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Abstract

This paper considers optimization techniques for the solution of nonlinear
inverse problems where the forward problems, like those encountered in elec-
tromagnetics, are modelled by differential equations. Typically, such problems
are solved utilising a Gauss-Newton method in which the forward model con-
straints are implicitly incorporated. Variants of Newton’s method which use
second derivative information are rarely employed because their perceived dis-
advantage in computational cost per step offsets their potential benefits of faster
convergence. In this paper we show that by formulating the inversion as a con-
strained or unconstrained optimization problem, and by employing sparse ma-
trix techniques, we can carry out variants of sequential quadratic programming
and the full Newton iteration with only a modest additional cost. By working
with the differential equation explicitly we are able to relate the constrained
and the unconstrained formulations and discuss advantages of each. To make
the comparisons meaningful we adopt the same global optimization strategy for
all inversions. As an illustration, we focus upon a 1D electromagnetic example
simulating a magnetotelluric survey. This problem is sufficiently rich that it
illuminates most of the computational complexities that are prevalent in multi-
source inverse problems and we therefore describe its solution process in detail.
The numerical results illustrate that variants of Newton’s method which utilize
second derivative information can produce a solution in fewer iterations and,
in some cases where the data contain significant noise, requiring fewer floating
point operations than Gauss-Newton techniques. Although further research is
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required, we believe that the variants proposed here will have a significant im-
pact on developing practical solutions to large-scale 3D electromagnetic inverse
problems.

Keywords:  Constrained optimization, Gauss-Newton, Lagrange multipliers,
Electromagnetic, Magnetotellurics, Newton’s method, Sequential quadratic program-
ming, Noise, Nonlinear inverse problems, Regularization.

1 Introduction

The inversion of electromagnetic data to recover 3D distributions of physical proper-
ties from observed electric and magnetic fields represents a major challenge in com-
putational geosciences. Traditional strategies employing Gauss-Newton methods are
computationally slow because they require the formulation and inversion of a large
dense sensitivity matrix and also because many iterations are often required to achieve
convergence. This has been the motivation for us to re-examine strategies for solving
the EM inverse problem. Major research questions are focused upon whether taking
full Newton steps can significantly reduce the number of iterations (and flops) required
for convergence, whether or not it is necessary for the forward modelling constraint
to be strictly enforced at each iteration, and whether an algorithm can be developed
whereby the formation and storage of the sensitivity matrix can be obviated. In order
to address these questions we need to work directly with the differential equations.

Although motivated by EM problems, our work is general and applicable to solving
any nonlinear inverse problem whose goal is to recover the coefficient functions in a
system of differential equations. Accordingly, we shall use a generic notation and
begin with a general formulation of an inverse problem.

Typically, one seeks to recover a model m based on observations of a field u, where
u is related to m by a forward model — a system of differential equations which we
write in discretized form as

f(m,u) =0. (1)

Denoting the data vector by b and the location of the observations by (), the problem
is to find m such that (1) holds and

|Qu — b]|[<Tol, (2)

where Tol depends on the noise level. For instance, by the discrepancy principle, if
the data vector has length N, and contains noise with known standard deviation o
then set

Tol = Nyo. (3)

However, since the data are noisy, and the inverse problem of recovering m from
(2,1) is often ill-posed even without noise, there is no unique model which generates
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the data. Therefore, a process of regularization is used to recover stably a relatively
smooth (or piecewise smooth) solution to a nearby problem which is unique, at least
locally. A model often utilized in practice minimizes a least squares residual vector
where a regularization term is added [22],

. 1 B
min  |Qu— b + S IW (m — )| (4)

)

st.  f(m,u) =0,

where W is typically a weighting matrix involving discretized derivatives which does
not depend on m, m,.y is a reference model, and 8 > 0 is the regularization parameter.

The problem (4) is a nonlinear constrained optimization problem. Often in prac-
tice, though, the forward model can be written as

A(m)u =q (5)

where A is a square, nonsingular matrix which is typically large and sparse. Thus,
the forward model is linear in % and allows an explicit elimination, u = A 'q. The
constrained optimization problem

: 1 g
min | Qu— bl + W (m — )| (6)

)

st.  A(m)u =g,

can then be written as an unconstrained, nonlinear least squares problem,
. 1 A -1 2 6 2
min o [|QA(m) ™ ¢ = blI" + Z{IW (m — muef)|". (7)

The optimization problems obtained in this way are typically very large — often
too large for standard software to handle — but they have significant sparsity structure
which can be exploited. The common approach in the literature hitherto has been
to solve the unconstrained formulation (7) using the Gauss-Newton method. This
method generates a sequence of iterates where for a given current iterate m, an
update of the form m < m + dm is subsequently carried out, and the process is
repeated to convergence. The correction direction dm is obtained by linearizing the
expression under the norm in (7) and solving a linear least squares problem,

