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Abstract

Many methods have been proposed for the simulation of constrained me-
chanical systems. The most obvious methods have mild instabilities and drift
problems, and consequently stabilization techniques have been proposed. A
popular stabilization method is Baumgarte’s technique, but the choice of pa-
rameters to make it robust has been unclear in practice.

Here we first review some of the simulation methods which have been pro-
posed and used in computations from a stability point of view. This involves
concepts of differential-algebraic equations (DAE) and ODE invariants. We
explain why Baumgarte’s method may run into trouble, and why a further
quest for finding better parameter values for this method will always remain
frustrating. We then show how to improve it.

We propose an efficient stabilization technique which may employ explicit
ODE solvers in case of nonstiff or highly oscillatory problems and relates to
coordinate projection methods. Examples of a two-link planar robotic arm
and a squeezing mechanism illustrate the effectiveness of this new stabilization
method.



1 Introduction

Many methods have been proposed and implemented in commercial codes for the
simulation of constrained mechanical systems; see, e.g. [1, 2] and references therein.
However, the most obvious of these methods have mild instabilities and drift prob-
lems, and consequently stabilization techniques have been proposed. A popular sta-
bilization method is Baumgarte’s technique [3], but the choice of parameters to make
it robust has remained unclear in practice. Many attempts have been made in the
literature to find a robust choice for these parameters — see, for example, the papers
in [2]. One purpose of this paper is to survey some of these techniques, their advan-
tages and limitations, from a stability point of view. We explain what troubles the
Baumgarte technique may run into and explain why a further heuristic search for its
parameter values is bound to fail. We then develop some new and better stabilization
techniques. The mathematical and additional numerical analysis background behind
this exposition can be found in [4, 5, 6].

In order to better understand the issues involved, it is useful to write down the
Lagrangian formulation of the equations of motion describing the dynamics of a con-
strained multibody system:
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where

q is the vector of generalized coordinates

v is the vector of generalized velocities

M(q) is the mass matrix

f(q,v) is the vector of external forces (other than constraint forces)

g(q) is the vector of (holonomic) constraints

G(q) = %% is the constraint Jacobian matrix

A is the vector of Lagrange multipliers
We assume for simplicity that the mass matrix is symmetric positive definite and that
the constraint Jacobian has a full row rank for all q(¢) encountered. For notational
simplicity, we have suppressed any explicit dependence of M, f or g on the time 7.
Also, we consider only holonomic constraints because they are the ones producing
more stability difficulties when integrated numerically.

The system (1.1) is a system of differential-algebraic equations (DAE) of index 3
(the index is one plus the number of differentiations of the constraints that are needed
in order to be able to eliminate the Lagrange multipliers A). It is well-known that a
direct finite-difference discretization of an index-3 DAE may yield practical difficulties
[7], and this relates to the classical ill-posedness of higher index DAEs [8, 4]. This
type of system is obtained for the dynamics of rigid bodies (or when applying modal
analysis to flexible bodies) using the augmentation method (e.g. [1]). For some simple
multibody systems, notably open loop systems, it is possible to explicitly reduce the



DAE to an ODE (of a smaller size) by using relative generalized coordinates and
eliminating the constraints. The resulting ODE can then be integrated using ODE
methods without worrying about the stability issues with which we are concerned
here. Such a reduction cannot be done in general, though, and even when it can,
the obtained differential equations are typically more complicated. We assume in any
case, for the purposes of this article, that this reduction is not performed.

