strongit=0, mip_limits_submipnodelim=125, mip_ordertype=0, mip_strategy_backtrack=0.999999, mip_strategy_bbinterval=7, mip_strategy_branch=1, mip_strategy_dive=2, mip_strategy_file=1, mip_strategy_heuristicfreq=0, mip_strategy_lbheur=yes, mip_strategy_nodeselect=3, mip_strategy_order=yes, mip_strategy_presolvenode=0, mip_strategy_probe=0, mip_strategy_rinsheur=0, mip_strategy_startalgorithm=4, mip_strategy_subalgorithm=0, mip_strategy_variableselect=2, network_netfind=1, network_pricing=0, preprocessing_aggregator=-1, preprocessing_boundstrength=0, preprocessing_coeffreduce=2, preprocessing_dependency=-1, preprocessing_dual=1, preprocessing_fill=40, preprocessing_numpass=-1, preprocessing_presolve=yes, preprocessing_qpmakepsd=yes, preprocessing_reduce=1, preprocessing_relax=0, preprocessing_repeatpresolve=1, preprocessing_symmetry=-1, qpmethod=0, read_scale=-1, sifting_algorithm=0, simplex_crash=0, simplex_dgradient=1, simplex_limits_perturbation=0, simplex_limits_singularity=20, simplex_perturbation=no 1e-06, simplex_pgradient=1, simplex_pricing=0, simplex_refactor=0, simplex_tolerances_feasibility=1e-06, simplex_tolerances_markowitz=0.01, simplex_tolerances_optimality=1e-06

in my format

result comparison against default
CPLEX-CLS We cannot provide these instances online due to copyright issues. You can acquire them from the Berkeley Computational Optimization Lab.
Here are the names of our 50 training instances and names of our 50 test instances.
Training instance/seed lists

Test instance/seed list
@ARTICLE{AM:ls-poly,
AUTHOR = {A. Atamt{\"u}rk and J. C. Mun\~{o}z},
TITLE = {A Study of the Lot-Sizing Polytope},
JOURNAL = {Mathematical Programming},
VOLUME = {99},
PAGES = {443-465},
YEAR = {2004}}
MIP-encoded capacitated lot-sizing advance=1, barrier_algorithm=2, barrier_colnonzeros=0, barrier_convergetol=1e-08, barrier_crossover=-1, barrier_limits_corrections=-1, barrier_limits_growth=1e+14, barrier_ordering=0, barrier_qcpconvergetol=1e-07, barrier_startalg=1, emphasis_memory=yes, emphasis_mip=0, emphasis_numerical=no, feasopt_mode=0, feasopt_tolerance=1e-06, lpmethod=0, mip_cuts_cliques=1, mip_cuts_covers=0, mip_cuts_disjunctive=3, mip_cuts_flowcovers=2, mip_cuts_gomory=0, mip_cuts_gubcovers=0, mip_cuts_implied=0, mip_cuts_mircut=1, mip_cuts_pathcut=0, mip_limits_aggforcut=3, mip_limits_cutpasses=0, mip_limits_cutsfactor=4, mip_limits_gomorycand=200, mip_limits_gomorypass=0, mip_limits_polishtime=0, mip_limits_probetime=1e+75, mip_limits_repairtries=0, mip_limits_strongcand=10, mip_limits_strongit=0, mip_limits_submipnodelim=250, mip_ordertype=2, mip_strategy_backtrack=0.9999, mip_strategy_bbinterval=7, mip_strategy_branch=0, mip_strategy_dive=1, mip_strategy_file=1, mip_strategy_heuristicfreq=80, mip_strategy_lbheur=no, mip_strategy_nodeselect=1, mip_strategy_order=yes, mip_strategy_presolvenode=0, mip_strategy_probe=0, mip_strategy_rinsheur=-1, mip_strategy_startalgorithm=0, mip_strategy_subalgorithm=0, mip_strategy_variableselect=0, network_netfind=2, network_pricing=0, preprocessing_aggregator=-1, preprocessing_boundstrength=-1, preprocessing_coeffreduce=2, preprocessing_dependency=3, preprocessing_dual=0, preprocessing_fill=10, preprocessing_numpass=-1, preprocessing_presolve=yes, preprocessing_qpmakepsd=no, preprocessing_reduce=1, preprocessing_relax=-1, preprocessing_repeatpresolve=2, preprocessing_symmetry=0, qpmethod=3, read_scale=0, sifting_algorithm=2, simplex_crash=1, simplex_dgradient=5, simplex_limits_perturbation=0, simplex_limits_singularity=10, simplex_perturbation=no 1e-06, simplex_pgradient=1, simplex_pricing=0, simplex_refactor=0, simplex_tolerances_feasibility=1e-06, simplex_tolerances_markowitz=0.01, simplex_tolerances_optimality=1e-06

in my format

result comparison against default
CPLEX-MIK We cannot provide these instances online due to copyright issues. You can acquire them from the Berkeley Computational Optimization Lab.
Here are the names of our 60 training instances and names of our 60 test instances.
Training instance/seed lists

