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1 Introduction

When designing sets of DNA strands for biomolecular computations, it is
often desirable to have a “structure free” combinatorial set of strands, that
is, a set of long strands which do not form any secondary structure, obtained
by concatenating short strands in the designed set.

The ability to computationally predict the combination in a combinatorial
set of strands with lowest minumum free energy (MFE) secondary structure
is also useful in design of strands for directed mutagenesis and SELEX ex-
periments [3] – biochemical analyses of a library of nucleic acid sequences, to
determine whether simple mutations of the sequences have desired properties.
The input sequence sets can be represented as strings of characters (DNA
or RNA nucleotides) and “wild cards”, which can code for several different
characters using IUPAC (International Union of Pure and Applied Chemistry)
format or other format. In the case of SELEX, it is useful to be able to predict
not only the combination whose minimum energy structure has lowest energy,
but also other combinations with minimum energy structures of low value;
this is the problem we address in this paper.

In earlier work, we described an algorithm, CombFold, that calculates
which concatenated long strand in a combinatorial set forms the minimum free
energy secondary structure with the lowest energy [2]. In this work, we extend
that algorithm to output k secondary structures with the lowest minimum free
energies, where k is specified by the user.

We use the following definitions and notation throughout.

• Let word denote an RNA or DNA sequence w = v1v2 . . . vl, where
vi ∈ {A, C, G, U} for RNA and vi ∈ {A, C, G, T } for DNA. The orien-
tation of the strand is from 5’ to 3’, unless otherwise stated. For example,
ACGCUAGGCA is an RNA word of length 10.

• Let set denote a set of g words of the same length l. Formally we use
the notation S = {w1, w2, . . . , wg | length(wi) = length(wj), ∀i, j ∈
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{1, . . . , g}, i 6= j}. The following set (displayed as a column of words)
is formed of 4 words of length 5:

AUACG

UAGCG

GCCGA

CUGCG

The word order in a set does not matter, but for convenience later, we
assume that the words in S are indexed and can be ranked by their index.

• Let Input-Set denote a sequence of s sets, IS = S1, S2, . . . , Ss. For exam-
ple, the following is an Input-Set of 5 sets:

UAGCGA CAGCGUAAUAU AUGCG AUAGCGGUA AUCG

AUAGAU AGAUGCGCGGU GAGCGCAAG CUGC

UAGGCUAGCGU GCGA

Note that the number of words in each set can differ, as can the length of
the words across sets.
An Input-Set can also be written in terms of words rather than sets : IS =
{wij , 1 ≤ i ≤ s, 1 ≤ j ≤ gi, ∀i, 1 ≤ i ≤ s}, where gi is the number of words

in the set i.

w11 w21 . . . ws1

w12 w22 . . . ws2

...
...

...
...

w1g1

... wsgs

w2g2

Thus, an Input-Set IS is characterized by s sets, where each set Si has gi

words, of length li. In what follows, when IS is fixed, we consider all its
characteristics: s, wij , gi, li, ∀i, j, 1 ≤ i ≤ s, 1 ≤ j ≤ gi, to be known.

• Let Combination denote an RNA/DNA sequence, formed by concatenating
one word wij of each set Si from IS, starting at S1 and finishing at Ss.
For example C = w11w21 . . . ws1 is a combination formed by concatenating
the first word of each set together. Generally, a combination is of the form
C = w1b1w2b2 . . . wsbs

, where 1 ≤ bi ≤ gi. Here, bi denotes the word rank
within the set Si. A combination has the length n =

∑s

i=1 li. If we think
of a combination as a sequence of nucleotides rather than a concatenation
of words, we can denote it as C = c1c2 . . . cn, with ci ∈ {A, C, G, U} for
RNA.

• Given an Input-Set IS, the set of all possible combinations forms the
Combinatorial-Set : CS = {w1b1w2b2 . . . wsbs

| 1 ≤ bi ≤ gi}. Note that



Structures of Strands in a Combinatorial Set 3

all combinations have the same length: n =
∑s

i=1 li and that CS has
g1 × g2 × . . . × gs elements. If gi > 1, ∀i, then the number of elements in
CS is exponential in s.