A very popular approach in practice is to differentiate the constraints twice, ob-
taining at each time ¢ an algebraic system for the accelerations and the Lagrange
multipliers. Thus, differentiating the position constraints

0 =g(q) (1.2)

once, we obtain the constraint equations on velocity level
0=¢=Glayw (13)

and a further differentiation with respect to time results in the constraint equations
on acceleration level®

0=g=0G(qVv+ Vquq(q)v (1.4)

The ODE in (1.1) is written together with (1.4) as an index-1 DAE

M GTYN /v f
(e )= (15)
where ¢ = —vIgqq(q)v, and this allows elimination of A in terms of the accelerations
v, obtaining an ODE system for v and q

q = Vv

M(q)v = f(q,v) (16)

which may be integrated using standard codes. (Note that, in principle, the index-
reduced system (1.5) or (1.6) needs more initial conditions than the original system
(1.1) to specify a unique solution. We assume, however, that consistent initial condi-
tions (see, e.g. [7]) for the generalized position and velocity coordinates are provided.)
However, there are two disadvantages to integrating (1.6) or (1.5) numerically.
The easily visible one is that the position and velocity constraints (1.2) and (1.3)
are no longer satisfied exactly — there is a drift off the constraints, which does not
look good in a graphical depiction of motion simulation. Moreover, though, the drift
magnitude as well as the error in generalized positions and velocities grows with time
t — at worst quadratically [3, 9, 4]. This is not because of the numerical method used

!Throughout this paper we will refer to (1.2) as the position constraints, to (1.3) as the velocity
constraints and to (1.4) as the acceleration constrainis, although of course these are all just different
forms of the original constraints which are given on the generalized position coordinates.
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to integrate (1.6) but because the system (1.6) or (1.5) itself is mildly unstable. All of
the stabilization methods reviewed in §§2 and 3 below reduce the index of the original
system to at most 2 in a stable way [4, 5, 16] yielding systems which can be safely
discretized under certain conditions.

In §2 we consider Baumgarte’s technique [3], and show why it may run into trouble
in difficult situations, and why a further heuristic search for good parameter values
with this method is to be discouraged. In §3 we review a number of good stabilization
techniques, briefly commenting on their merits and disadvantages. In §4 we view the
position and velocity constraints (1.2) and (1.3) as defining an invariant manifold for
the solution of the augmented ODE (1.6) and seek to stabilize the manifold. This
leads in §5 to practical discretization schemes which in turn relate to, and shed a
new light on, some of the methods of §3. These schemes are particularly useful for
nonstiff problems (including highly oscillatory ones), where explicit ODE integration
schemes may be employed. A particularly attractive method of this type is proposed
and implemented [6]. Examples utilizing a double pendulum with a constrained path
(or a two-link planar robotic arm) and a squeezing mechanism are given in §6.

2 Baumgarte’s technique

Using Baumgarte’s technique [3], we consider the index-1 DAE (1.5) or the corre-
sponding ODE (1.6) obtained by eliminating the Lagrange multipliers, but now ¢ is
defined by

¢ =—v'gqq(q)v — a18(q, v) — aog(q) (2.1)

where the parameters «; are chosen so that the roots of the polynomial
o(r) = ™2+ a7 + ag
both have negative real parts. For instance, one may choose
o(r) = (7 +7)? 22)
for some vy > 0. The effect of this is to replace eq. (1.4) by
0=§+2v¢+1'g (2.3)

If we view g as a vector of dependent variables then we have replaced a mildly
unstable ODE which allows perturbations to grow linearly in time by an asymptoti-
cally stable ODE, where perturbations decay with time. To make these observations
more precise, we would linearize the position constraints and split a given unknown
vector function into its component in the range space of G plus its component in
the orthogonal subspace (i.e. a direct sum); see §3 of [4] for the details. Another
way of viewing the Baumgarte technique is by regarding the invariant manifold that
the unsatisfied constraints (1.2) and (1.3) define with respect to the ODE (1.6). In
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case of the unstabilized index reduction (1.4), this manifold is mildly unstable, while
Baumgarte’s technique makes it an attracting manifold.

In terms of a numerical discretization by finite differences with a fixed step size,
truncation errors along the manifold in the unstabilized case may accumulate quadrat-
ically in time, because the error committed at each step grows linearly [9], whereas
in the stabilized case these errors do not accumulate. Of course, the errors in the
orthogonal direction to the manifold may well accumulate even in the stabilized case.

