
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004)
R. Boulic, D. K. Pai (Editors)

Decomposing Cloth

Eddy Boxerman and Uri Ascher 1

1 Department of Computer Science, University of British Columbia, Vancouver, Canada

Abstract

Implicit schemes have become the standard for integrating the equations of motion in cloth simulation. These
schemes, however, require the solution of a system representing the entire, fully connected cloth mesh at each time
step. In this paper we present techniques that dynamically improve the sparsity of the underlying system, ultimately
allowing the mesh to be decomposed into multiple components which can then be solved more efficiently and in
parallel.
Our techniques include a novel adaptive implicit-explicit (IMEX) scheme which takes advantage of simulation
parameters, locally in both space and time, to minimize the coupling of the system. This scheme further directly
improves the efficiency of the computation at each time step. Other sparsity improvements are obtained by exploit-
ing the physical model of Choi and Ko (2002), as well as static constraints in the system.
In addition, we present a modified preconditioner for the modified preconditioned conjugate gradient (MPCG)
technique of Baraff and Witkin (1998), improving its performance by taking constraints into account.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismAnimation I.6.3 [Simulation and Modeling]: Applications

1. Introduction

For nearly two decades, researchers have sought tech-
niques that can efficiently and realistically simulate the
motion of cloth. To this end, considerable progress has
been made [TPBF87, TW88, CYMTT92, BHW94, Pro95],
[VCT95, EWS96, BW98, BFA02, CK02, HES02], provid-
ing a variety of viable physical models and numerical tech-
niques. Believable animations are now expected in feature
films. Games and virtual reality are next, but the computa-
tional costs are still high. In this paper we build upon cer-
tain popular cloth simulation techniques, improving their
performance without sacrificing accuracy or generality. Our
starting point consists of the numerical techniques of Baraff
and Witkin [BW98] and the physical model of Choi and Ko
[CK02].

1.1. Contributions

To date, cloth simulation methods that employ partially im-
plicit schemes have required the solution of a system rep-
resenting the entire cloth mesh at each time step. Solving

this system using the modified conjugate gradient (CG) al-
gorithm presented in [BW98] has a computational cost of
O(n1.5), where n is the number of particles in the mesh.
However, this isn’t always necessary. Imagine a tablecloth
draped over a square table. If we were to manipulate one
corner of the cloth (assuming it does not slip with respect
to the table) we would not immediately affect the opposite
corner. The same applies to the case of a virtual character
tapping its foot, or moving its hand — local motion often af-
fects distant regions of the cloth only weakly and not stiffly.
Since the computational cost grows faster than n it would
be better if we decomposed the mesh into subsections to be
solved independently.

In this paper, we employ a number of methods which in-
crease the sparsity of the system to be solved. As a result,
the mesh can often be decomposed into multiple indepen-
dent components which can then be solved more efficiently
and in parallel. We present the mechanisms by which the
system sparsity is increased, and show how to decompose
and solve the separated components (§5).

Until [BW98], explicit time-stepping techniques were the

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

Figure 1: Cloth draping over a sphere and “arm bend”
snapshots: textured and decomposed-wireframe renderings.
Each particle colour represents a separate component.
White particles are fully constrained.

norm in cloth simulation. Since then, semi-implicit tech-
niques have dominated the field. Recently, implicit-explicit
(IMEX) methods have seen use [BMF03, EEH00, HES02].
In §3 we introduce a novel “adaptive IMEX” scheme which
takes advantage of simulation parameters, locally in both
space and time, to improve the efficiency of the computation.
Moreover, this scheme increases the sparsity of the system,
making it easier to decompose the mesh. Although only first
order accurate, our scheme can be readily extended to yield
higher order techniques.

The modified preconditioned conjugate gradient (MPCG)
technique [BW98] is widely used in the cloth simula-
tion community. Researchers [CK02, HES02] have exper-
imented with various preconditioners to improve the effi-
ciency of the technique. However, these preconditioners are
based on the unconstrained problem, thereby neglecting the
modified nature of this CG algorithm. In §4 we design a pre-
conditioner for the constrained problem and demonstrate its
improved performance.