The optimal MFE combination problem is: given an RNA Input-Set IS and
a thermodynamic model M , predict which combination, out of all elements
of the Combinatorial-Set CS formed from IS, folds to a pseudoknot-free sec-
ondary structure with the lowest minimum free energy.

An extension of the optimal MFE combination problem is to find the k best
MFE combinations, rather than the optimal one only. The k-suboptimal MFE

combinations problem is: given an RNA Input-Set IS and a thermodynamic
model M , predict which k different combinations, out of all elements of the
Combinatorial-Set CS formed from IS, fold to pseudoknot-free secondary
structures with the lowest minimum free energies.

In this paper, we build on earlier work [2] to develop an algorithm for
the k-suboptimal MFE combination problem. In section 2, we first review
our dynamic programming algorithm which runs in polynomial time, for solv-
ing the optimal MFE combination problem. Then, in Section 3, we present
our algorithm for the k-suboptimal MFE combinations problem. We provide
a theoretical and empirical analysis of the optimal and k-suboptimal MFE
combinations problems in Section 4 and show that both run in polynomial
time.

2 Review of Algorithm for the Optimal MFE

Combination Problem

Our CombFold algorithm [2] is based on the classical algorithm of Zuker and
Stiegler [4] for finding the minimum free energy secondary structure of a single
RNA strand.

One method to solve the optimal MFE combination problem is to create
all possible combinations and then to run the Zuker-Stiegler algorithm on
each of them. However, depending on the characteristics of the Input-Set, the
number of combinations may be very big. If gi = g > 1, ∀i, then there are gs

combinations. Since the Zuker-Stiegler algorithm runs in Θ(n3) time, where n
is the length of the combinations, this approach has running time complexity
that is Θ(gsn3). More generally, the number of combinations is exponential
in the number of sets which have at least two words. We have implemented
this exhaustive search approach under the name of ExhaustS, which will be
discussed in Section 4.

To avoid this exponential running time, we extended the Zuker-Stiegler
algorithm. In the description that follows, we use indices i and j for the
nucleotide positions (i.e. columns in Table 1) in a combination C. We use s(i)
and s(j) to denote the sets in which ci and cj are positioned, respectively.
We say that ci and cj belong to, or are in, the sets s(i) and s(j) respectively.
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123... ....i...... ..... ......j.. ...n

bj 1 UAGCGA CAGCGUAAUAU AUGCG AUAGCGGUA AUCG

bi 2 AUAGAU AGAUGCGCGGU GAGCGCAAG CUGC

3 UAGGCUAGCGU GCGA

Table 1. Example of a combinatorial set of short RNA sequences.

We use bi and bj to denote the indices (i.e. the rows in Table 1) of the words
containing ci and cj within the sets s(i) and s(j). Given a set S, g(S) returns
the number of words in S. Hence, bi can take g(s(i)) values. When the Input-

Set IS and bi are given, we let the base ci at position i of a combination that
is in column i and row bi be given by the function ci = Nucleotide(IS, bi, i).
Table 1 shows an example of the nucleotides ci and cj .

Notation for substructure free energy values

We use the following notation to denote free energy values of various sub-
structures; in our implementation, the values are stored in four-dimensional
arrays.

• W ′(j) is the lowest minimum free energy of a structure formed from the
first j nucleotides c1c2 . . . cj of a combination. Consequently, W ′(n) con-
tains the lowest minimum free energy of any structure formed by any
combination in the Combinatorial-Set corresponding to the Input-Set IS.

• W c(bj , j) is the lowest minimum free energy of a structure formed from
the first j nucleotides of a combination in which bj is the word index of
the set s(j).

• V c(bi, bj, i, j) is the lowest minimum free energy of a structure formed from
a combination fragment ci . . . cj starting at i and ending at j, and with
fixed word indices bi and bj, assuming that (ci.cj) is a base pair.

