
1

University of British Columbia
CPSC 111, Intro to Computation

Alan J. Hu

Interfaces vs. Inheritance
Abstract Classes

Inner Classes

Lecture 22

Readings
This Week: No new readings. Consolidate!

(Reminder: Readings are absolutely vital for
learning this stuff!)

Labs and Tutorials

This Week: Lab #10

Labs are due at end of lab time! (Lab #10 is fairly
short but make sure to finish by the end of lab)short, but make sure to finish by the end of lab.)

Final Exam

Wednesday, April 15, 7pm in SRC A
This wasn’t a good room last year, but we’re
stuck with the date, time, and room UBC
assigns.

Note: You are allowed to do scratch work on
the exam paper! (But write your answer
where indicated if the problem tells you to.)

Programming Assignment 3
Assignment 3 is up on WebCT!

Click on the “Assignments” icon.
Assigned Sunday evening – sorry for delay!

Due at NOON, April 6 (Monday), via
electronic hand inelectronic hand in.
Tips:

There is some Eclipse setup. Set-up ASAP!
Work in pairs. Some conceptual stuff.
Think carefully before coding. If concepts
right, the coding is much much easier.

Learning Goals
By the end of class today you will be able to…

List similarities and differences between
interfaces and inheritance.
Create abstract classes and extend abstract
classes.

Write code that uses inner classes.

(Work through complicated examples of
parameter passing and arrays.)

2

Interfaces vs. Superclasses

We learned these as completely separate
concepts:
An interface is a contract, specifying some
methods that must be implemented by any
class that claims to implement the interfaceclass that claims to implement the interface.
A superclass is a class from which other
classes can inherit methods and instance
fields, so we can reuse the superclass’s
implementation.

Interfaces vs. Superclasses

But they have similarities…
Both allow creating different, new classes
that share some of the same methods, e.g.
Double and UBCStudent both implement
C bl th b th hComparable, so they both have
int compareTo()
Swimmer and Crawler both inherit from
Animal, so they have e.g., changeImage()

Interfaces vs. Superclasses

But they have similarities…
Both allow declaring references that can
point to different kinds of objects, e.g.,
Comparable x;
x = new Double(3.14);
x = new UBCStudent(“Alan”);
Person y;
y = new UBCStudent(“Alan”,0.0);
y = new Celebrity(“Paris Hilton”);

Interfaces vs. Superclasses

But they have similarities…
Therefore, both allow polymorphism, e.g.,
Comparable x;
...
if (x.compareTo(…)) …
Animal y;
...
y.advanceOneTimeStep(…);

Interfaces vs. Superclasses

But they have similarities…
They even have similar UML:

…

LightInfantry<<Interface>>
Comparable

…

Kangaroo

…

…

UBCStudent

Interfaces vs. Superclasses

They have differences, too…
Java allows implementing multiple interfaces
<<Interface>>
Comparable

<<Interface>>
Feedable

…

…

UBCStudent

…

OK!

3

Interfaces vs. Superclasses

They have differences, too…
Java does NOT allow multiple inheritance…

…

LightInfantry

…

Marsupial

…

…

Kangaroo

…

Interfaces vs. Superclasses

(Java does allow one inheritance plus
multiple interfaces.)

<<Interface>>
Comparable

<<Interface>>
Feedable

…

LightInfantry

…

…

UBCStudent

…

OK!

…

…

Kangaroo

Interfaces vs. Superclasses

The fundamental difference:
An interface provides no implementations.
Everything in a (super)class is implemented.

Interfaces vs. Superclasses

The fundamental difference:
To implement interface, a class must
implement everything.
Subclasses automatically inherit superclass
implementation. Can optionally override.

Interfaces vs. Superclasses

Therefore:
You cannot create objects of an interface
type (only references).
You can create objects of the (super)class
type. (You can create references, too.)

Questions

4

Interfaces vs. Superclasses

The fundamental difference:
An interface provides no implementations.
Everything in a (super)class is implemented.

Wouldn’t it be cool to have something in-between?