2. Cloth Model

A variety of models have been proposed in the cloth simu-
lation literature. These can be broadly categorized into par-
ticle system and continuum formulations, although there are
many differences within each type.

We have chosen to use the particle system model pre-

sented by Choi and Ko [CK02]. A distinguishing feature of
this model is its unified treatment of compression and bend-
ing, thereby avoiding the “post-buckling instability” prob-
lem. This model provides attractive and stable results. More-
over, as will be seen, this model improves the potential for
our decomposition method.

2.1. Model Topology

The connectivity structure is depicted in Figure 2. Each par-
ticle in the grid is connected to its four nearest neighbours
by stiff stretch springs. Each particle is also connected to
its four diagonal neighbours by (usually less stiff) shear
springs. Finally, each particle is connected to its eight next-
nearest neighbours by weak, nonlinear bend springs. See
[CK02] for details.

stretch

shear bend

Figure 2: model connectivity structure for stretch, shear and
bend springs.

Stretch and shear springs act only in extension. This is of
relevance to our decomposition technique, as in regions of
compression springs become inactive and the mesh connec-
tivity becomes sparser.

2.2. Aerodynamics and Collision Handling

The modelling of external forces such as aerodynamics,
collisions and friction are necessary for producing realistic
cloth simulations. We do not contribute to these areas of re-
search, but have implemented them in our simulator.

Aerodynamic forces are computed using the method pre-
sented in [EWS96]. We have used a voxel-based technique
for cloth-cloth collision detection, similar to that proposed
by [ZY00] (and also used by [CK02]). When pairs of parti-
cles are too close, a stiff, damped spring is temporarily in-
serted to separate them. For cloth-solid collision response,
we have used the method presented in [BW98]. As for solids,

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

our implementation is restricted to collections of simple im-
plicit surfaces (boxes, spheres, cylinders, etc.). Detection is
thus easily performed.

3. Time Integration and the Adaptive IMEX scheme

In this section we first recall existing time-stepping schemes
for cloth simulation. See Hauth et al. [HES02]. We then
present a new technique, called “adaptive IMEX”, which
adaptively applies explicit and implicit schemes locally in
both space and time to improve the efficiency of the compu-
tation.

3.1. An ODE system

Given some initial configuration of the cloth model, along
with external forces, its unconstrained motion in time is gen-
erated by the ODE system

Mẍ = f(x, ẋ), (1)

where ẍ is the vector of particle accelerations, f is the
force vector, and M is the mass matrix. For a cloth
mesh consisting of n particles, ẍ and f are vectors of
size 3n, and M is a 3n × 3n matrix defined as M =
diag(m1,m1,m1,m2,m2,m2, . . .,mn,mn,mn).

Defining v ≡ ẋ, we rewrite (1) as

d
dt

[

x
v

]

=

[

v
M−1f(x,v)

]

. (2)

We now discuss the application of a variety of integration
schemes to (2).

3.2. Explicit Integration

Almost all explicit schemes used in the cloth simulation
literature are of the one-step, possibly partitioned, Runge-
Kutta type [AP98]. The simplest of these schemes is the fa-
miliar forward Euler; however, for systems such as (2), a
better choice is the forward-backward (FB) Euler scheme
[ARS97]:

[

∆xn

∆vn

]

=

[

xn+1 −xn

vn+1 −vn

]

= h

[

vn+1

M−1f(xn,vn)

]

. (3)

Here xn and vn denote the approximate solution at time
t = tn, and tn+1 = tn + h. The update to v uses forward Eu-
ler, while the update to x uses backward Euler. Note that the
method is still explicit (vn+1 is simply evaluated first). Un-
like forward Euler, the FB version does not require the addi-
tion of damping to maintain stability. And as will be seen in
§3.4, it can be incorporated more naturally within an IMEX
scheme.

3.3. Implicit Integration

Almost all implicit schemes used in the cloth simulation lit-
erature are of the multi-step, BDF type. These methods are
popular for solving stiff problems such as cloth due to their
favourable stability properties, allowing for large simulation
time steps to be taken. However, these methods also “smooth
over” the details of the solution that they cannot capture.
They also require the evaluation of f(xn+1,vn+1) at each step
n, thus requiring the solution of a nonlinear system at each
time step.