• Hc(bi, bj, i, j) is the lowest free energy of a combination fragment ci . . . cj

in which bi and bj are fixed, assuming that (ci.cj) closes a hairpin loop.
• Sc(bi, bj, i, j) is the lowest free energy of a combination fragment ci . . . cj

in which bi and bj are fixed, assuming that (ci.cj) closes a stacked loop.
• V BIc(bi, bj, i, j) is the lowest minimum free energy of the combination

ci . . . cj in which bi and bj are fixed, assuming that (ci.cj) closes an internal
loop.

• V M c(bi, bj , i, j) is the lowest minimum free energy of a combination frag-
ment ci . . . cj in which bi and bj are fixed, assuming that (ci.cj) closes a
multi-branched loop.

• WM c(bi, bj , i, j) is the lowest minimum free energy value of a combination

fragment ci . . . cj that forms part of a multi-branched loop, and is used to
calculate V M c values.
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Recurrence relations

The array free energy values are calculated using several recurrence relations.
In describing these here, we omit for clarity the calculations involving dangling
ends and terminal AU penalties [1]. First, W ′(j) is the minimum of the values
W c(bj , j), over all possible bj :

W ′(j) = minbj
W c(bj , j).

Here,

W c(bj , j) = min







minbj−1∈X({bj ,j},{j−1}) W c(bj−1, j − 1),
min1≤i<j;bi−1,bi∈X({bj ,j},{i−1,i})

(V c(bi, bj , i, j) + W c(bi−1, i − 1))

where X is a function which returns the feasible range of words for all of the
needed (unknown) indexes. For the first line, the word corresponding to j − 1
depends on the sets to which j and j − 1 belong, and on bj :

X({bj, j}, {j − 1}) =

{

{bj} , if s(j − 1) = s(j)
{1, . . . , g(s(j − 1))}, if s(j − 1) 6= s(j)

For the second line of the recurrence for W c(bj , j), there are two word indices,
bi−1 and bi, that we have to find the ranges for:

X({bj, j}, {i − 1, i}) =














bj, bj , if s(i − 1) = s(i) = s(j)
{1, . . . , g(s(i − 1))}, bj , if s(i − 1) 6= s(i) = s(j)
{1, . . . , g(s(i − 1))}, bi−1 , if s(i − 1) = s(i) 6= s(j)
{1, . . . , g(s(i − 1))}, {1, . . . , g(s(i))}, if s(i − 1) 6= s(i) 6= s(j)

In the first two lines of the equation for W c above, the feasible values for
bj−1 (first line), and bi−1, bi (second line), depend on one other index: j, and
its corresponding bj. However, in a more general case, there are p indexes
with known b’s, and q indexes with unknown b’s, for which we want to find
the feasible ranges. The number of if lines needed to specify the function X
in the general case will be 2p+q−1. Since we are using the nearest neighbour
thermodynamic model, the highest values for p and q are p = 4 and q = 4 in
the case of internal loops, and p = 2 and q = 6 in the case of multi-branched
loops, yielding 27 = 128 if lines. Instead of enumerating all of these lines in
our code, we developed an algorithm to compute the ranges for unknown b’s,
for arbitrary values of p and q. This procedure is described next.

The function X calculates the ranges for the unknown b’s, for any number
of known and unknown indexes. Figure 1 gives the pseudocode for the X
procedure. The input is comprised of two groups: the first group contains
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Compute X Procedure

input: group of p indexes with known b’s {bi1 . . . bip , i1 . . . ip},
group of q indexes with unknown b’s {j1 . . . jq};

output: q groups Bj1 . . . Bjq corresponding to {j1 . . . jq};

procedure Compute X

order the indexes i’s and j’s;
identify the sets S1 . . . Sm to which i’s and j’s belong;
for (S = S1 to Sm)

if (there exists ik in set S)
foreach (ju in set S)

Bju = {bik
};

end foreach;
else

jv ← the smallest j in S;
Bjv = {1, . . . , g(S)};
foreach (ju in set S, with ju 6= jv)

Bju = {bjv};
end foreach;

end if;
end for;
return Bj1 , . . . , Bjq ;

end procedure X.