The apparent conceptual simplicity of the Baumgarte stabilization technique and
the fact that it essentially replaces the index-3 DAE (1.1) by an ODE formulation
must be considered a major reason for its popularity in engineering applications. But
the practical choice of parameters (e.g. v in (2.3)) to make it robust is widely regarded
as unknown, despite many attempts (see, e.g., [2]). We now give three indications
to explain why this parameter choice is indeed inherently difficult and in a sense
impossible.

First, note that the form (1.5) or (1.6) with the stabilization (2.1) suggests that
the parameter v should be independent of the discretization method and of the dis-
cretization step size (say h). But such a conclusion would be wrong in practice. In
fact, our results indicate that the optimal 4 does indeed depend on both the dis-
cretization step size h and the discretization method. This can be easily seen using
the following simple example:

Example 1

Let us simplify the multibody equations (1.1) by assuming a constant mass matrix
M and a constant constraint Jacobian G, with g = Gq. Then the position and
velocity level constraints are @ = v = 0, where q = (Gq and v = Gv. Further, apply
a forward Euler discretization with a constant step h. Baumgarte’s technique then
gives

Qrn+1 = Qn + hvn
Vit1 = Vo + AM7H(qn, v,.)— (2.4)
M GT(GM L G GM T (q, v,) + a0(ig, + arGv]

where q,, denotes the approximation of q(t,,), t,41 = t,. + h, etc.
To observe the drift we multiply both equations of (2.4) by G and write them in
terms of q and v:

éln+1 _ éln _ I hi )
() =8(2) = (lanr (-
The question then becomes how to choose the Baumgarte parameters ag and «; to
minimize the spectral radius of the amplification matrix B (note that |[|B|le. > 1
regardless). Calculating the eigenvalues of B we find that they can be optimally
2
ie. v = 1 in (2.2). This choice,

S

set to 0 if we choose oy = %, ap = G = h%,
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Figure 2.1: Error behaviour as a function of 4. The solid line is good, the dashed line

is bad.

1 hI
I B |
| Bllsc > h™! now gives cause for concern, although of course there are other matrix
norms in which ||B|| < 1 (since the spectral radius is 0). Thus we do not expect the
choice v = % to be necessarily optimal in practical, nonlinear situations either. (For
such calculations it is really important to make both || B| not large and || B?|| small,
and these are seen to be conflicting desires for the Baumgarte technique.)
The method that we propose later on yields, by contrast, B=0. O

which certainly does depend on h, gives B = <_ ), B? = 0. The fact that

Another difficulty with Baumgarte’s technique is explained as follows: Since from
(2.3) the larger the parameter v the more attracting the invariant manifold becomes,
one would have hoped that “it is safe to take ~ as large as we wish”, which would
have made the choice of v simpler. But when v — oo such that vA > 1, the
discretized problem is close to a direct discretization of the original index-3 DAE
(1.1), and therefore numerical stability difficulties arise. Thus, referring to Fig. 2.1
which depicts solution errors as a function of «, while one would hope for an error
curve like the solid line, which never increases, one may get instead a curve like the
dashed line.

Finally, an additional difficulty arises when ||GM~'GT|| < ||G]|||M~1GT||, which

may occur in a heterogeneous mechanical system. In such a case an unreasonably



small step size may be needed in order to recover the asymptotic stability of the
stabilized manifold. For examples and discussion see §4 of [4]. Example 2 of [4] yields
the dashed curve of Fig. 2.1, and a variant using GGT instead of GM~'GT in §4

below yields the solid curve of Fig. 2.1 and resolves the difficulty in that example.

3 Other good techniques

A variety of other solution techniques, consisting at least in part of reformulating
the given constrained formulation (1.1), have been proposed in the literature. They
can be divided into state-space formulations and projection methods. All of these
methods require the solution of a set of nonlinear equations at each step. Below
we give a short characterization of these two types of methods. We start with the
state-space formulation.