Two such schemes that have been used in cloth simulation
are (the first order accurate) backward Euler and (the second
order) BDF2.

Applying a backward Euler scheme to (2) results in
[

∆xn

∆vn

]

= h

[

vn + ∆vn

M−1f(xn + ∆xn,vn + ∆vn)

]

(4)

which is a nonlinear equation in ∆xn and ∆vn. A semi-
implicit version of (4), adopted in [BW98], is obtained by
using a first order Taylor series epproximation, replacing
f(xn +∆xn,vn +∆vn) by fn + ∂f

∂x ∆xn + ∂f
∂v ∆vn, where ∂f

∂x and
∂f
∂v are the Jacobian matrices of the particle forces with re-
spect to position and velocity, respectively. Substituting this
in (4) and rearranging, we have

A∆v≡ (I−hM−1 ∂f
∂v

−h2M−1 ∂f
∂x

)∆v = hM−1(fn +h
∂f
∂x

vn).

(5)
This is equivalent to applying one Newton iteration for (4).
Due to the local connectivity structure of the mesh, A is a
sparse matrix, which is further made to be symmetric pos-
itive definite by dropping some terms from the Jacobians.
The system (5) is solved in [BW98] at each time step using
a MPCG algorithm.

This methodology has several drawbacks, and others have
attempted to improve upon it. Desbrun et al. [DSB99] make
further approximations to achieve an O(n), uncondition-
ally stable scheme. Their technique, however, is inaccurate
and does not generalize well to large systems. Kang et al.
[KCC∗00] improve upon this approximation, but ultimately,
they are using a single, Jacobi-like solution iteration in place
of a CG one. Volino and Magnenat-Thalmann [VMT00] use
a weighted implicit-midpoint method that appeared to give
attractive dynamic results but which is less stable and may
be difficult to tune in practice. Choi and Ko [CK02] use the
more accurate BDF2, solving for ∆x instead of ∆v. Hauth et
al [HES02] also use BDF2 within an IMEX solver (more on
this below), and embed their version of (5) within a Newton
solver, making theirs a “fully implicit” technique.

3.4. IMEX Integration

Of course, our options are not restricted to explicit or
implicit. An entire spectrum of implicit-explicit (IMEX)
schemes, combining the two, are possible. See Ascher et al.

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

[ARW95, ARS97] for general references on IMEX schemes
for time-dependent PDEs, and [HES02] for a presentation
in the context of cloth simulation. The essential idea is to
separately treat the stiff and non-stiff parts of the ODE, han-
dling the stiff parts with an implicit method and the non-stiff
parts with an explicit method. This combines the stability
of an implicit scheme where needed with the simplicity of
computation of an explicit scheme where possible. Hauth,
Eberhardt et al. [EEH00, HES02] based their IMEX split-
ting on connection type: stretch springs are handled implic-
itly, whereas shear and bend “springs” are handled explic-
itly (this categorization applies to both the stretching and the
damping terms).

Writing f = gI + gII , where gI accounts for the stiff terms
and gII are the non-stiff ones, the simplest IMEX scheme
applied to Equation (2) gives
[

∆xn

∆vn

]

= h

[

vn + ∆vn

M−1[gI(xn + ∆xn,vn + ∆vn)+ gII(xn,vn)]

]

.

(6)
This results in backward Euler for the stiff terms and FB
Euler for the non-stiff terms.

In the case of a semi-implicit solver that uses a single
Newton iteration at each time step, handling a spring con-
nection explicitly is as simple as dropping (or zeroing) its
contribution to the Jacobian matrices. Thus, the computation
at each time step is reduced for such an IMEX scheme. We
need not calculate the Jacobians for the explicitly handled
connections. More importantly, the matrix A is sparser, so
matrix-vector products (the dominant cost of the CG solver)
are less expensive to compute.

3.5. Adaptive IMEX Integration

Generally, we always treat the bend springs explicitly. But
shear springs vary more in relative stiffness. Treating these
explicitly as well is fine when simulating fabric with a rela-
tively small resistance to shear. But this is not the case for all
materials; if these resistances are “too large”, it makes sense
to handle shear implicitly.