Procedure 1: Pseudocode for the X procedure. Details are described in the text.

the known b’s and the known indexes: {bi1 . . . bip
, i1 . . . ip}. The input has

the property that if s(ij) = s(ij+1) then bij
= bij+1

. The known b’s help
to determine the ranges of the unknown b’s. The second group contains the
indexes of the unknown b’s, {j1 . . . jq}. First, we need to order all the values
i1 . . . ip, j1 . . . jq. This is necessary for the second step, which identifies the sets
corresponding to each index. The two extreme situations are: (1) all indexes
are in the same set, and thus there will be only one possible configuration
for the unknown b’s; (2) all indexes are in different sets, hence there will be
g(s(j1)) × . . . × g(s(jq)) possible values for the unknown b’s.

Once we have identified the sets, for each set S, first we check whether
there exists the index of a known b in this set. If so, then all the j’s in S will
have the corresponding, unknown, b’s equal to the known b. No other option
is available for these unknown b’s, since the value for the known b is fixed. If
no known b exists in S, then all the unknown b’s in S will be in the range
{1, . . . , g(S)}, with the constraint that they will have the same values, being
in the same set. In other words, we can give a value to the b of the smallest
index in S, and all the other b’s in S will have the same value. The function
X will return a group of values for the needed unknown b’s.
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An example of a particular situation, with the groups {bi, bj, i, j} and
{i + 1, i + 2, j − 2, j − 1} as input, is presented in Table 2, where s(i) 6=
s(i + 1) = s(i + 2) 6= s(j − 2) 6= s(j − 1) = s(j). In this case, bi+1 will take
values in the range {1, . . . , g(s(i+1))}, bi+2 will take the value that bi+1 takes,
bj−2 will be in the range {1, . . . , g(s(j − 2))}, and bj−1 equals bj . Hence, for
this particular situation, there will be g(s(i + 1)) × g(s(j − 2)) terms over
which to minimize.

i i + 1 i + 2 j − 2 j − 1 j

bi 1 bi+1 1 bj bj

...
...

g(s(i + 1)) g(s(j − 2))

Table 2. Example of choices for b values for a particular situation. The known b’s
are in bold. The vertical lines signify that the index to the left is in a different set
from the index to the right.

Using function X to decide which are the possible values for each word,
the remaining recurrence relations for CombFold are a logical extension of
the corresponding recurrence relations for the Zuker-Stiegler algorithm. The
recurrences use free energy values for hairpins, stacked pairs, and interior loops
which we denote by ∆G-Hc(IS, bi, bj, i, j), ∆G-Sc(IS, bi, bj, bi+1, bj−1, i, j),
and ∆G-Ic(IS, bi, bj , bi′ , bj′ , i, j, i

′, j′), respectively.
The relations for V c and Hc are straightforward:

V c(bi, bj, i, j) =







+∞ , for i ≥ j
min(Hc(bi, bj, i, j), S

c(bi, bj, i, j),
V BIc(bi, bj , i, j), V M c(bi, bj , i, j)), for i < j

Hc(bi, bj, i, j) = ∆G-Hc(IS, bi, bj, i, j)

We omit the details of the calculation of hairpin free energies; the inter-
ested reader can find these in the M.Sc. thesis of Andronescu [1]. For the
calculation of stacked loops, finding bi+1 and bj−1 is imposed again by the
nearest neighbour model itself.

Sc(bi, bj , i, j) = min
bi+1,bj−1∈X({bi,bj ,i,j},{i+1,j−1})

(∆G-Sc(IS, bi, bj , bi+1, bj−1, i, j) + V c(bi+1, bj−1, i + 1, j − 1)).

The internal loop free energy calculation is a minimization over i′ and j′,
i.e. the closing pair of the internal loop. Once i′ and j′ fixed, we calculate the
free energy value for each possible bi′ and bj′ :
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V BIc(bi, bj, i, j) = min
i<i′<j′<j

( min
bi′ ,bj′∈X({bi,bj ,i,j},{i′,j′})

(∆G-Ic(IS, bi, bj, bi′ , bj′ , i, j, i
′, j′) + V c(bi′ , bj′ , i

′, j′)))

The free energy for multi-loops adds the minimization over the necessary
b’s as well. The equations for WM c and V M c follow, where Ma,Mb, and Mc

are penalties for multi-loops, branches, and unpaired bases that determine the
standard multi-loop energy function. For i < j,