(JTT + BWTW)om = J"(b— QA™'q) — BWTW (m — myey),

where J = J(m) = B(Q;T;Iq) is the sensitivity matrix, cf. [3, 17].
The Gauss-Newton method is a simplification of Newton’s method for solving the
system of nonlinear equations which form the necessary conditions for the uncon-

strained minimum,

JT(QA™ g —b) + BWTW (m — myeys) = 0, (8)
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in which second-derivative information is discarded [5, 18]. It has well-known ad-
vantages and disadvantages in general. However, its almost exclusive use in the
geophysical data inversion literature stems from the fact that the calculation of the
second derivatives involved in the Newton step has commonly been regarded as pro-
hibitively expensive. As a consequence, serious evaluations comparing the relative
merit of taking full Newton or Gauss-Newton steps have not been carried out in the
geophysical EM literature.

In this paper we show that by formulating the inverse problem directly in the
differential equation domain we may make these comparisons. Forming the full New-
ton step does not in fact cost much more than the Gauss-Newton approximation.
Moreover, regarding the model and the predicted data as two independent quantities
which are connected through the forward modeling, i.e. considering the constrained
problem (4) or (6) (as, e.g., in [15]), affords a unified view of such methods, as well as
additional generality, both in terms of the modeling (including (4)) and in terms of
applying sparse linear algebra techniques for the execution of each iteration (cf. [7]).

In addition, we show that in order to obtain a product of the sensitivity matrix
and a given vector we need not calculate the sensitivity matrix explicitly. This is very
important for large scale problems, because J is typically a dense matrix which can
be very large. Our computational expediency is realized because J, although full, can
have an implicit sparse representation in the cases considered here.

Various Newton and Gauss-Newton variants are developed in Section 3, where we
make explicit use of the special form of the constraints (5). To compare their overall
efficacy, we adopt a single global inversion methodology based upon a continuation
procedure in the regularization parameter, 5. This is described in Section 4.

For the numerical experiments we consider the 1D magnetotelluric (MT) problem.
We present this in detail so that it can be used as a template for working with other
data sets that have multiple sources.

2 Details of the Problem

In this paper we consider exclusively the forward model (5), with A = A(m) a non-
singular N, x N, matrix. This matrix represents a finite difference or finite element
discretization of a linear differential system plus boundary conditions, and it depends
on a vector m of length N, containing the model parameters. For the magnetotel-
luric (MT) example described later, A is a large, sparse matrix which depends on the
(discretized) log conductivity m; u represents the electric field through the earth on
the grid; and ¢ contains the boundary values.

We especially consider cases where the inverse problem arises from multi-
experiments, for example the MT experiment with more than one frequency or a
controlled source experiment with sources at different locations. In these cases the
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matrix A is composed of blocks
A =diag{A, ..., A},

where the matrix Ag(m) represents the k* experiment. The vector u in this case is
written as

u=[uj,...,ul]"
where the sub-vector uy is of length N* and represents the field for the k™ experiment.

Note that the number N, of model parameters is usually different from the number
N, = ZZ:1N5 of parameters used to discretize u. In fact, N,, < N, in most
problems that arise from multi-experiments, since many fields are associated with a
single model.

Returning to the data fitting problem, the predicted data are assumed to be the
field v measured at locations which form a subset of the discretization grid. Hence,
the matrix ) appearing in (6) and (7) is Ny x N, and consists of selected unit rows.
It projects the field u to the measurement locations. In most geophysical instances
(@ projects the field onto the surface; hence its typical dimensions satisfy N, < N,.

Given the forward model (5) described above, we formulate the unconstrained
formulation (7) and the constrained formulation (6). In the constrained formulation
u is not an explicit function of m and, unless enforced specifically, Au#q during the
minimization process. However, the constraint (5) holds upon convergence of the
minimization process.

The constrained formulation has a number of advantages. As mentioned before, it
is more general than the unconstrained approach. Furthermore, it gives additional de-
grees of freedom which may be of use both in developing sparse matrix techniques and
if the constraints are highly nonlinear. This approach may produce a minimization
problem that is closer to a linear one, since A is not inverted explicitly [18].

There are also disadvantages to the constrained formulation. The size of the
problem increases and we need to calculate Lagrange multipliers (although we show
some ways around that below). More importantly, the problem is to find a saddle
point of the Lagrangian, as compared to finding a strict minimum in (7). The choice
of merit function subsequently becomes more complex for the constrained formulation
(see, e.g., [18] and (21) below).