For a given stretch or shear spring, denote its stiffness
by ks, its damping by kd and its rest length by L. Ideally
we desire a stability criterion that would allow us to de-
cide our IMEX splitting during the simulation. Moreover,
in the face of adaptive simulation techniques — where h
varies from step to step (as in [BW98, HES02]), or where
the local mesh parameters m, L, ks and kd vary (as in
[EWS96, EEHS00, HPH96, VB02, VL02]) — we require a
criterion that can be applied locally in space and time.

A stability criterion for the FB Euler scheme as applied to
our model is given by

κ =
h
m

(ksh + 2kd) ≤
1
2
. (7)

(Note that the mesh spacing is buried within the parameters

m, ks and kd .) This result is obtained by applying a von Neu-
mann Fourier analysis to the FB Euler scheme and a centered
spatial discretization for the corresponding, simplified PDE
[HES02]

ρẍ = ks∇
2x + kd∇

2ẋ (8)

(where ∇2 is the Laplacian operator). See [Box03] for de-
tails.

We evaluate (7) for each spring connection at each time
step, using the current time-step size h and (worst case) local
parameters m, ks and kd . If the criterion is true, we handle
that spring explicitly; if not, we handle it implicitly. Thus we
are able to optimize our splitting instead of having to decide
it (conservatively) a priori. To our knowledge, this is the first
time an IMEX scheme has been split adaptively (ie. based
on local stability criteria) in either space or time.

Examples of the sparsity structure of A for implicit and
adaptive IMEX schemes are given in Figures 3 and 4 re-
spectively. The matrices are both 300×300; each point rep-
resents a 3×3 block, and nz denotes the number of nonzero
blocks.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1360

Figure 3: Static sparsity structure for implicit scheme

In practice we replace 0.5 by 0.2 in the stability criterion
(7). This works well. In addition, this criterion is only valid
for the linear stretch and shear springs; we always handle
the weak bend springs explicitly, and have not experienced
stability problems.

Performance gains for this technique are demonstrated in
§6.

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 370

Figure 4: Sample sparsity structure for an adaptive IMEX
scheme

4. A Modified Preconditioner for the MPCG Technique

The partly implicit time integration techniques discussed in
the previous section require the solution of a sparse lin-
ear system at each time step. The seminal paper [BW98]
presents a MPCG algorithm for solving such systems in the
presence of constraints. These constraints typically occur in
cloth-solid contact, removing degrees of freedom from the
particles’ motion so as to prevent them from penetrating the
solid.

In [AB03], Ascher and Boxerman give a proof of conver-
gence for the algorithm and increase its performance through
the use of an improved initial guess. The key observation in
their paper is that the “constraint-filters” are orthogonal pro-
jections. As such, the constrained version of the problem (5)
becomes

SAx = Sb, (9a)

(I−S)x = (I−S)z, (9b)

where x are the velocity or position changes, S is a block
diagonal projection matrix, and z are prescribed constraint
values. Thus, for each particle the equations of motion hold
only in the range subspace of S, range(S), whereas in the
orthogonal subspace range(I − S) the given values of z de-
termine those of x.

Several researchers have attempted to improve the con-
vergence of the MPCG algorithm by choosing a good pre-
conditioner for A. Baraff and Witkin [BW98] used a diago-
nal preconditioner, C = diag{A}. Choi and Ko [CK02] used
a 3×3 block diagonal preconditioner, reporting a 20% per-
formance improvement; they also experimented with incom-

plete Cholesky (IC) and incomplete LU (ILU) factorizations
[Saa96], but saw no significant performance gain. Hauth et
al. [HES02] experimented with IC and symmetric successive
overrelaxation (SSOR) preconditioners, both of which gave
reported performance improvements of approximately 20%.

An important distinction, however, must be made between
the constrained and unconstrained cases. This has not been
done in the references cited above, and it is unclear which
cases their results apply to.