WM c(bi, bj , i, j) = min






















V c(bi, bj , i, j) + Mb,
minbi+1∈X({bi,bj ,i,j},{i+1})(WM c(bi+1, bj , i + 1, j) + Mc),
minbj−1∈X({bi,bj ,i,j},{j−1})(WM c(bi, bj−1, i, j − 1) + Mc),
mini≤h<j;bh,bh+1∈X({bi,bj ,i,j},{h,h+1})(WM c(bi, bh, i, h)+

WM c(bh+1, bj, h + 1, j))

V M c(bi, bj, i, j) = Ma + min
i<h<j−1;bi+1,bh,bh+1,bj−1∈X({bi,bj ,i,j},{i+1,h,h+1,j−1})

(WM c(bi+1, bh, i + 1, h) + WM c(bh+1, bj−1, h + 1, j − 1))

In the implementation of our software CombFold v1.0, we did not imple-
ment the equation for V M c as described above. This equation contains the
sum of two WM c terms in order to make sure that the multi-loop obtained
has at least three branches (including the closing one), at the cost of in-
creased complexity, i.e. n3 instead of n2 for computing V M c (see also section
4). In our implementation, V M c = Ma + WM c(bi+1, bj−1, i + 1, j − 1) where
bi+1, bj−1 ∈ X({bi, bj, i, j}, {i+1, j−1}), while we used a mechanism to make
sure that the predicted multi-loops have at least three branches. We believe
that this does not involve significantly different predictions, and we plan to
implement the more accurate formula above in the next version of CombFold.

3 An algorithm for the k-suboptimal MFE combinations

problem

The algorithm for the optimal MFE combination problem, just described in
the previous section, returns only the combination which has the smallest
MFE. We next describe how the algorithm can be extended to return the k
combinations that have the lowest MFE.

Suppose that the Input-Set IS contains s sets Si, each having gi words. We
will add the superscript “(1)” to the notation of our sets to denote that first
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we are looking for the optimal combinations. The superscripts for the next

combinations will be “(2)” and so on. Thus, IS(1) = {S
(1)
1 , S

(1)
2 , . . . , S

(1)
s } will

be associated with the Combinatorial-Set CS(1).
First, we find the optimal MFE combination using the method described

in the previous section. Let the combination C(1) = w
(1)
1C1

w
(1)
2C2

. . . w
(1)
sCs

denote
the optimal MFE combination, where Ci denotes the index of the word in

the set S
(1)
i , which belongs to the optimal combination. The Input-Set IS(1)

contains all the possible combinations of the original set IS. To find the next
best combinations, first we partition the set IS(1) into s sets which do not
contain C(1):

IS(2)1 = { S
(1)
1 − {w

(1)
1C1
}, S

(1)
2 , . . . , S

(1)
s }

IS(2)2 = { {w
(1)
1C1
}, S

(1)
2 − {w

(1)
2C2
}, . . . , S

(1)
s }

...

IS(2)s = { {w
(1)
1C1
}, {w

(1)
2C2
}, . . . , S

(1)
s − {w

(1)
sCs
} }

For convenience later, we denote the newly created sets with S
(2)j
i , where

1 ≤ i, j ≤ s, i denotes the set index within the Input-Set, as in the previous
notations, and j denotes the index of the newly created Input-Set :

IS(2)1 = {S
(2)1
1 , S

(2)1
2 , . . . , S

(2)1
s }

IS(2)2 = {S
(2)2
1 , S

(2)2
2 , . . . , S

(2)2
s }

...