Test instance/seed list
@ARTICLE{A:mip,
AUTHOR = {A. Atamt{\"u}rk},
TITLE = {On the Facets of the Mixed--Integer Knapsack Polyhedron},
JOURNAL= {Mathematical Programming},
VOLUME = {98},
PAGES = {145--175},
YEAR = {2003}}
Mixed-integer knapsack  advance=1, barrier_algorithm=3, barrier_colnonzeros=0, barrier_convergetol=1e-08, barrier_crossover=1, barrier_limits_corrections=-1, barrier_limits_growth=1e+6, barrier_ordering=2, barrier_qcpconvergetol=1e-07, barrier_startalg=1, emphasis_memory=yes, emphasis_mip=2, emphasis_numerical=no, feasopt_mode=1, feasopt_tolerance=1e-06, lpmethod=0, mip_cuts_cliques=-1, mip_cuts_covers=-1, mip_cuts_disjunctive=0, mip_cuts_flowcovers=-1, mip_cuts_gomory=0, mip_cuts_gubcovers=0, mip_cuts_implied=0, mip_cuts_mircut=2, mip_cuts_pathcut=-1, mip_limits_aggforcut=3, mip_limits_cutpasses=0, mip_limits_cutsfactor=4, mip_limits_gomorycand=800, mip_limits_gomorypass=0, mip_limits_polishtime=0, mip_limits_probetime=10, mip_limits_repairtries=0, mip_limits_strongcand=10, mip_limits_strongit=0, mip_limits_submipnodelim=500, mip_ordertype=1, mip_strategy_backtrack=0.99, mip_strategy_bbinterval=7, mip_strategy_branch=-1, mip_strategy_dive=3, mip_strategy_file=1, mip_strategy_heuristicfreq=80, mip_strategy_lbheur=no, mip_strategy_nodeselect=2, mip_strategy_order=yes, mip_strategy_presolvenode=-1, mip_strategy_probe=-1, mip_strategy_rinsheur=-1, mip_strategy_startalgorithm=0, mip_strategy_subalgorithm=0, mip_strategy_variableselect=1, network_netfind=3, network_pricing=1, preprocessing_aggregator=-1, preprocessing_boundstrength=-1, preprocessing_coeffreduce=1, preprocessing_dependency=-1, preprocessing_dual=-1, preprocessing_fill=20, preprocessing_numpass=-1, preprocessing_presolve=yes, preprocessing_qpmakepsd=yes, preprocessing_reduce=3, preprocessing_relax=-1, preprocessing_repeatpresolve=1, preprocessing_symmetry=-1, qpmethod=2, read_scale=-1, sifting_algorithm=4, simplex_crash=0, simplex_dgradient=1, simplex_limits_perturbation=0, simplex_limits_singularity=10, simplex_perturbation=no 1e-06, simplex_pgradient=4, simplex_pricing=0, simplex_refactor=0, simplex_tolerances_feasibility=1e-06, simplex_tolerances_markowitz=0.01, simplex_tolerances_optimality=1e-06

in my format

result comparison against default
CPLEX-QP Training set
(1000 instances)
Test set
(1000 instances)
Training instance/seed lists

Test instance/seed list
To come Quadratic programs from RNA energy parameter optimization advance=1, barrier_algorithm=2, barrier_colnonzeros=0, barrier_convergetol=1e-08, barrier_crossover=2, barrier_limits_corrections=-1, barrier_limits_growth=1e+12, barrier_ordering=0, barrier_qcpconvergetol=1e-07, barrier_startalg=3, emphasis_memory=no, emphasis_mip=3, emphasis_numerical=no, feasopt_mode=5, feasopt_tolerance=1e-04, lpmethod=6, network_netfind=1, network_pricing=0, preprocessing_aggregator=-1, preprocessing_boundstrength=0, preprocessing_coeffreduce=2, preprocessing_dependency=-1, preprocessing_dual=0, preprocessing_fill=2, preprocessing_numpass=-1, preprocessing_presolve=no, preprocessing_qpmakepsd=no, preprocessing_reduce=0, preprocessing_relax=0, preprocessing_repeatpresolve=0, preprocessing_symmetry=2, qpmethod=2, read_scale=1, sifting_algorithm=2, simplex_crash=0, simplex_dgradient=4, simplex_limits_perturbation=0, simplex_limits_singularity=10, simplex_perturbation=yes 1e-06, simplex_pgradient=-1, simplex_pricing=0, simplex_refactor=0, simplex_tolerances_feasibility=1e-06, simplex_tolerances_markowitz=0.01, simplex_tolerances_optimality=1e-06

in my format

result comparison against default

Please send any questions, concerns or comments to Frank Hutter