A significant improvement in the constrained case can be
realized by looking at the projected problem and choosing a
preconditioner accordingly. Because S is an orthogonal pro-
jection, equations (9) can be written equivalently as

(SA +(I−S))x = Sb +(I−S)z. (10)

A good preconditioner should therefore be an approxima-
tion to the matrix SA + I −S rather than to A. If we let C be
a preconditioner for A in the unconstrained case (5) then a
modified preconditioner P can be defined as

P = SC +(I−S). (11)

We have used for C the block diagonal matrix consisting of
the 3× 3 diagonal blocks of A. Then P is also an easily in-
vertible block diagonal matrix. Experimental performance
improvements for the preconditioner P are presented in §6.

5. Decomposing Cloth

Building upon the previous sections, we can now present our
decomposition technique. At a given time step we seek inde-
pendent subdomains such that their influence upon one an-
other can be reduced to constant boundary conditions.

5.1. Decomposition Mechanisms

We investigate two mechanisms by which the systems de-
scribed earlier may be independently decomposed: matrix
reordering and separation by constraints.

5.1.1. Mechanism 1: Matrix reordering

Observe that a reordering of the rows and columns — cor-
responding to a different ordering of the particles — of the
matrix depicted in Figure 4 yields the structure depicted in
Figure 5; the two large, separate blocks of this matrix can be
solved independently.

The principle thus demonstrated is general. For a solution
technique such as that found in [BW98], the sparsity pattern
of the matrix is fixed and this kind of separation does not
occur. The methods used in this work, on the other hand,
exhibit a dynamic sparsity pattern for two reasons. First,
the structural springs (stretch and shear) do not act in com-
pression [CK02]. Thus the associated Jacobian entries disap-
pear for any compressed spring. Second, when the adaptive

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

Figure 5: Reordered, block-diagonal matrix. (Red squares
highlight the two main blocks.)

IMEX technique described in §3.5 handles spring connec-
tions explicitly, the associated Jacobian entries also disap-
pear.

5.1.2. Mechanism 2: Separation by constraints

In many scenarios, the motion of certain cloth particles is
fully prescribed (i.e., it has zero degrees of freedom). This
occurs in the case of static friction as described in [BW98],
or when using the “flypapering” technique of [BWK03]. The
influence of such particles on the rest of the system is thus
reduced to a constant for the current time step. (This is han-
dled by imposing such constraints directly using the MPCG
algorithm.)

When looking at the projected problem as described in
[AB03], the rows and columns corresponding to fully con-
strained particles are “filtered” or projected out. (For such
a particle i, the corresponding block of S is zeroed.) Thus,
constrained particles decrease the size and coupling of the
system. We take advantage of this fact. When decomposing
the mesh, such particles do not become a member of any
component; they simply act as boundary conditions.

5.2. Decomposing via Graph Searches

To employ the mechanisms just described, we must detect
when independent decompositions are possible. This is done
by searching the graph corresponding to the sparsity pattern
of a given matrix.

Recall that a symmetric, n x n matrix A can be represented
by an undirected graph G(V,E), where V is a set of n vertices

and E is a set of edges, which are unordered pairs of vertices
[GL81]. The ordered (or adjacency) graph of A is one for
which the vertices V are numbered from 1 to n, and i, j ∈ E
if and only if ai j = a ji 6= 0, i 6= j. Figure 6 illustrates the
structure of a matrix and its labeled graph.

1

3

4

2

56

1

3

4

2

5

6

x

x

xx

xx

x

x

xx

x

x x

x

Figure 6: A symmetric matrix A and its labeled graph, with
x denoting a nonzero entry of A.

The graph has a clear association with the original phys-
ical problem: each vertex represents a particle, and each
edge represents an active spring handled implicitly by the
solver. If a region of the cloth is connected to other regions
only by explicit connections (which are considered constant
throughout the time step), then it is possible to solve for that
region independently.

Thus, a simple graph search is performed at each time step
to determine its connected components. If there are two or
more of those then there is a row ordering that will make the
corresponding matrix block diagonal.

Next, consider two components that are connected solely
via a constrained particle. Physically, these two components
can not influence one another through the particle (they can’t
even influence the particle itself); they are independent dur-
ing the current time step. Thus, a constrained particle acts as
a dead end during path traversals.