IS(2)s = {S
(2)s
1 , S

(2)s
2 , . . . , S

(2)s
s }

The Input-Sets IS(2)1, IS(2)2, . . . , IS(2)s have the following properties:

• C(1) /∈ CS(2)m, ∀m, 1 ≤ m ≤ s;
• CS(2)m ∩ CS(2)m′

= ∅, ∀m, m′, 1 ≤ m, m′ ≤ s, m 6= m′;
• {C(1)} ∪ CS(2)1 ∪ . . . ∪ CS(2)s = CS(1),

where CS(i)j denotes the Combinatorial-Set associated with the Input-Set

IS(i)j . In other words, (1) the combination C(1) is not included in any of
the new Input-Sets created by the partitioning process, (2) the new input
sets do not have any combinations in common and (3) the whole space of
combinations in CS(1) is covered by the new input sets plus the optimal
combination found. This leads to finding the optimal combinations for each of
IS(2)1, IS(2)2, . . . , IS(2)s, followed by choosing the one with the smallest MFE.
Thus, the free energy of the second best combination, i.e. the combination with
the second lowest MFE, will be ∆G(2) = min(∆G(2)1, ∆G(2)2, . . .∆G(2)s),
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Fig. 1. The algorithm for finding the k suboptimal MFE combinations of a combi-
natorial set.

where ∆G(2)i is the MFE of the optimal combination of IS(2)i. Let i be such

that ∆G(2) = ∆G(2)i and let C(2) = w
(2)i
1C1

w
(2)i
2C2

. . . w
(2)i
sCs

denote the second

best combination. The next step is to partition IS(2)i, in the same way we
partitioned IS(1). We will obtain the Input-Sets IS(3)1, IS(3)2, . . . IS(3)s. Now,
note that the following are true:

• C(1) and C(2) /∈ CS(2)m and CS(3)m′

, ∀m, m′, 1 ≤ m, m′ ≤ s, m 6= i;
• CS(a)m ∩CS(b)m′

= ∅, for a, b ∈ {2, 3} and m, m′ ∈ {1, . . . , s}, with either
a 6= b or m 6= m′ (or both);

• {C(1), C(2)} ∪CS(2)1 ∪ . . .∪CS(2)i−1 ∪CS(2)i+1 ∪ . . .∪CS(2)s ∪CS(3)1 ∪
. . . ∪ CS(3)s = CS(1).

Thus, ∆G(3), the MFE of the third combination, will be

min(∆G(2)1, . . . , ∆G(2)i−1, ∆G(2)i+1, . . . , ∆G(2)s, ∆G(3)1, . . . , ∆G(3)s).

Figure 1 shows the steps just described. Recursively continuing in the
same way, we can find the best k combinations. However, note that the tree
of partitioned Input-Sets will grow proportionally with k, more exactly, it will
have a number of leaves that is at most ks, which implies increase in run time
and space.
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It is important to note that when creating the new Input-Sets IS(i)j ,
1 ≤ j ≤ s the sets with a lower index j will typically have a bigger solution
space (i.e. number of possible combinations) than the ones with a higher index.
Thus, if after we found the second combination, ∆G(2) equals ∆G(2)s, the third
combination will be found much more quickly than if ∆G(2) equals ∆G(2)1.
Also, it is possible that the Input-Set which has the next best combinations
will be partitioned in less than s partitions (or even no partitions at all),
since the other partitions are empty. In this case, only the optimal MFE
combinations of the non-empty partitions will be considered. Examples of the
running time on some problem instances are discussed in Section 4.

4 Time and space complexity

Extending the O(n3) algorithm for secondary structure prediction of single
nucleic acid molecules, the optimal MFE combination algorithm traverses the
Input-Set in the same way, but for each position i and j, several possibilities
might exist. We consider that the number of words gi in each set Si is limited
by a constant bound gmax, and we measure the complexity in terms of the
combinations length: n = l1 + l2 + . . . + ls. Also, we consider that the ranges
returned by the X function is bounded by a constant and will be omitted
from the theoretical analysis. In practice, the number of words in each set, the
number of sets, the length of the words in each set, as well as the nucleotides
composing the set, all have an impact on the run time. First we give an
analysis of the theoretical complexity, and later in this section we will analyse
the CombFold implementation on several specific Input-Sets.