3.1 State-space formulation

One class of methods reformulates the problem locally into state-space form [10, 11,
12]. The DAE (1.1) is considered as an ODE on the manifold defined by the position
and velocity constraints (1.2), (1.3), and a local parameterization is carried out to
explicitly yield this reduction. Suppose that there are n generalized coordinates in q
and that there are m constraints in (1.2). At each point ¢ consider an (n — m) x n

matrix R such that <g> is nonsingular. A simple practical choice for R is to be

piecewise constant (at least over one step of integration). Then an ODE can be
locally derived for the state-space variable

u = Rq (3.1)

insisting that the constraints be satisfied. The matrix function R must be chosen, for
stability reasons, such that

@)

for a constant K of moderate size (cf. [4]). In a coordinate partitioning method [10]
R is a matrix whose rows are unit vectors, thus choosing certain components of q to
form u. Another idea is to make RGT = 0 [11] at the beginning of each integration
step. In any case, when (3.2) is deemed violated, a new constant matrix R is chosen
based on a new reference point, giving a different state-space ODE for a new u of
(3.1). The segments are connected in such switching points through continuity of
q and v. The advantages of such schemes are their reduced size and their stability
(provided (3.2) holds) and no-drift. A robust detection scheme for the necessity to
change R is the more difficult aspect of these schemes, however.

<K, |R|<K (3.2)




3.2 Projection methods

For the rest of this section, consider the reduced DAE (1.5) or the ODE (1.6), and
the invariant manifold defined by the position and velocity constraints (1.2), (1.3).
One can view the system (1.5), (1.2), (1.3) as an overdetermined DAFE [1, 13]. Given
appropriate initial conditions, such a system has a unique solution; however, upon
numerical discretization there is no exact solution to the overdetermined system. Var-
ious projection schemes were proposed in order to solve it, in that their discretization
is no longer overdetermined.

There are two basic ways to project the solution onto the constraint manifold (or
part of it). One is to redefine the ODE (1.6) by adding new Lagrange multipliers
[14, 4, 15, 16]. This is the method of projected invariants. For example, if we only
project onto the original position constraints (1.2) we get (with x the new Lagrange
multipliers)

v — G(q)p
f(q, v) (3.3)
g(a)

This is a stable index-2 DAE which can be discretized either by a BDF method or
by a stiffly stable implicit Runge-Kutta method. Thus, a stable index reduction has
been achieved. A projection onto the velocity constraints (1.3) can be added as well,
and this may in some cases allow a larger step size in the ensuing discretization at
the expense of a larger system to solve at each step.

The other approach is to proceed to discretize numerically the ODE (1.6), but at

q
M(q)v
0

the end of each discretization step to project the obtained approximate solution onto
the selected constraints manifold. This is referred to as the method of coordinate
projection (see, e.g., [17, 18, 16]). In both approaches it is possible to choose to
project onto the position constraints manifold (1.2), or onto the velocity constraints
manifold (1.3), or onto both (which may be more expensive). Both approaches lead
effectively to stable index reduction and thus to the possibility of a stable solution
of the original problem. Finally, when the mass matrix M involves different scales,
it can be important in both approaches to project using GT, not M~1GT, in order
to allow a reasonably large discretization time step h [4]. Note, though, that there
is potentially an additional expense involved per step because a decomposition of
GM~GT but not of GGT is already used anyway to obtain (1.6). However, this
expense does not have to be significant, see [19, 5].

4 Stabilization of invariants

In this and the following section we derive a stabilized ODE formulation that im-
proves the stabilizing properties of Baumgarte’s method and makes the choice of the
parameters straightforward. Our aim is to retain the computational simplicity of



Baumgarte’s approach. In particular, we later explore the use of explicit ODE inte-
gration schemes. This means that we do not explore stiff systems and do not insist
that the solution precisely lie in the constraint manifold.