Figures 7 and 8 illustrate decomposed cloth. Particles of
the same colour belong to the same connected component;
white particles are fully constrained.

5.3. Decomposition Algorithm

The implementation of the decomposing solver is straight-
forward and has O(n) complexity. The main addition is the
maintenance and searching of a graph which keeps track of
implicit connections and constrained particles as described
above. In our implementation, the associated computations
add approximately a 2% overhead.

When the linear algebra system has been assembled,
graph searches are performed using a colouring technique.
For each connected component that is discovered, the list of
particles in that component (along with pointers to the matrix
A and the various vectors) is handed off to the MPCG solver.
We can think of each particle as “owning” the associated row
in the matrix A and the vectors x, z, etc. All operations in our

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

Figure 7: Decomposed Cloth Snapshot, Example 1. Cloth
draping over a square table. (Implicit stretch and explicit
shear.)

Figure 8: Decomposed Cloth Snapshot, Example 2. The
cloth is pinned at its center point and has just begun falling.
(Implicit stretch and explicit shear.)

MPCG solver (matrix/vector multiplies, inner products) are
simply performed on this row subset. When all such systems
have been solved, the solution vector x is used in updating
the cloth’s state.

Note that fully constrained particles are not members of
any component and are never passed to our MPCG solver.
Instead, we (first) simply compute their contribution to the
solution x using z. This represents a computational saving
in itself, as the corresponding rows of A are never included
in CG iterations. Also, particle lists that are passed to the
MPCG solver are first sorted (using a bin-sorting technique);
this avoids excessive cache swapping issues. For additional
details see [Box03].

6. Results

In this section we demonstrate the techniques presented in
this paper. All experiments were run using our cloth simula-
tor, developed in Java 1.4.1, on a 2.53GHz Pentium 4 with
2GB RAM and a GeForce4 graphics card, running Red Hat
Linux 9 (Shrike).

6.1. Adaptive IMEX Results

In practice, we have found our Adaptive IMEX scheme to
provide results that are stable and nearly indistinguishable
from the “standard” semi-implicit scheme for cloth. Com-
paring the efficiency of these two schemes, adaptive IMEX
typically requires 17-29% less computation time. Moreover,
the sparsity of the system is improved, allowing greater pos-
sibility of decomposition.

6.2. Constrained Preconditioner Results

For the unconstrained case, P is identical to the 3×3 block
diagonal preconditioner C, requiring negligible additional
time to compute.

In constrained cases where particles have only 1 or 2 de-
grees of freedom, P performs much better. In Figure 9, we
plot the number of CG iterations performed as a function of
n for three preconditioners: I (i.e., no preconditioner), C and
P. In this case, C actually requires more iterations than I. On
the other hand, P still yields roughly a 30% decrease in the
number of CG iterations for the larger problems (where this
fact matters).

10
1

10
2

10
3

10
4

10
1

10
2

10
3

CG Iteration Count

I
C
P

Figure 9: Plot: CG iteration count vs. number of particles
(log/log plot). Constrained case.

6.3. Decomposition Results

For small meshes, our decomposition technique yields little
or no performance improvements. For larger meshes (700+

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

particles), however, we have observed decompositions oc-
curring with surprising regularity in many scenarios.

In order to measure the performance improvements pro-
vided by decomposition, the number of CG iterations cannot
be used as a metric because the system sizes (and number of
systems) differ. Instead, we count the number of row-vector
multiplies (RVMs). This is a sensible metric and we have
found it to correspond well to CG computation times.

During the course of our experiments, we often noticed
small groups of particles being solved in only a few CG
iterations. In addition, rows corresponding to fully con-
strained particles are never included in matrix-vector mul-
tiplies. These confirm expectations for gained efficiency.

Comparing our decomposing solver to a full solver (both
using the adaptive IMEX scheme and the modified precon-
ditioner), the decomposing solver performed anywhere from
0-80% fewer RVMs. This translates directly into a perfor-
mance improvement of the CG solver (minus the roughly
2% overhead).