In the next section we show how we can use a well established technique, Sequential
Quadratic Programming (SQP), to solve the constrained optimization problem for a
given parameter 5. We then show that by small variations in the SQP framework it
is possible to obtain the Newton or Gauss-Newton iterations for the unconstrained
problem for essentially a similar cost per iteration.
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3 Variants of Newton’s Method and the SQP
Framework

Consider the constrained minimization problem (6). Introducing the Lagrangian
1 g
Lu,m, A) = Sl1Qu = b]I* + W (m — mres)|I* + N [A(m)u — g] (9)

where A is a vector of length N, of Lagrange multipliers, a necessary condition for a
solution of our problem is that the first derivatives of the Lagrangian vanish,

L, = QT(Qu—1b)+ATA=0 (10a)
L = BWIW(m—myes) +GA=0 (10b)
Ly = Au—q=0 (10c)
where
_ _ 9(A(m)u)
G=G(u,m) = .

The N, x N, matrix GG is typically sparse in the usual case that A is sparse.

Next, consider Newton’s method for solving the nonlinear equations (10). At a
given iterate u, m, A, the Newton correction direction is given by the solution of the
linear system

QTQ K AT\ [ bu L.
KT pWIW+R GY| |dm | =—|Ln (11)
A G 0 P Ly
where
_ _O(AT)N) _ _0(G"))
K=K(m,\) = e R =R(u,m,\) = - (12)

are two new matrices introduced as part of the second-derivative information. These
matrices, like G, are large but very sparse, and they can be evaluated without need
of numerical or automatic differentiation. We show this for the 1D multi-experiment
MT example in Section 5 and for the 3D electromagnetic problem in [11].

The next Newton iterate is obtained by updating m < m + adm, u < u +
adu, A A+ ad)\, where 0 < a < 1 is a step size. This step size is determined
by a (weak) line search procedure, resulting in a sufficient decrease of an appropriate
merit function at each iteration [18, 8, 5]. Under sufficient regularity, which we
assume, o = 1 when the current iterate is sufficiently close to the solution.
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It is well-known that this Newton method is equivalent to an SQP basic method,
where at each iterate the following quadratic problem is solved,

min (6u 6m) (EZm Emm) (5m) + (Lu L) <5m) (13a)
st. (A Q) ((;5:2) —q— Au. (13b)

SQP methods have been studied by many, e.g., [18, 16, 13]. The equivalence with
the basic Newton method allows construction of practical variants of the latter. In
particular, methods have been proposed for designing an appropriate merit function
to evaluate the merit of a given iterate and carry out a line search, for constructing
positive definite approximations of the matrix of second derivatives in (13a) on the
tangent null-space of the constraints, for directly updating A and for using reduced
Hessians. Many of these techniques are adapted below in our special setting.

3.1 Solving the Linear System

Consider the basic KKT system (11) that must be solved at each step'. It is natural
to apply a block elimination for du and d\; this is a simple instance of reduced Hessian
methods, described in [16, 18].

From the last block of rows of (11) we write

Su=—A"'Ly + Gom). (14)
Next, substituting du in the first block rows gives
A = [AT7TQTQAT'G - ATTKIm+ ATTQTQATILy — ATTL,,. (15)

Finally, from the second block rows we obtain a linear system for ém alone:

Com = —p (16a)
where
C = CluymN)=J"J+pW"W+R-S5-57, (16b)
J = J(u,m)=-QA'G, (16¢)
S = S(u,m,\)=K'A™'G, (16d)
and

p=p(u,m,\) =W W(m—mye)+J (QAT'q—b) — K" (u— A""q). (16e)

'In this paper we do not treat the question of solving this system approzimately.
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The Nyx N, matrix J is the sensitivity matrix of (8). To see this, consider dif-
ferentiating the discretized differential equation Au = g with respect to m (assuming
that v = u(m), as in the unconstrained formulation). This gives

A
O(A(m)u(m) _ ., . ,0ultm) _
om om
Thus, the derivative of the predicted data with respect to the model parameters is
O(Qu)

du(m) ~1
. =Q e QA G=J
Observe that in order to calculate the product of the sensitivity matrix times a
vector we need not calculate J at all! Similarly for the matrix S. This is important
for large scale problems where the linear problem obtained in each nonlinear iteration
is solved using iterative methods [19, 10]. Given a vector v, the product Jv can be
obtained in three stages:

1. calculate the product w = Gu;
2. solve the system As = w;
3. multiply s by —Q.