Let us write the ODE (1.6) as
z' = f(z) (4.1)

for z = (q,Vv). The position and velocity constraints together form an invariant set

M of this ODE, given by

0=h(z) = ( g((él))v) (4.2)

assuming, to recall, that

G 0 )
vigeq G

H(z) = hy(z) = (

has a full row rank. (If we choose to concentrate only on the velocity constraints (1.3)
then (4.2) is identified with (1.3) for v alone, and H = G.)
Consider the family of stabilization methods

7' = f(z) — 7F(z)h(z) (4.3)
where v > 0 is a parameter and
F=D(HD)™! (4.4)

with D(z) smooth such that HD is nonsingular (indeed, ||H D||||(HD)™!|| should be
nicely bounded) for each z. For instance, we can choose D = HT, or the cheaper
variant

D= (%T CST> (4.5)

yielding

T T\-1 I 0
F= "GN (_yry araanyt 1) (1.6)
which has the advantage that only GG needs to be decomposed (or “inverted”). See
[5] for additional possibilities.

This ODE, its invariant and its stabilization given by (4.1)—(4.4) have a general
form. It does not include the Baumgarte technique for an index-3 DAE (2.1)—(2.3),
but it does include a Baumgarte technique for an index-2 DAE (e.g. for a multibody
system with nonholonomic constraints g(v) = 0), where (2.3) is replaced by 0 =

10



g + ~g. In this case we can identify H with GG and D with M~'G7T, see [5] and recall
§2.

It was shown in [5] that the manifold M of (4.2) is an asymptotically stable
invariant manifold of the ODE (4.1) for all v > 0, and that the flow of (4.3) on M
reduces to the flow of (4.1) restricted to M. Moreover, rewriting the stabilized system
(4.3) as

7 = f(z)— D(z)p (4.7)
1
0 = h(z) - —(HD)(z)u
')/
we see that as we let v — oo the formulation reduces to the index-2 DAE
7z = f(z)— D(z)u (4.8)
0 = h(z)

obtaining the projected invariant method described in the previous section. Thus,
unlike for Baumgarte’s technique, the limit v — oo is a “safe” limit. It therefore
makes sense to discretize the stable ODE (4.3), which we now proceed to consider.

5 Discretization of the stabilized ODE formula-
tion

The stabilized ODE (4.3) can be safely integrated by a general purpose package for
initial value ODEs. However, there remains the question of determining the parameter
~. If the package integrates stifft ODE problems effectively then + can be taken very
large. But if a nonstifft ODE solver is desired then vk should be in the absolute
stability region of the method used when the stepsize is h. Moreover, the two terms
on the right hand side of (4.3) differ substantially from each other, both in purpose
(—vFhis just a stabilization term) and in size. Hence it makes sense to apply different
discretization schemes to them.

Let us consider the discretization of the ODE (4.1) (i.e. the ODE (1.6), obtained
by directly differentiating the constraints twice from the original constrained multi-
body system (1.1)), by a textbook one—step scheme, e.g. Runge-Kutta of order p > 1.
This results in the time-hA-map

Znt1 = gbi(zn)’ (5'1)

which advances the solution from the approximate state z, at t = ¢, to an approx-
imate state z,41 at t,41 = ¢, + h. For the stabilization term, it suffices to apply a
first order method (this term vanishes at the exact solution). Using backward Euler,
for example, we get

Zni1 = G1(2n) = AF (2410 (Z041) (5.2)

11



with @ = h~v. It was shown in [5] (Theorem 3.1) that the obtained scheme does
retain the global error O(A?) in z,41, and that the constraints (4.2) are satisfied to
O(hP*!/a). This scheme possesses an invariant manifold M, which is asymptotically
stable. This is a solid, stable scheme (for an appropriate choice of D), but it does not
buy us much new: it is implicit, the best choice of a is @ — oo, and in this limit we
obtain the coordinate projection method

Znt1 = ¢£(Zn)—D(Zn+1)# (5.3)
0 = h(zn1)

(compare this to (4.8)).

An explicit alternative to the scheme (5.2) is therefore derived next by evaluating
the stabilizer F'h at the argument obtained by applying the higher order discretization
scheme (5.1). This yields the method

Fos = ol(2.) (5.4a)
Zpt1 = in—}—l —OéF(in+1)h(in+1) (54b)

The obtained scheme can be also viewed as a modification of a forward Euler dis-
cretization of the stabilization term. It was shown in [5] (Theorem 3.2) that the
obtained scheme (5.4) retains the global error O(h?) in z,1, and that the constraints
(4.2) are satisfied to O(hP*!). This scheme possesses an invariant manifold M, which
is asymptotically stable. Moreover, any choice of « in the range 0 < @ < 2 is stable,
and the choice a = 1, i.e. v = 1/h (which certainly depends on the discretization
step size h), is close to optimal.

