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A need for abstract task characterization… 

…yet specific to data type
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an abundance of vis task characterization

Heer & Shneiderman (2012)
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Card, Mackinlay, Shneiderman (1999)

Klein, Moon, & Hoffman (2006)
Liu & Stasko (2010)
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Chuah & Roth (1996) 

Gotz & Zhou (2008)

Roth & Mattis (1990)
Shneiderman (1996)

Wehrend & Lewis (1990)
Yi, Stasko, et al. (2007)
Zhou & Feiner (1998) 

Andrienko & Andrienko (2006)

Buja et al. (1996)

Dix & Ellis (1998)

Keim (2002)

Valiati et al. (2006)
Tweedie (1997)

Ward & Yang (2004)

Amar, Eagan, & Stasko (2005)

Brehmer & Munzner (2013)

Schulz et al. (2013)
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data-type specific task characterization

Shneiderman. (1996) IEEE Symp. Visual Languages

Henry & Fekete. (2006) ACM BELIV Workshop

Lee et al. (2006) ACM BELIV Workshop

Lammarsch et al. (2012) EuroVA Workshop

Vis Tasks for 1D, 2D, 3D, Multi-Dim, Temporal, Tree, & Network Data

Vis Tasks for Tabular Data

Vis Tasks for Graph Data

Vis Tasks for Time-Oriented Data
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data-type specific task characterization

Shneiderman. (1996) IEEE Symp. Visual Languages

Henry & Fekete. (2006) ACM BELIV Workshop

Lee et al. (2006) ACM BELIV Workshop

Lammarsch et al. (2012) EuroVA Workshop

Vis Tasks for 1D, 2D, 3D, Multi-Dim, Temporal, Tree, & Network Data

Vis Tasks for Tabular Data

Vis Tasks for Graph Data

Vis Tasks for Time-Oriented Data

…what about DR data?
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dimensionality reduction (e.g. PCA, MDS) & vis
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10 analyst interviewees, 6 domains

Human computer interaction (x3)
Bioinformatics (x3)
Policy analysis
Computational chemistry
Social network analysis
Investigative journalism
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in need of a framework

Brehmer & Munzner.  
IEEE TVCG / Proc. InfoVis (2013). 

Munzner (2014)

Why?

How?
 

What?

Why?

How?
 

What?

Why?

How?
 

What?



ACM BELIV: DR Vis Tasks - Nov 10, 2014 Matthew Brehmer

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

8

contribution:  vis task sequences for dr data  



ACM BELIV: DR Vis Tasks - Nov 10, 2014 Matthew Brehmer

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

map synth. 
to original

start

2 dimension-
oriented 

sequences
DR name synth. 

dimensions
start

DR name synth. 
dimensions

start

8

contribution:  vis task sequences for dr data  



ACM BELIV: DR Vis Tasks - Nov 10, 2014 Matthew Brehmer

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR name synth. 
dimensions

start

DR verify 
clusters

start

DR verify 
clusters

start name 
clusters

match clusters 
and classes

DR verify 
clusters

start name 
clusters

3 cluster-
oriented 

sequences

DR name synth. 
dimensions

start

DR name synth. 
dimensions

map synth. 
to original

start

2 dimension-
oriented 

sequences
DR name synth. 

dimensions
start

DR name synth. 
dimensions

start

8

contribution:  vis task sequences for dr data  



ACM BELIV: DR Vis Tasks - Nov 10, 2014 Matthew Brehmer9

implications for vis evaluation

“Seven Scenarios”: Lam et al. IEEE TVCG 2012.

understanding work practices 
evaluating visual data analysis & reasoning 
evaluating communication through vis
evaluating collaborative data analysis
evaluating user performance 
evaluating user experience 
evaluating vis algorithms

Empirical Studies in Information Visualization:
Seven Scenarios

Heidi Lam, Enrico Bertini, Petra Isenberg, Catherine Plaisant, and Sheelagh Carpendale

Abstract—We take a new, scenario-based look at evaluation in information visualization. Our seven scenarios, evaluating visual data

analysis and reasoning, evaluating user performance, evaluating user experience, evaluating environments and work practices,

evaluating communication through visualization, evaluating visualization algorithms, and evaluating collaborative data analysis were
derived through an extensive literature review of over 800 visualization publications. These scenarios distinguish different study goals

and types of research questions and are illustrated through example studies. Through this broad survey and the distillation of these
scenarios, we make two contributions. One, we encapsulate the current practices in the information visualization research community

and, two, we provide a different approach to reaching decisions about what might be the most effective evaluation of a given
information visualization. Scenarios can be used to choose appropriate research questions and goals and the provided examples can

be consulted for guidance on how to design one’s own study.