Theoretical analysis

The theoretical time complexity of calculating each array described in Sec-
tion 2 in the worst case follows:

• W ′: O(gmaxn), because for each j calculated in W c, we minimize over all
possible words of j, and there are at most gmax such words;

• W c: O(g5
maxn2), because for each j, 1 ≤ j ≤ n there are at most gmax

possibilities, and we minimize over i. When dangling ends are included,
i and j’s neighbours may have unknown b’s, leading to four options for
unknown b’s (details omitted). However, bi−1, bi and bi+1 can only be in
different words if the length of the word l(s(i)) is 1. But if l(s(i)) = 1,
g(s(i)) is at most 4 (because there are 4 different nucleotides), no matter
what the value of gmax is;

• V c: O(g2
maxn2), because for each i and j, we minimize over a constant

number of terms, and for each i and j there are at most gmax possibilities;
• Sc: O(g4

maxn2), because for each i, j and their corresponding bi and bj , we
minimize over potential different values for bi+1 and bj−1;
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• Hc: O(g4
maxn2), because for each i, j and their corresponding bi and bj ,

the term which has the greatest complexity has minimization over 4 terms,
but 2 of them happen only if the word length is 1, so they are reduced to
constant times;

• V BIc: O(g8
maxn4), but we assume the internal loops do not have more than

a constant number of bases (e.g. 30) on each side between the branches,
and thus the complexity for internal loops becomes O(g8

maxn2). The power
of 8 comes from the most general case of internal loops;

• WM c: O(g4
maxn3), because the most costly branch of the WM c calculation

for each i and j is to find the best h for multi-loop partitioning. Each of
i, j and h are in at most gmax words;

• V M c: O(g8
maxn3), because for each i and j we minimize over h, and when

we include all dangling ends, there are two known b’s and six unknown b’s
in the worst case.

Thus, if we consider both gmax and n in our analysis, the worst case time
complexity is O(g8

maxn3). In practice, gmax is often considered a constant,
which leads to complexity proportional to n3. The arrays W ′, W c, V c and
WM c need to be stored in memory. The space complexity is O(g2

maxn2), or
O(n2) if we consider gmax a constant.

The worst theoretical time complexity of the k-suboptimal MFE combina-
tions problem is O(skg8

maxn3) and the worst space complexity is O(skg2
maxn2).

However, in practice, some of the Input-Sets after partitioning become empty.

Empirical analysis

We compared the running time performance of CombFold v1.0 with subopti-
mal predictions with that of ExhaustS, a simple (exponential time) exhaustive
search algorithm, which creates all possible combinations and for each, cal-
culates its minimum free energy using SimFold [1], our implementation of
the Zuker-Stiegler algorithm. For Input-Sets with a small number of combina-
tions, it is expected that CombFold takes more time and space than ExhaustS,
because CombFold is a more complex algorithm. However, although the space
is not a problem for ExhaustS, the running time quickly grows and becomes
impractical.

Figure 2 gives the run time performance of CombFold with k = 1, 2, 3, 10
and ExhaustS on randomly generated Input-Sets of different characteristics.
All the tests have been performed on machines with CPU Pentium III 733
MHz, memory cache 256 KB and RAM memory 1GB, running Linux 2.4.20.
All graphs show the CPU time in seconds, presented on a log scale, versus
variation of different characteristics of the Input-Sets. To simplify the analysis,
we chose g1 = . . . = gs = g and l1 = . . . = ls = l, and we took variations of
s, g and l. Having all set sizes equal and all set lengths equal, the number of
combinations will be gs, and the length of the combinations will be l · s.

The graph in (a) shows a comparison between the running time of Comb-

Fold with k = 1, 2, 3, 10 and ExhaustS, on a set of 19 instances having g and
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l fixed at 2 and 10, respectively. The number of sets s varies from 1 to 19,
yielding 21 = 2 combinations of length 10 to 219 ≈ 0.5 · 106 combinations of
length 190.CombFold with k = 1 becomes faster than ExhaustS at s = 8, with
k = 2 and 3 becomes faster at s = 10, and CombFold with k = 10 becomes
faster at s = 12. Note that the slope of the curves suggest that CombFold

grows polynomially, while ExhaustS grows exponentially in s.
The graph in (b) shows a similar situation as in graph (a), but when g is

fixed at 3 rather than 2, l = 10 and s takes values in the range 1 to 12, leading
to 31 = 3 combinations of length 10 to 312 ≈ 0.5 · 106 combinations of length
120. The number of combinations being bigger for the same s, CombFold with
k = 1 outperforms ExhaustS when s = 6, with k = 2 and 3 when s = 7, and
with k = 10 when s = 8.