The scheme (5.4) appears to give a good compromise between the requirements of
efficiency and stability. It can be considered as applying one Newton iteration, con-
strained to be in the range of D, for the solution of the nonlinear system appearing
in the coordinate projection method (5.4) at each time step. While such an approxi-
mation to (5.4) has been proposed before and observed to work well in practice (see,
e.g. [17, 18]), here this approximation is actually justified, using a different point
of view. The scheme (5.4) is identical to the coordinate projection method if the
constraints h(z) are linear (even if they depend explicitly on time). Note that the
velocity constraints (4.3) are indeed linear in the generalized velocities v (assuming
holonomic constraints (1.2) to begin with).

Setting o = 1 we write this method for the mechanical system model: At a time
step n, apply the following two-stage discretization step:

1. Starting with (q,,v,) at ¢ = ¢, use a favourite ODE integration scheme ¢>£
(e.g. Runge-Kutta or multistep) to advance the system

q =V
M(q)v = f(q,v)—G"(p)A
0 = G(q)v+v'ga(q)v

12



by one step. Denote the resulting values at t,41 = t, + h by (Qnt1, Vir1)-

2. Stabilize:

<Qn+1> _ <(~ln+1> — F(Qut1, Vi) D (Qn1, Vigr)
V41 V41

where h is given by (1.2) and (1.3), and F'is given by (4.4).

For instance, F' may be given by D = H or by (4.6).

Unfortunately, both of these choices of /' contain a term involving gqq which we
may wish to avoid in order to economize the computation. We therefore consider also
the choices

F = M—laT(GM—lGT)—l(é ?) (5.5)
Fo= GT(GGT)‘1<£ 9) (5.6)

which are sufficient in many applications (when vT'gqq does not significantly dominate
G).

A choice which we finally recommend [6] is to replace the stabilization step above
by the double step

((Eln-}-l ) = <€1n+1 > - F(qn-}-la {/—n+1>h(éln+la{"n+1)

V41 Vn—}—l

(an ) = (gnﬂ > — F(Qnt1, Vs )0 (Qng1, Vi)
Vn+1 Vn+l

with F' given by (5.5) or (5.6). This gives a drift error of O(h?") rather than O(h**)
(see [6]) at a negligible additional cost, since F' is evaluated at most once per time
step. In particular, using (5.5) the cost of the entire stabilization step can be easily
made to be well below the cost of one stage of a Runge-Kutta step.

6 Examples and code

Example 2

We have performed a number of calculations for the problem of a two-link robotic
arm. This is a double planar pendulum with a prescribed path at its “free” end
(see, e.g., [20]). Thus, one end of a rigid rod is fixed at the origin, and the other is
connected to another rigid rod with rotations allowed in the x — y plane. Let 6; be

13



Figure 6.1: Two-link planar robotic system

the angle that the first rod makes with the horizontal axis, and let 6, be the angle
that the second rod makes with respect to the first rod (see Fig. 6.1). The masses of
the rods are denoted by m; and their lengths are denoted by [;. The coordinates of
the link between the rods are given by

1 =l Y1 = l1sq
and those of the “free” end are
o = 21 + lre12 Y2 = Y1 + las12

where ¢; = cos0;, s; = sinf;, ¢c13 = cos(01 + 03), s12 = sin(b, + 62).
Referring to the notation of (1.1), we let q = (6;,0;)” and obtain

M= <mllf/3 + mg(lf + Z%/S + 111262) mg(lg/iﬂ + 111262/2))
mg(lg/:') + 111262/2) mglg/:')
f = (—mlgllcl/Q — mgg(llcl + 12612/2)> + (77”@[1[282/2(20‘1.92 + 9%))
—mggbclg/Q —mglllgsﬁf/Z
In the following simulation we use the data
my = my = 36kg, [y =, = 1lm, g = 9.81m/s”
0:1(0) = 70°, 6,(0) = —140°, 61(0) = 6,(0) = 0

14



Note that in this example (and the next) M~'GT does not form a “bad angle” with
(. Examples where this is an issue have been examined in [4, 15]. Here we consider
other issues.