Beyond this, it is difficult to give a typical RVM reduc-
tion count, as it is highly dependent on simulation parame-
ters and physical scenario. That said, in various “arm bend”
experiments, we observed RVM reductions of 35-50%; and
in “draping over a sphere” experiments, we observed reduc-
tions of 20%. Figure 1 presents textured and wireframe snap-
shots from these animations. We recommend stepping frame
by frame through the wireframe animations to observe the
decomposition process.

7. Conclusions and Further remarks

We have presented a number of techniques that improve the
efficiency of cloth simulation, specifically targeting the pop-
ular semi-implicit methods. Contrary to most other attempts
to do this in the literature, our methods do not sacrifice ac-
curacy.

Our adaptive IMEX scheme — which is simple to im-
plement — optimizes implicit-explicit splitting, thereby re-
ducing computational costs. It also improves the sparsity of
the system, making it easier to decompose. Building upon
this and other mechanisms, our decomposition method offers
further efficiency improvements. We have also introduced a
new class of modified preconditioners for the MPCG algo-
rithm, demonstrating its improved efficiency.

One of the main advantages of this technique is its adapt-
ability to parallelism. To demonstrate this we ran a simple
experiment — picking one of the test cases from above —
on a dual processor machine. We have done this for three
solvers: a full solver, our decomposing solver (DS1), and
a small extension to our decomposing solver that embeds
the MPCG algorithm within a java thread (DS2). In DS2
the main thread simply starts MPCG threads to solve the
decomposed systems, waiting until they are all done before

proceeding with the next time step. (In practice we only cre-
ate one thread per CPU. Additional threads provide no addi-
tional benefit and introduce overhead in the form of context
switching.) In our test case, DS1 required 18% less compu-
tation time than the full solver, whereas DS2 required 30%
less. This is a promising initial result and further develop-
ment and investigation is warranted (e.g., also computing the
spring forces/Jacobians in parallel, using a larger number of
processors, memory architecture impact, etc.).

Taken together, these methods can provide speedups any-
where from twenty to several hundred percent. Given this
variability, an important question is how well it will do for
virtual clothing — the prime application for such techniques.
Based on our “arm bend” and other experiments, we believe
the potential savings to be significant.

Acknowledgements

We wish to thank Dinesh Pai for putting us on the track that
led to this paper, and Robert Bridson for many helpful dis-
cussions.

References

[AB03] ASCHER U., BOXERMAN E.: On the modi-
fied conjugate gradient method in cloth simu-
lation. The Visual Computer, 19 (2003), 526–
531.

[AP98] ASCHER U., PETZOLD L.: Computer Meth-
ods for Ordinary Differential Equations and
Differential-Algebraic Equations. Society for
Industrial & Applied Mathematics, 1998.

[ARS97] ASCHER U., RUUTH S., SPITERI R.:
Implicit–explicit Runge–Kutta methods for
time-dependent partial differential equations.
Applied Numerical Mathematics 25, 2–3
(1997), 151–167.

[ARW95] ASCHER U., RUUTH S., WETTON B.:
Implicit-explicit methods for time-dependent
pde’s. SIAM J. Numer. Anal., 32 (1995), 797–
823.

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.:
Robust treatment of collisions, contact and
friction for cloth animation. In Proceedings
of the 29th annual conference on Computer
graphics and interactive techniques (2002),
ACM Press, pp. 594–603.

[BHW94] BREEN D., HOUSE D., WOZNY M.: Pre-
dicting the drape of woven cloth using in-
teracting particles. In Proceedings of the
21st annual conference on Computer graph-
ics and interactive techniques (1994), ACM
Press, pp. 365–372.

c© The Eurographics Association 2004.



Boxerman and Ascher / Decomposing Cloth

[BMF03] BRIDSON R., MARINO S., FEDKIW R.:
Simulation of clothing with folds and wrin-
kles. In ACM SIGGRAPH/Eurographics Sym-
posium Computer Animation (2003), ACM
Press, pp. 28–36.

[Box03] BOXERMAN E.: Speeding Up Cloth Simu-
lation. Master’s thesis, University of British
Columbia, 2003.