Graph (c) shows a comparison when s and l are fixed to 6 and 10 re-
spectively, but g varies from 1 to 13. These yield 16 = 1 to 136 ≈ 4.8 · 106

combinations of length 60. Note that in this case ExhaustS grows polynomi-
ally in g, however, it grows more quickly than CombFold. Indeed, the graph
shows that CombFold with k = 1 becomes faster than the ExhaustS when
g = 3, with k = 2 and 3 when g = 4 and with k = 10 when g = 5.

Graph (d) gives the comparison when s and g are fixed to 8 and 2, re-
spectively, leading to a fixed number of 28 = 256 combinations. However,
the length of the words vary from 10 to 100, yielding combinations of length
80 to 800. Again, ExhaustS grows more quickly, but still polynomially, only
the length of the combinations being changed. ExhaustS is outperformed by
CombFold(k = 1) at l = 10 and by CombFold(k = 2) at l = 50. On the in-
stances we tested, ExhaustS outperforms CombFold with k = 10, and becomes
roughly the same speed as CombFold with k = 3 when l = 100.

On all these four graphs, we note that CombFold with k = 1 and 2, and
ExhaustS are nicely curved, while CombFold with k = 3 and 10 have “hills”
and “valleys”. To see how the curves look like, we created two sets of 50
instances of Input-Sets with exactly the same characteristics: graph (e) with
s = 10, g = 3, l = 5 and graph (f) with s = 8, g = 8, l = 4. The results
comfirm the explanation we gave earlier in Section 3: When k = 1, CombFold

fills all the arrays, a small variation happening due to the distribution of the
nucleotides in the words. When k = 2, the arrays for s more sets are always
calculated, no matter what the optimal combination is. However, depending
on which the second best combination is, the size of the next Input-Sets that
partition the solution space can differ substantially. This influence propagates
on to the next best combinations, such that when k = 10, the differences in
time between different instances can vary substantially. Also, note that for
some instances, the time for k = 3, and even for k = 10, is very close or
equal to the time for k = 2. This means that the second best combination
was part of a very small Input-Set, which was partitioned in fewer (or even 0)
non-empy Input-Sets. The graphs also show the run time of the exponential
algorithm. For graph (e) there are 310 ≈ 60, 000 combinations of length 50, and
ExhaustS is more than one order of magnitude slower than CombFold with
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Fig. 2. Performance of CombFold with k = 1, 2, 3, 10 and ExhaustS, on sets with
different characteristics: (a) 19 instances with s ranging from 1 to 19, and the same
g = 2 and l = 10; (b) 12 instances with s ranging from 1 to 12, and the same g = 3
and l = 10; (c) 13 instances with g ranging from 1 to 13, and the same s = 6 and
l = 10; (d) 10 instances with l ranging from 10 to 100, and the same s = 8 and
g = 2; (e) 50 instances with the same characteristics: s = 10, g = 3, l = 5; (f) 48
instances with the same characteristics: s = 8, g = 8, l = 4.
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k = 1, and 5-6 times slower than CombFold with k = 10. For graph (f), where
the number of combinations is 88 ≈ 16.8 · 106 of length 32, the exponential
algorithm is substantially slower, being about two orders of magnitude slower
than CombFold(k = 1), and more than one order of magnitude slower than
CombFold(k = 10).

5 Conclusions

We presented here an algorithm that, given a combinatorial set and parameter
k, predicts the k secondary structures with lowest minimum free energies in
the combinatorial set. When the number of words in each set of the overall
input-set is considered to be a constant, our algorithm runs in O(skn3) time.

In our algorithms, given a combination C, we look at the minimum free
energy structure only. Extensions of these problems would be to find subopti-
mal structures (i.e. whose free energy is greater than the MFE), or to consider
pseudoknots. Another problem for future work would be to find an algorithm
with better running time, for example O(n3 + k).
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