We examine two choices for a constraint g(q,?) on the position of (x2,y,).

Case I Consider the case where the coordinates (x2,y2) are constrained to lie on a
parabola

y2 = w3 — 3
where 3 is chosen such that the above initial conditions are consistent. Simulations
for time up to £y = 40s have been carried out as follows:

1. using no stabilization (denoted Baum(0,0)),
2. using Baumgarte’s method with parameters ag and a4 (denoted Baum(ay, ag)),

3. using the stabilization (5.4) with projection on both velocity and position con-
straint levels utilizing D = H in (4.4) (denoted S-full),

4. using (5.4) with projection on both velocity and position constraint levels uti-

lizing (5.6) (denoted S-both),

5. using the double stabilization step with projection on both velocity and position
constraint levels utilizing (5.6) (denoted S-both?),

6. using (5.4) with projection only on velocity level constraints utilizing F =

GT(GGT)7! (denoted S-vel), and

7. using (5.4) with projection only on position level constraints utilizing F' =

GT(GGT)~! (denoted S-pos).

Note that the last among the projections above does not give an invariant manifold
in the sense of (4.1), (4.2), although it still yields a method which may be interpreted
as a good discretization of a stable index-reduced problem.

The path in cartesian coordinates traversed by (z2,¥2), is depicted in Fig. 6.2.

In Table 6.1 we record the measured drifts based on runs using an explicit Runge-
Kutta scheme of order 2 with a constant step size h. In case of a solution blowup we
write *.

We observe that the stabilizations on both velocity and position levels and the sta-
bilization on velocity level alone yield good results, while stabilization on the position
level alone in the sense of (5.4) (i.e. one iteration step) does not yield good results
for this example, in agreement with [9]. If we add a few more restricted Newton iter-
ations per step, i.e. we perform a “true” coordinate projection on the position level
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Y VS X -- position motion
1.4 ‘ ‘

-0.6 1 1 1 1

Figure 6.2: Constraint path for (z2,y,), Case |

alone, then the drift at the position level essentially vanishes, but the other errors in
solution and velocity drift are not improved by much. We emphasize, though, that
in various other examples which were tried the projection S-pos proved useful.

Of all these variants the stabilization S-both? may be the preferred one, because
it cheaply yields a smaller residual on the position level. It costs almost the same as
the only-velocity stabilization S-vel, and the residuals are much smaller.

The Baumgarte stabilization performs reasonably well here for A = .001. Even
without stabilization we obtain decent drift values in this case.

Case IT A more difficult case is obtained when the coordinates (z2,y2) are constrained
to obey

Yy = sin?(wt
Y

The problem gets tougher the larger the parameter w becomes. We choose w = 1
below. The obtained constrained path for (z3,y2) is depicted in Fig. 6.3. In this case
the constraint forces become large at a few distinct times.

In Table 6.2 we record the measured drifts based on runs up to ¢ty = 10s using an
explicit Runge-Kutta scheme of order 2 with a constant step size h.

Note that the Baumgarte stabilization is not as effective as the S- stabilizations,
especially for the case h = .01. Other parameters (ag, aq) tried (including v = 1/h

n (2.2)) do not yield significantly better results. O
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h stabilization  drift-velocity drift-position
.01 Baum(0, 0) .33e-2 A7e-2
.01  Baum(12,70) 12e-2 14e-2
01 S-full A2e-7 .61e-9
01 S-both .16e-3 .39e-9
.01 S-both? .67e-8 .15e-13
01 S-vel .36e-14 .84e-3
.01 S-pos * *
.00l  Baum(0, 0) .32e-4 ATe-4
.00 Baum(12,70) .70e-4 Adde-4
.00T S-full 15e-13 A0e-14
.001 S-both .16e-6 .39%e-14
.001 S-both? 18e-13 3le-14
.001 S-vel .36e-14 .8le-5
.001 S-pos 48e-2 76e-11