Index Terms—Information visualization, evaluation.

Ç

1 INTRODUCTION

EVALUATION in information visualization is complex
since, for a thorough understanding of a tool, it not

only involves assessing the visualizations themselves, but
also the complex processes that a tool is meant to
support. Examples of such processes are exploratory data
analysis and reasoning, communication through visualiza-
tion, or collaborative data analysis. Researchers and
practitioners in the field have long identified many of
the challenges faced when planning, conducting, and
executing an evaluation of a visualization tool or system
[10], [41], [54], [63]. It can be daunting for evaluators to
identify the right evaluation questions to ask, to choose
the right variables to evaluate, to pick the right tasks,
users, or data sets to test, and to pick appropriate
evaluation methods. Literature guidelines exists that can
help with these problems but they are almost exclusively
focused on methods—“structured as an enumeration of
methods with focus on how to carry them out, without
prescriptive advice for when to choose between them.”
([54, p.1], author’s own emphasis).

This paper takes a different approach: instead of
focusing on evaluation methods, we provide an in-depth

discussion of evaluation scenarios, categorized into those
for understanding data analysis processes and those which
evaluate visualizations themselves.

The scenarios for understanding data analysis are

. Understanding environments and work practices
(UWP),

. evaluating visual data analysis and reasoning
(VDAR),

. evaluating communication through visualization
(CTV), and

. evaluating collaborative data analysis (CDA).

The scenarios for understanding visualizations are

. Evaluating user performance (UP),

. evaluating user experience (UE), and

. evaluating visualization algorithms (VA).

Our goal is to provide an overview of different types of
evaluation scenarios and to help practitioners in setting the
right evaluation goals, picking the right questions to ask,
and to consider a variety of methodological alternatives to
evaluation for the chosen goals and questions. Our
scenarios were derived from a systematic analysis of 850
papers (361 with evaluation) from the information visuali-
zation research literature (Section 5). For each evaluation
scenario, we list the most common evaluation goals and
outputs, evaluation questions, and common approaches in
Section 6. We illustrate each scenario with representative
published evaluation examples from the information
visualization community. In cases where there are gaps in
our community’s evaluation approaches, we suggest ex-
amples from other fields. We strive to provide a wide
coverage of the methodology space in our scenarios to offer
a diverse set of evaluation options. Yet, the “Methods and
Examples” lists in this paper are not meant to be
comprehensive as our focus is on choosing among evalua-
tion scenarios. Instead, we direct the interested reader
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DR Vis Tasks: Supplemental
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Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

Morphable model of quadrupeds skeletons
for animating 3D animals

Lionel Reveret, Laurent Favreau, Christine Depraz, Marie-Paule Cani

GRAVIR, INRIA

Abstract
Skeletons are at the core of 3D character animation. The goal of this work is to design a morphable model of
3D skeleton for four footed animals, controlled by a few intuitive parameters. This model enables the automatic
generation of an animation skeleton, ready for character rigging, from a few simple measurements performed on
the mesh of the quadruped to animate.
Quadruped animals - usually mammals - share similar anatomical structures, but only a skilled animator can eas-
ily translate them into a simple skeleton convenient for animation. Our approach for constructing the morphable
model thus builds on the statistical learning of reference skeletons designed by an expert animator. This raises the
problems of coping with data that includes both translations and rotations, and of avoiding the accumulation of
errors due to its hierarchical structure. Our solution relies on a quaternion representation for rotations and the use
of a global frame for expressing the skeleton data. We then explore the dimensionality of the space of quadruped
skeletons, which yields the extraction of three intuitive parameters for the morphable model, easily measurable
on any 3D mesh of a quadruped. We evaluate our method by comparing the predicted skeletons with user-defined
ones on one animal example that was not included into the learning database. We finally demonstrate the usability
of the morphable skeleton model for animation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics: Animation]:

1. Introduction

Skeleton construction and articulation placements are the
first steps of character rigging. They involve the definition
and adjustment of numerous degrees of freedom, namely the
3D position and orientation for each skeleton joint. These
complex tasks are usually performed by a skilled animator.
Tackling the problem in the case of virtual animals is even
more complex than for virtual humans, since less anatomical
data is available.