For calculating Sv we proceed similarly, replacing —@Q by K7 in the last step. The
point is that the matrices G, A, () and K are all very sparse, whereas J and S are
not. Because solving As = w can often be achieved rapidly and economically, the
calculation of Jv or Sv can also be achieved very efficiently and does not demand
J or S explicitly. This procedure has been used in [11] for the 3D electromagnetic
problem.

If the explicit calculation of J or S is desired (e.g. it is useful for the 1D MT
example) then the above procedure can be applied, with v standing for each column,
in turn, of the identity matrix.

3.2 Method Variants
The special form of the constraints (5) yields not only u in terms of m,
u=Alq, (17)
but also A in terms of m and wu:
A=ATQT(b— Qu). (18)

These formulas satisfy (10c) and (10a), respectively, and yield alternatives to the use
of (14) and (15). We obtain four Newton method variants, all of which calculate dm
by (16) and use it to update m.
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1. N1: The basic Newton step already introduced calculates dm, du and d A from
(16), (14) and (15) respectively, and updates m,u and A simultaneously.

2. N2: Calculate ém and du from (16) and (14) and update m and u. Then use
the adjoint equations (18) to update A. It is assumed that (18) holds also for
the initial iterate.

This variant was proposed in [14, 13, 4]. Note that it is different from the
least squares multiplier often used in SQP software [18, 16], because (10b) is ig-
nored in the update (18). However, the least squares multiplier is unrealistically
expensive to calculate in our context.

3. N3: Calculate dm and d\ from (16) and (15) and update m and A. Then
update u by (17) to satisfy the constraints. It is assumed that (17) holds also
for the initial iterate.

This method maintains feasibility throughout the iteration process, that is, the
fields u are those that arise from the model m.

4. N4: Calculate ém from (16) and update m; then update u by (17) and A by
(18). It is assumed that (17) and (18) hold also for the initial iterate.

It can be easily verified that this variant is, in fact, Newton’s method for the
unconstrained problem formulation (7). Thus, we see that the costs of carrying
out a basic iteration for the constrained and the unconstrained formulations are
comparable.

One major potential difficulty with the method variants above is that the matrix
of second derivatives of the Lagrangian in the SQP formulation (13a) may not be
positive definite on the constraint null-space (i.e. for vectors (du,dm) which satisfy
Adu + Gém = 0) when the iterate is not close to the solution. This translates to the
reduced Hessian C' of (16b) not being positive definite, and requires special care, e.g.
by means of trust region methods [18, 14, 4, 16] that ensure the positive definiteness
of the reduced Hessian.

Positive definiteness is immediately obtained by the Gauss-Newton approxima-
tion, where second derivative information is dropped. Thus, setting K = 0, R = 0,
we obtain also S = 0 in (16d) and

C=Coy=J"T+BW'W (19a)

is positive definite. The direction vector dm = dmgy is now the solution of the linear
system

Candmgn = —pan, Wwhere (19b)
pey = JE(Q tq—0b)+ BWIW (m — Myef). (19¢)
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In fact, these are the normal equations for the over-determined linear least squares
problem for dm,

(\/gW) OMen = = (ﬁ%;q—_nief)) : (20)

The explicit calculation of A is now unnecessary as well, except possibly for the
merit function evaluation (21) in the constrained case, because otherwise it appears
only in the discarded K and R. We obtain two method variants, both using (20) to
obtain dm.

1. GN1: Calculate du using (14) and update m and u simultaneously.

This is a Gauss-Newton method for the constrained formulation (6).

2. GN2: Update m, then use (17) to update u. It is assumed that (17) holds also
for the initial iterate.

This is the popular Gauss-Newton method for the unconstrained formulation
(7), which has already been briefly described in the Introduction.

The advantage of the Gauss-Newton formulations is not only in positive definite-
ness of C. An additional advantage arises from the robust methods available for
solving linear least squares problems. If J is small enough then the system (20) is
best solved using the generalized SVD of J and W [9]. When the problem is large
then one may use iterative methods such as CGLS or LSQR [12, 20]. In this case,
however, we note that the cost of the Newton steps is only a fraction more than that
of the Gauss-Newton variants; the choice of Newton vs Gauss-Newton alternatives
does not depend (as commonly believed) on the relative efficiency of calculating one
step, but rather, on the overall number of iterations required.

Also, in case that the sensitivity matrix, .J, is required explicitly, the Gauss-
Newton method may have some advantage over the Newton method. Note that it
is possible to calculate .J by rows, which are the columns of J*, by solving first the
adjoint problem:

ATUj:—Q? j:17---;Nb-

Then, a row of J is given by

J]T = GT’Uj.