Table 6.1: maximum drifts for Case |

Based on these experiments and others we have determined that the stabilization
technique S-both?, i.e., using the double stabilization step with F given by (5.5) or
(5.6), is a good compromise between stability and computational expense per step. An
experimental code with error control based on the code DOPRI5 of [21], which in turn
is based on the Dormand-Prince Runge-Kutta formulae [22], has been implemented

— see [6].

Example 2 (cont.)

Using this code we can easily compare the performances of our stabilization tech-
nique and Baumgarte’s, because the cost of a discretization step is similar and the
same ODE integrator is used (the stabilization cost being negligible). In Table 6.3
we use relative local error tolerance TOL = 107° and take the absolute tolerance
to be 0.1xTOL. Also, NSTEP denotes the number of time steps (including rejected
ones) that the code takes. We integrate case 11 above for different values of w up to
1y = 100s.

The advantage of our stabilization method is clear. O

Example 3

A seven-body squeezing mechanism is described in [23] and tested in [24] as well.
We have solved this popular example using the same tolerances as in the previous
example. The interval of integration is from £ = 0 to ¢y = .3s, which makes the
problem more challenging than with the value of ¢y = .015s taken in the above
references. A plot of the solution components (mod 27) is given in Fig. 6.4.
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Y VS X -- position motion

Figure 6.3: Constraint path for (zq,y2), Case 11

solutions g vs t

0 0.1 0.2

Figure 6.4: Solution components for example 3
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h stabilization  drift-velocity drift-position
.01  Baum(0,0) * *
.01  Baum(12,70) bl 2be-1
.01 S-full .12e-5 .63e-6
.01 S-both Sle-1 .68e-5
01 S-both? .20e-3 .68e-6
01 S-vel .60e-14 .18e-2
.01 S-pos 73 .28e-2
.00l  Baum(0, 0) .66e-4 .Hbe-4
.00 Baum(12,70) .60e-3 .38e-4
.00T S-full .39e-10 h3e-11

.001 S-both Ale-4 Abe-11
.001 S-both? .20e-9 .78e-15
.001 S-vel A43e-14 .08e-4
.001 S-pos Ade-2 .88e-10

Table 6.2: maximum drifts for Case 11

w  stabilization NSTEP drift-position drift-velocity
0.5 Baum(0,0) 10864 .96 22e-1
Baum(12,70) 4197 8le-5 dle-3
S-both? 3767 .66e-10 17e-6
1.0 Baum(0,0) 15408 1.38 .36e-1
Baum(12,70) 12826 A2e-4 .D2e-3
S-both? 5381 .36e-9 .Hde-6

Table 6.3: maximum drifts for Case II using automatic code

In Table 6.4 we list the number of steps taken by the various methods tested
as well as the maximum drifts in position and velocity level constraints. While the
various variants cost about the same to execute, the maximum drifts are much smaller
using our method. Here the Baumgarte parameters have to be taken larger than in
the previous example in order to observe a significant effect. Moreover, comparing
solution values at ¢ = ¢y to those obtained with a smaller tolerance it turns out that
the first two entries in Table 6.4 correspond to solutions with an error in their leading
digit, despite the much smaller drifts recorded. O

While a full-blown comparison to other general purpose codes like MEXX [19]
(see also §VI.9 in [24]) is well beyond the scope of this paper, we have made some
preliminary such comparisons for both Examples 2 and 3, in which the code described
here fares well. More details are given in [6].
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stabilization NSTEP  drift-position  drift-velocity
Baum(0, 0) 2872 .93e-3 dle-1
Baum(12,70) 2842 45e-3 Ade-2
Baum(200, 10000) 2853 9le-5 .95e-4
S-both? 2838 .29e-13 A7e-T

Table 6.4: maximum drifts for seven-body example using automatic code
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