This paper shows that statistical analysis can be applied on
a small set of skeleton models built by an expert animator to
generate a morphable model of quadrupeds skeletons, easily
adaptable to a wide variety of animals.

In the trade-off between fully procedural methods ver-
sus data-oriented ones, morphable models have recently be-
come very popular in Computer Graphics. They offer access
to high quality data through a practical parametrization that
builds on predictive parameters learned from statistical anal-

ysis. In [BV99], a morphable models of face 3D shapes and
texture is learned from hundreds of accurate laser scans of
human subjects. It offers control over intuitive parameters
such as age, sex, mood, etc. Similarly a morphable model
of body shape has been proposed from laser scans of body
shapes [ACP03]. Morphable models outperform simple scal-
ing or FFD-like transformation by allowing to always main-
tain the result within a plausible space characterized by the
learning examples.

For the first time, this paper investigates the generation of
a morphable model in the specific case of animation skele-
tons. This raises the problem of using continuous interpo-
lation over data that represents both rotational angles and
limbs lengths. In particular, the parameterization of 3D rota-
tions may present singularities (such as gimbal lock for eu-
ler angles) and is not unique (2π-periodicity), which makes
its use more difficult in a statistical model. In addition, the
morphable model has to take into account values defined
in different units (e.g. distances and angles). Finally, to be

c⃝ The Eurographics Association 2005.

Visualization Methodology for

Multidimensional Scaling

ANDREAS BUJA 1 and DEBORAH F. SWAYNE 2

March 30, 2004

We discuss the application of interactive visualization techniques to multidimensional
scaling (MDS). MDS in its conventional batch implementations is prone to uncertainties
with regard to (a) local minima in the underlying optimization, (b) sensitivity to the
choice of the optimization criterion, (c) artifacts in point configurations, and (d) local
inadequacy of the point configurations.

These uncertainties will be addressed by the following interactive techniques: (a) algo-
rithm animation, random restarts, and manual editing of configurations, (b) interactive
control over parameters that determine the criterion and its minimization, (c) diag-
nostics for pinning down artifactual point configurations, and (d) restricting MDS to
subsets of objects and subsets of pairs of objects.

A system, called “XGvis”, which implements these techniques, is freely available with
the “XGobi” distribution. XGobi is a multivariate data visualization system that is
used here for visualizing point configurations.

Key Words: Proximity Data. Multivariate Analysis. Data Visualization. Interactive
Graphics.

1 Introduction

We describe methodology for multidimensional scaling based on interactive data visualiza-
tion. This methodology was enabled by software in which MDS is integrated in a multivariate
data visualization system. The software, called “XGvis”, is described in a companion paper
(Buja, Swayne, Littman, Dean and Hofmann 2001), that lays out the implemented function-
ality in some detail; in the current paper we focus on the use of this functionality in the
analysis of proximity data. We therefore do not dwell on the mechanics of creating certain
plots; instead we deal with problems that arise in the practice of proximity analysis: issues

1Andreas Buja is Technology Consultant, AT&T Labs - Research, 180 Park Ave, P.O. Box 971, Florham
Park, NJ 07932-0971, andreas@research.att.com, http://www.research.att.com/˜andreas/.

2Deborah F. Swayne is Senior Technical Staff Member, AT&T Labs - Research, 180 Park Ave, P.O. Box
971, Florham Park, NJ 07932-0971, dfs@research.att.com, http://www.research.att.com/˜dfs/.
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A Data-Driven Reflectance Model

Wojciech Matusik ∗ Hanspeter Pfister † Matt Brand† Leonard McMillan ‡

Figure 1: Renditions of materials generated using our model: steel teapot with greasy fingerprints (left), teapot with rust forming (right).
Closeup pictures in the center. We used a spatially varying texture to interpolate between reflectance models for each point on the teapot.