Note that, since the matrix () contains the locations of the data, this approach of
calculating J is equivalent to the adjoint equation formulation [3, 17]. If the number
of data N, is smaller than the number of model parameters NV, (as in most remote
sensing applications) then this formulation is better than the one which calculates J
by columns. In case of the Newton iteration we have the matrix S to consider too,
so the column approach for calculating the sensitivity matrix J is more natural.
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It is well-known (e.g. [5, 18]) that for large residual problems or highly nonlinear
problems the Gauss-Newton variants slow down and their employment may not be
advisable. This is demonstrated in Section 5.

In the discussion above we have distinuished between method variants mainly
according to the criterion of using second derivative information. The other criterion
of importance is whether the method addresses the constrained or the unconstrained
formulation. This turns out to be less important in our setting, but differences exist.

One simplification which the formulations that satisfy (5) at the end of each step
offer is the ready availability of a merit function, namely the objective function of (7).
Thus, line search is conducted for the method variants N3, N4 and GN2 using the
unconstrained least squares objective function to evaluate the quality of the iterate.
The line search in the other variants is more involved due to the min-max nature of
the constrained optimization problem. It requires the choice of a merit function and
there are various natural candidates [18, 16, 4]. In this paper we chose the commonly
used [/; penalty function

¢ = [|Qu — blI* + BIW (m — myey|” + pl| Au — gl (21)

where u is a penalty parameter. The choice of u, which typically depends on A at
each iteration, is discussed in [18, 13, 4].

Whereas the Newton variants presented in this section all have approximately the
same cost per basic iteration, the cost of repeated line search is lowest for N1 and
highest for the unconstrained formulation N4.

4 The Global Nonlinear Procedure

The methods developed in the previous section are for solving the nonlinear problem
for a specific regularization parameter . However, the complete inverse problem is
more complicated since we do not know the value of the regularization parameter
a-priori.

Recall the original ill-posed problem (2), (5). A way to consider the Tikhonov
regularization [22] is through the constrained formulation

1
min - S|[W(m — mee)|’ (22a)
st ||Qu(m) —b||* < Tol?, (22b)

where u(m) is obtained from (7) or (6). Forming the Lagrangian of (22) and differ-
entiating to obtain the necessary conditions for an optimum, it becomes clear that
should in fact approximate the inverse of the Lagrange multiplier of the data fitting
constraint. Since this multiplier is typically increased from 0 until equality is reached
in (22b), it is natural to consider a practical procedure in which 3 is started at a large
positive value and is then subsequently decreased until (2) is satisfied. The value of 3
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is thus related to the noise level in the data (recall (3)). It should not be “too small”,
to avoid fitting the noise rather than the data.

Moreover, for small values of 5 the nonlinear problem of minimizing (7) or (6) can
be difficult to solve, because J'J is typically singular and/or ill-conditioned, while
for large values of 8 this problem becomes easier, because the simple quadratic term
§||W(m—m,«e 7)||? dominates. Note that for an ill-conditioned problem the direction of
the correction vector dm can be severely polluted in the computation. This direction
is not altered by the line search procedure. Increasing 3, on the other hand, does
change the direction of the correction vector dm (cf. [5, 2]).

We therefore apply simple continuation, or cooling [1, 2, 10], in order to find the
regularization parameter. We start with a relatively large value of 3, for which we
solve an almost quadratic problem, and we then gradually reduce 8 and solve each
new problem with the solution for the previous 3 as a first iterate. The minimization
process with a specific 3 is referred to as an outer iteration and the Newton or Gauss-
Newton iteration within each outer iteration is referred to as an inner iteration. The
algorithm is terminated when (2) is satisfied.

If we solve each nonlinear problem in this continuation sequence with a good
starting point then each solution process converges quickly to its solution without
need for line search (i.e. step sizes a = 1 are used in the inner iterations). The
local quadratic convergence property of Newton’s method may then be recovered as
well. Thus, we control the continuation in 8 by requiring that a sufficient decrease is
obtained in the merit function at each inner iteration using no line search.

In this work 5 was reduced to be 0.1 of its previous value upon convergence of
the inner iteration. If that value was deemed unacceptable, S was increased by the
formula 8 < 8 + 0.5(8yg — B). For the inner iterations we set an iteration limit of
10.

5 Numerical Comparisons

In this section we compare the method variants presented earlier in their ability to
solve a nonlinear inverse problem. We have selected a geophysical magnetotelluric
(MT) example because (i) the MT equations are characterized by a Helmholtz oper-
ator which arises in a broad class of models, (ii) in 1D this is a multi source problem,
which serves to demonstrate how various matrices and vectors are formed when using
the differential equation approach, and (iii) the MT model is considered to be an
archetypal problem for diffusive electromagnetic studies and correspondingly it has
been extensively investigated [6, 19, 21, 23].