[BW98] BARAFF D., WITKIN A.: Large steps in
cloth simulation. In SIGGraph (1998), ACM,
pp. 43–54.

[BWK03] BARAFF D., WITKIN A., KASS M.: Untan-
gling cloth. In ACM Trans. Graphics (2003),
ACM Press, pp. 862–870.

[CK02] CHOI K., KO H.: Stable but responsive cloth.
In Proceedings of the 29th annual conference
on Computer graphics and interactive tech-
niques (2002), ACM Press, pp. 604–611.

[CYMTT92] CARIGNAN M., YANG Y., MAGNENAT-
THALMANN N., THALMANN D.: Dressing
animated synthetic actors with complex de-
formable clothes. Computer Graphics 26, 2
(1992), 99–104.

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: In-
teractive animation of structured deformable
objects. In Graphics Interface (1999), pp. 1–
8.

[EEH00] EBERHARDT B., ETZMUSS O., HAUTH M.:
Implicit-explicit schemes for fast animation
with particle systems. In Eurographics Com-
puter Animation and Simulation Workshop
2000 (2000).

[EEHS00] ETZMUSS O., EBERHARDT B., HAUTH M.,
STRASSER W.: Collision adaptive particle
systems. Proceedings Pacific Graphics 2000
(2000).

[EWS96] EBERHARDT B., WEBER A., STRASSER W.:
A fast, flexible particle-system model for cloth
draping. IEEE Computer Graphics and Appli-
cations 16, 5 (Sept. 1996), 52–59.

[GL81] GEORGE A., LIU J.: Computer Solution of
Large Sparse Positive Definite Systems. Pren-
tice Hall, 1981.

[HES02] HAUTH M., ETZMUSS O., STRASSER W.:
Analysis of numerical methods for the simu-
lation of deformable models. The Visual Com-
puter (2002). Accepted for publication.

[HPH96] HUTCHINSON D., PRESTON M., HEWITT

T.: Adaptive refinement for mass/spring sim-
ulations. In Proceedings of the Eurographics

workshop on Computer animation and simu-
lation ’96 (1996), Springer-Verlag New York,
Inc., pp. 31–45.

[KCC∗00] KANG Y., CHOI J., CHO H., LEE D., PARK

C.: Real-time animation technique for flexi-
ble and thin objects. In WSCG 2000 (2000),
pp. 322–329.

[Pro95] PROVOT X.: Deformation constraints in a
mass-spring model to describe rigid cloth be-
haviour. In Proc. Graphics Interface (1995),
pp. 147–154.

[Saa96] SAAD Y.: Iterative Methods for Sparse Lin-
ear Systems. Society for Industrial & Applied
Mathematics, 1996.

[TPBF87] TERZOPOULOS D., PLATT J., BARR A.,
FLEISCHER K.: Elastically deformable mod-
els. In Proceedings of the 14th annual con-
ference on Computer graphics and interactive
techniques (1987), ACM Press, pp. 205–214.

[TW88] TERZOPOULOS D., WITKIN A.: Deformable
models. IEEE Computer Graphics and Appli-
cations 8, 6 (November 1988), 41–51.

[VB02] VILLARD J., BOROUCHAKI H.: Adaptive
meshing for cloth animation. In 11th In-
ternational Meshing Roundtable (Ithaca, New
York, USA, 15–18 September 2002), Sandia
National Laboratories, pp. 243–252.

[VCT95] VOLINO P., COURCHESNE M., THALMANN

N.: Versatile and efficient techniques for sim-
ulating cloth and other deformable objects. In
Computer Graphics Proceedings (1995).

[VL02] VOLKOV V., LI L.: Adaptive local refinement
and simplification of cloth meshes. In First In-
ternational Conference on Information Tech-
nology & Applications (ICITA 2002) (2002).

[VMT00] VOLINO P., MAGNENAT-THALMANN N.:
Implementing fast cloth simulation with col-
lision response. IEEE Computer Society
(2000), 257–268.

[ZY00] ZHANG D., YUEN M.: Collision detection for
clothed human animation. Proceedings Pa-
cific Graphics 2000 (2000).

c© The Eurographics Association 2004.