Abstract

We present a generative model for isotropic bidirectional re-
flectance distribution functions (BRDFs) based on acquired re-
flectance data. Instead of using analytical reflectance models, we
represent each BRDF as a dense set of measurements. This al-
lows us to interpolate and extrapolate in the space of acquired
BRDFs to create new BRDFs. We treat each acquired BRDF as
a single high-dimensional vector taken from a space of all possi-
ble BRDFs. We apply both linear (subspace) and non-linear (mani-
fold) dimensionality reduction tools in an effort to discover a lower-
dimensional representation that characterizes our measurements.
We let users define perceptually meaningful parametrization direc-
tions to navigate in the reduced-dimension BRDF space. On the
low-dimensional manifold, movement along these directions pro-
duces novel but valid BRDFs.

Keywords: Light Reflection Models, Photometric Measurements,
Reflectance, BRDF, Image-based Modeling

1 Introduction

A fundamental problem of computer graphics rendering is model-
ing how light is reflected from surfaces. A class of functions called

∗MIT, Cambridge, MA.
Email: wojciech@graphics.lcs.mit.edu

†MERL, Cambridge, MA.
Email: [pfister,brand]@merl.com

‡UNC, Chapel Hill, NC.
Email: mcmillan@cs.unc.edu

Bidirectional Reflectance Distribution Functions (BRDFs) charac-
terizes the process where light transport occurs at an idealized sur-
face point.

Traditionally, physically inspired analytic reflection models
[Cook and Torrance 1982] [He et al. 1991] [He et al. 1992] provide
the BRDFs used in computer graphics. These BRDF models are
only approximations of reflectance of real materials. Furthermore,
most analytic reflection models are limited to describing only par-
ticular subclasses of materials – a given model can represent only
the phenomena for which it is designed. Significant efforts have
been expended on improving these models by incorporating the rel-
evant aspects of the underlying physics. Many of these models are
based on material parameters that in principle could be measured,
but in practice are difficult to acquire.

An alternative to directly measuring model parameters is to ac-
quire actual samples from a BRDF using some version of a gonio-
spectro-reflectometer [Marschner et al. 2000] [Cornell ] [CUReT ]
[STARR ] [Dana 2001] [Ward 1992] and then fit the measured data
to a selected analytic model using various optimization techniques
[Ward 1992] [Yu et al. 1999] [Lafortune et al. 1997] [Lensch et al.
2001]. There are several shortcomings to this measure-and-fit ap-
proach. First, a BRDF represented by the analytic function with the
computed parameters is only an approximation of real reflectance;
measured values of the BRDF are usually not exactly equal to the
values of the analytic model. The measure-and-fit approach is of-
ten justified by assuming that there is inherent noise in the mea-
surement process and that the fitting process filters out these errors.
This point of view, however, ignores more significant modeling er-
rors due to approximations made in the analytic surface reflection
model. Many of the salient and distinctive aspects of an objects
reflection properties might lie within the range of these modeling
errors. Second, the choice of the error function over which the op-
timization should be performed is not obvious. For example, er-
ror based on the Euclidean distance is a poor metric since it tends
to overemphasize the importance of the specular peaks (these are
usually much higher than the rest) and ignore the off-specular val-
ues. Finally, there is no guarantee that the optimization process
will yield the best model. Since most BRDF models are highly
non-linear, the optimization frameworks used in the fitting process
rely heavily on initial guesses of the models parameters. The qual-
ity of these initial guesses can have a dramatic impact on the final
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A Global Geometric Framework
for Nonlinear Dimensionality

Reduction
Joshua B. Tenenbaum,1* Vin de Silva,2 John C. Langford3

Scientists working with large volumes of high-dimensional data, such as global
climate patterns, stellar spectra, or human gene distributions, regularly con-
front the problem of dimensionality reduction: finding meaningful low-dimen-
sional structures hidden in their high-dimensional observations. The human
brain confronts the same problem in everyday perception, extracting from its
high-dimensional sensory inputs—30,000 auditory nerve fibers or 106 optic
nerve fibers—a manageably small number of perceptually relevant features.
Here we describe an approach to solving dimensionality reduction problems
that uses easily measured local metric information to learn the underlying
global geometry of a data set. Unlike classical techniques such as principal
component analysis (PCA) and multidimensional scaling (MDS), our approach
is capable of discovering the nonlinear degrees of freedom that underlie com-
plex natural observations, such as human handwriting or images of a face under
different viewing conditions. In contrast to previous algorithms for nonlinear
dimensionality reduction, ours efficiently computes a globally optimal solution,
and, for an important class of data manifolds, is guaranteed to converge
asymptotically to the true structure.