The MT forward model can be written in the frequency domain as a second order
boundary value problem [21]

E,, —wupo(2)E =0
E(0)=1, E(x)=0 (23)
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where depth z is the independent variable, o(z) is the conductivity, E is the electric
field and g is a given constant. In a typical multi-experiment, values of E = E*
are observed for different frequencies w = wy, k& = 1,...,n, and these are used to
reconstruct o(z).

Details of the problem reformulation and discretization can be found in the Ap-
pendix. In the end of this process we obtain a forward model of the form (5), with A
a large, sparse matrix. This system can be solved rapidly for u, given m [2].

Next we generate synthetic data in the following way. We choose an idealized
model m = In(o) given by

—(¢t=0.67)2

= (t=0.18n)2
m(t) = —1+4+3e oot 4 1.5e o0z (24)

where 7 = 10* and t = In(z), 0 < z < 3 x 105. This is called the “true model” in
Figure 4. Then we assume that the electric field is measured only on the surface of
the earth, and we use (24) and (5) to generate value of E(0) for ten logarithmically
spaced frequencies from 0.01Hz to 100Hz. This gives N, = 2n = 20 data values,
and they have been further contaminated with different levels of noise. The data are
plotted in Figure 1.

The goal of the inversion, then, is to recover the conductivity model given the
values of the electric field on the surface for these different frequencies. The model
domain was discretized into N, = 90 elements, uniform in ¢ (thus exponentially
increasing in depth z), and the length of u in this case is N, = 91x4x10 = 3640.

6000 \ \
N\

\ - == Real part of the data
- = Imaginary part of the data

4000 \ 4

2000 * R

—-2000 - - b

-4000F 7

-6000 — L L I

Figure 1: The real and imaginary parts of the data set for our experiment. Data are
taken on the surface with different frequencies.
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5.1 Numerical Experiment and Discussion

Next, we apply the methods developed in Sections 3 and 4 to the synthetic data
described above. For an initial guess we choose my = m,.; = —0.5, with 4y and A
subsequently calculated by (17) and (18). Thus, the initial point satisfies the forward
model. In this experiment we choose W to be a combination of finite difference
matrices

1.51

W =1 3W;

10W5

where
1 -1 0 -1 2 -1 0
1 1 -1 1 -1 2 -1
W=7 o W =15 L

0 1 -1 0 ~1 2 -1

where At = l%zf ) = 0.14. In order to evaluate an initial guess for the regularization
parameter [3, we estimate the largest generalized singular value of the sensitivity
matrix J(mg) and the weighting matrix W (using one iteration of the power method).
We then set 3 such that at the initial value, the leading term which corresponds to the
misfit function in the Hessian, (J(mg)”J(my)), is very small (ratio of 10*) compared
with the regularization term, SWTW. This condition translated to 3y = 2.5x10°. In

order to assess the results of the different methods, we compare the following factors:

e The total number of inner iterations which were needed in order to converge.
This number is given by the sum of all iterations for different S-values.

e The number of S-values (outer iterations) which were needed to achieve con-
vergence within the tolerance.

The convergence criterion for all the algorithms was that the gradient has reduced to
below 107° of its initial value.

In order to demonstrate the different properties of the techniques we calculate the
results for a 2% noise (which implies a low residual problem) and for a 30% noise
(which implies large residuals). The results of this experiment are presented in Table
1.

In Figure 2 we plot the convergence curve for one of the nonlinear problems (the
inner iterations) which corresponds to the last outer iteration (the smallest 3). For
this iteration 3 = 103. Note that while the Newton step converges in 3-4 iterations
and displays a quadratic rate of convergence, the Gauss-Newton process takes 6-7
iterations and displays linear convergence. This was typical to the whole process.
In Figure 3 we plot the misfit and the model norm for each of the outer iterations.
Finally, in Figure 4, we plot the model recovered in the process.
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Table 1: Numerical Experiment 1: Comparison between methods.

Noise = 2%
Method GN1 | GN2 | N1 | N2 | N3 | N4
Outer Iterations 8 8 7 7 7 7
Total Iterations | 38 31 20 | 30 | 21 | 22
Noise = 30%
Method GN1 | GN2 | N1 | N2 | N3 | N4
Outer Iterations 6 6 6 6 6 6
Total Iterations | 178 | 157 | 19 | 22 | 19 | 20

The results in Table 1 indicate that when the noise is low, both Gauss-Newton
type methods and the Newton type methods do well. However, when the noise is large
Gauss-Newton methods do poorly while Newton type methods remain robust. This
is expected because for large residual problems the second order terms are important
for achieving rapid convergence [5, 8].

In the above experiments we did not see a significant difference between the con-
strained and the unconstrained approaches. This was true for a large amount of test
problems we have experimented with. In order to see a difference we try to start
the algorithm from an initial iterate very far from the minimum. We use the same
weighting matrix but change both the starting iterate and the reference model to be
Mref = —5 + 1, where 7 is a Gaussian random number with mean 0 and standard
deviation 1. This model is not physical and probably would not be used for any
inversion in practice, but we use it in order to demonstrate the different properties of
the iterative techniques. The results for this experiment are presented in Table 2.

Table 2: Numerical Experiment 2: Comparison between methods.

Noise = 2%
Method GN1 | GN2 | N1 | N2 | N3 | N4
Outer Iterations | 15 10 |14 ] 9 9 | 10
Total Iterations | 95 64 | 54 | 36 | 35 | 37
Noise = 30%
Method GN1 | GN2 | N1 | N2 | N3 | N4
Outer Iterations | 11 8 11| 8 8 9
Total Iterations | 233 | 188 | 30 | 27 | 27 | 30

From these numerical experiments we see again a major difference in performance
for large vs low residual problems. Also, we observe a difference between the con-
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Figure 2: The norm of the gradient for each of the methods for the last 3 in the first
numerical experiment.

strained and the unconstrained methods. In general, the unconstrained methods
require more iterations than the constrained methods, which is expected for non-
linear models. However, it is important to note that for our 1D MT problem this
difference has not been very pronounced.

6 Conclusions

We have considered various optimization techniques for solving nonlinear inverse prob-
lems where the associated forward problems are modelled by differential equations
such as those arising in electromagnetic modelling. Whereas traditionally a Gauss-
Newton method has been applied to the unconstrained formulation (7), here we have
considered the more general constrained formulation (6). A number of Newton- (in-
cluding SQP-) and Gauss-Newton type variants naturally arise, and we have evaluated
their relative merit.
Our most important findings are:

e Understanding the discretization of the forward problem allows us to obtain
first and second derivatives with a very low cost.

e Using sparse linear algebra techniques we need not calculate the sensitivity ma-
trix (16¢) explicitly. Matrix-vector products involving J can be rapidly obtained
using sparse matrix operations, and potentially crucial storage difficulties are
thus avoided as well.
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Figure 3: The misfit and model norms as a function of the outer iteration (Newton
variants).

e In the present setting a full Newton step is only marginally more expensive to
calculate than a Gauss-Newton step. Thus, in situations where Gauss-Newton
methods slow down there are interesting, viable alternatives to consider.

Perhaps the most important advantages of the widened focus which this paper lays
out are gained for very large problems, such as those arising in 3D EM. Here one must
deal with hundreds of thousands of variables (unknowns). Not only storing J in full
is out of the question, but also iterative linear algebra methods cannot be carried out
to high accuracy if efficient overall execution is contemplated. Thus, inexact Newton-
type methods must be considered. This raises a host of questions and alternatives
which must be investigated and which are well beyond any one article. Here we make
some general observations.

The Gauss-Newton method (19) does have important advantages, discussed in
Section 3.2. The matrix C', in particular, is positive definite and has a special form
which can be exploited in large calculations (e.g. [20]). But the explicit elimination
of u, which implies an accurate solution of the forward model (5) (espcially when
constructing the right hand side pgy) can be a serious detriment. The constrained
formulation (6) is more “loose” about this: no matrix inverse is present in the system
of nonlinear equations (10), and the right hand side can thus be calculated cheaply
and accurately. This suggests solving the KK'T system directly by a preconditioned
iterative method (e.g. [7]). We are currently engaged in evaluating the various ques-
tions involved, particularly as applicable in the 3D EM setting.
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7 Appendix

Here we specify the details of the discretization and setup of the 1D magnetotelluric
example considered in §5.

7.1 Reformulating the equations

Consider the two-point boundary value ODE (23). When working with the con-
strained formulation it is easier to work with real quantities (since we need to dif-
ferentiate with respect to E). Therefore, we set F = u; + wup. We also prefer to
work with a first order system reformulation, so we set ug = (u1), and us = (u2),.
Moreover, since we seek a positive conductivity o(z) which is usually spanned over a
few orders of magnitude, we apply the common transformation o(z) = ¢™?) . Finally,
we define r = pow. This yields the real first order ODE system

(u1), = wus (25a)
(u2); = s

(us), = —re™u,

(ug), = re™uy,.

In preparation for solving the problem numerically we first define the problem on
a finite interval. The final depth z; is chosen deep enough so that u,(z;)~0, i = 1, 2.