A canonical problem in dimensionality re-
duction from the domain of visual perception
is illustrated in Fig. 1A. The input consists of
many images of a person’s face observed
under different pose and lighting conditions,
in no particular order. These images can be
thought of as points in a high-dimensional
vector space, with each input dimension cor-
responding to the brightness of one pixel in
the image or the firing rate of one retinal
ganglion cell. Although the input dimension-

ality may be quite high (e.g., 4096 for these
64 pixel by 64 pixel images), the perceptually
meaningful structure of these images has
many fewer independent degrees of freedom.
Within the 4096-dimensional input space, all
of the images lie on an intrinsically three-
dimensional manifold, or constraint surface,
that can be parameterized by two pose vari-
ables plus an azimuthal lighting angle. Our
goal is to discover, given only the unordered
high-dimensional inputs, low-dimensional
representations such as Fig. 1A with coordi-
nates that capture the intrinsic degrees of
freedom of a data set. This problem is of
central importance not only in studies of vi-
sion (1–5), but also in speech (6, 7), motor
control (8, 9), and a range of other physical
and biological sciences (10–12).

The classical techniques for dimensional-
ity reduction, PCA and MDS, are simple to
implement, efficiently computable, and guar-
anteed to discover the true structure of data
lying on or near a linear subspace of the
high-dimensional input space (13). PCA
finds a low-dimensional embedding of the
data points that best preserves their variance
as measured in the high-dimensional input
space. Classical MDS finds an embedding
that preserves the interpoint distances, equiv-
alent to PCA when those distances are Eu-
clidean. However, many data sets contain
essential nonlinear structures that are invisi-
ble to PCA and MDS (4, 5, 11, 14). For
example, both methods fail to detect the true
degrees of freedom of the face data set (Fig.
1A), or even its intrinsic three-dimensionality
(Fig. 2A).

Here we describe an approach that com-
bines the major algorithmic features of PCA
and MDS—computational efficiency, global
optimality, and asymptotic convergence guar-
antees—with the flexibility to learn a broad
class of nonlinear manifolds. Figure 3A illus-
trates the challenge of nonlinearity with data
lying on a two-dimensional “Swiss roll”: points
far apart on the underlying manifold, as mea-
sured by their geodesic, or shortest path, dis-
tances, may appear deceptively close in the
high-dimensional input space, as measured by
their straight-line Euclidean distance. Only the
geodesic distances reflect the true low-dimen-
sional geometry of the manifold, but PCA and
MDS effectively see just the Euclidean struc-
ture; thus, they fail to detect the intrinsic two-
dimensionality (Fig. 2B).

Our approach builds on classical MDS but
seeks to preserve the intrinsic geometry of the
data, as captured in the geodesic manifold
distances between all pairs of data points. The
crux is estimating the geodesic distance be-
tween faraway points, given only input-space
distances. For neighboring points, input-
space distance provides a good approxima-
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discover
generate hypotheses

browse

identify

annotate

synthesized 
dimensions

identified 
dimensions

input output 

query 

search 

consume produce 

Name Synthesized Dimensions     Map Synthesized Dimension to Original Dimensions

Verify Clusters Name Clusters Match Clusters and Classes

discover
verify hypotheses

locate

identify

items + original 
dimensions

item clusters

input output 

query 

search 

consume discover
generate hypotheses

browse

summarize

annotate

items in cluster cluster names

input output 

query 

search 

consume produce 

discover
generate, verify 

hypotheses

browse

compare

synthesized dim. + 
original dims.

mapping between 
synthesized & original

input output 

query 

search 

consume 

discover
verify hypotheses

lookup

compare

clusters + 
classes

(mis)matches between 
clusters & classes

input output 

query 

search 

consume 

Dimensionality Reduction: Dimensional Synthesis

n original dimensions m synthesized dims. 
(m < n)

input output 

derive

produce 
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a common lexicon for analysis

how?

what?why?

how?

what?why?

how?

what?why?

dependency

how?

what?why?

Brehmer & Munzner. IEEE TVCG / Proc. InfoVis 2013.

domain-agnostic yet  
data-type-specific task  
characterization 