We set z; = 5d, where d is the skin depth [21], d = 2

pooow’

with oy an estimate of
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the lowest conductivity in any depth. For this choice the field at z; is smaller than
e °=0.0067 times its value at the surface. We used oo = 102, resulting in z; &~ 3x10°.
The equations in the infinite domain are now approximated by a system in the finite
domain [0, z7], and we obtain the two-point boundary value problem consisting of
(25a) and

u3(0) =1, ug(0) =0, ui(zf) = uz(z5) = 0. (25b)
When more than one frequency w = wy is considered, and r = ry in (25), then

the interval size zy = 2} depends on k as well. If the same interval is required for all
k=1,...,n then set

2
=5 . 26
“ \/MOU o ming(wy) (26)

7.2 Discretization Using Finite Differences

For the inverse problem we approximate m(z) as a piecewise constant function on a
given grid
0=2 <2z <---<2n, =2

ie, m(z) = m;_1/2 for z;_; < 2 < z;. This function is then represented as a vector
m = (ml/g, e ,mNm_l/Q)T.

We proceed by using the midpoint scheme for discretizing (25). If the same grid
as of the model m is used then we get

(usi + uzi-1)/2 (27a)
(tai + uai—1)/2 1 <1< Ny,
—’f‘emi*lﬂ (UIQ,Z' + Ugji_l)/Q

re™i12 (uy; + Uy io1) /2

uzo =1, us0 =0, uin, =usn, =0. (27Db)

There are numerous practical issues pertaining to the design of meshes for a multi-
frequency problem where the penetration depth changes with frequency. Here we
have chosen to use a single fixed grid for all frequencies. We construct the grid
according to [2] for the highest frequency (finest grid and shortest z§) and continue it
further through the whole interval until z; is reached. Using the same grid for all the
experiments and for the model parameters makes the programming somewhat easier,
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but this is an issue which would have to be re-evaluated when working with large 2D
or 3D problems.

Let u; be the vector of unknowns of length 4(N,, + 1). The system (27) can be
written as

Ay (m)uk = gk

where A is banded. In fact, A can be arranged in block form,

(5o )

Sl R1
SQ R2

SNm—l RNm—l

SN, Rn,

\ B, )

where By and B; are 2 x 4 and S; and R; are 4 x 4 blocks. In detail,

0010 1000
B°_<0001)’Bl_(0100>’

0 0 1 0
1 0 0 01
-:—.71 — . = .71 — 1 P
Si=—hI=T, Ro=hI-T, Ti=g| o _ oo
rpe™ 0 0 0

Qk:(laoa ’O)T'

See Chapter 7 of [2], where techniques for solving such a system are presented and
evaluated.

For n different frequencies, the different algebraic systems Azup = g can be
bunched into one forward problem of size N,, = 4n(N,, +1). Clearly, N, > N,,. The
system now reads

A(m)u =q (28)
where

A(m) = diag{A1(m), ..., A,(m)}.

7.3 Obtaining the Gradients and the Hessian

In order to calculate a Newton-type step we need to calculate the matrices G, K and
R. In this subsection we describe these matrices in detail.
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The matrix G is N, X N,,, and it is very sparse. It consists of blocks,

02><Nm
G, Gk,
A b
G=1| : |, where Gk:M: :
om
Gn Gk,Nm
02><Nm

is a 4(Ny, + 1) x N, block matrix. The 4 x N,, block Gy ;, in turn, consists of zero
columns except for the i*® column, which is

0
0
et/ (Ug,z + ug,i—l)/2
—Te i1 (Ulf,z + u’f,z’—l)/Q

The matrix K has a similar size and structure to G. It consists of blocks,

Ki
K, :
AT\ :
K=1| : ], where Kk:L kM) _ Ky,
om
K, :
Ky n,,

is a 4(Npy, + 1) X Ny, block matrix. The 4 x N, block Ky, in turn, consists of zero
columns except for the columns ¢ and ¢ — 1, which are

—rpeMi-3/2 )\ii/z _Tkemi71/2)‘li,i+1/2

rre™i-a2 \E /2 —rpe™icz )k /2
0 0
0 0

We also divide )\, into N,, + 2 vectors
A=A AR )T

where
k _ (\k k T
AL = (Mgt -+ o5 /\4k—|—2)

with A¥; and )\k N,,+2 containing only two components each.
The matrix R can be calculated as

O(GTN)
om

R =
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obtaining a diagonal matrix whose i** value is given by

1o ,
Ri; = §Zrk€ml_l/2( (Ulzcz + ulfz))"?fz - (ulfz + U'Sz)/\ifz) )-
k=1

Substituting these matrices into (11), or into one of its simplifications as per

Section 3, we can now solve the MT inverse problem.
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