Abstract Classes
The classes we have written so far are called
concrete classes.
Abstract classes in Java provide a blend of the
concepts of interfaces and inheritance:

Some (from none to all) methods are left ()
unimplemented. These are called abstract methods.
Instances fields and implemented methods are also
allowed.
Subclass must implement abstract methods (in order
to become concrete).
Subclass inherits or overrides other stuff.

Abstract Class Syntax

To create an abstract class, just add the
abstract keyword:

public abstract class Foo {
…

}

Abstract Method Syntax

Inside an abstract class, you are allowed to
declare abstract methods:

Just add the abstract keyword.
And put a semicolon instead of a body.

public abstract class Foo {
…
public abstract void display();
…

}

Abstract Classes vs. Interfaces/Inheritance

An abstract class with no abstract methods is
basically a normal, concrete class.

(But Java still thinks it’s an abstract class!)
An abstract class with all abstract methods is
b i ll lik i t fbasically like an interface.

(But Java still thinks it’s an abstract class!)
An abstract class with some abstract
methods is somewhere in-between.

The Interface-Class Spectrum
interface

abstract class w/ only
abstract methods

abstract class w/ no
abstract methods

concrete
class

Presentation idea due to Steve Wolfman

5

The Interface-Class Spectrum
interface

abstract class w/ only
abstract methods

abstract class w/ no
abstract methods

concrete
class

Presentation idea due to Steve Wolfman

Can create objects
only of concrete classes

The Interface-Class Spectrum
interface

abstract class w/ only
abstract methods

abstract class w/ no
abstract methods

concrete
class

Presentation idea due to Steve Wolfman

You can
implement multiple
interfaces.

Questions Inner Classes

So far, classes are always in a file by
themselves (with the same name as the
class).
Sometimes, we just want a simple little class
for something It’s a pain to have a separatefor something. It’s a pain to have a separate
file.
We can declare classes inside another:

method
class

Example: Inner Class in a Method
public static void main(String[] args) {

…
class Foo {

private int x;
public int getX() { return x; }public int getX() { return x; }

}
…

}
Foo is available only inside main.
Foo can access surrounding vars with restrictions.

Inner Class Scope
Remember the general principle that you can see
out through curly braces, but not in.
Therefore, inner classes should be able to see
variables declared around them:

Instance variable in same class
Local variables if declared inside a method

However, object of inner class can outlive the code
where it was created!

Access is to instance variables of object that created
inner class.
Access only to final local variables. (These can be
references to mutable objects, though.)

6

Questions Review: Passing Parameters

In the object user (the caller):
a.flatter(“fabulous”);

In the class definition (the callee):
public void flatter(String adjective) {

System.out.println("Wow, you look " +
adjective + "!");

}

Review: Passing Parameters

In the object user (the caller):
a.flatter(“fabulous”);

In the class definition (the callee):

adjective = “fabulous”;

public void flatter(String adjective) {
System.out.println("Wow, you look " +

adjective + "!");
}

Parameter Passing Challenge #1
Consider the following method:

public void swap(int a, int b)
{
int temp = a;
a = b;
b = temp;

}

and the following code from main that calls swap:

int x = 0;
int y = 5;
swap(x, y);

What values are stored in the x and y after the above code segment has executed?

Parameter Passing Challenge #2
Consider the following method:

public void process(int[][] arrA, int[][] arrB)
{
int row, col;
int[][] arrC = new int[][] { { 1, 1, 1 }, { 1, 1, 1 } };
arrA = arrC;
for(row = 0; row < arrB.length; row++)
for(col = 0; col < arrB[row].length; col++)
arrB[row][col] = row + col;

}}

and the following code from main that calls process:

int[][] dataA = new int[][] { { 0, 0 }, { 0, 0 } };
int[][] dataB = new int[][] { { 0, 0 }, { 0, 0 } };
process(dataA, dataB);

What values are stored in the arrays dataA and dataB after the above code segment has executed?

Just as process is called

7

Just before process’s first line Just after arrC is initialized

Just after “arrA = arrC;” Just as process completes

After returning to main Parameter Passing Intuition

Calling a method is like asking a friend to do
something for you.
Passing parameters is giving your friend the
information needed to do the task.
In Java, parameters are always “call by
value” (sometimes “pass by value”):

You make a copy of the info for your friend.
Java makes a copy of the parameters (the
value of the parameters) for the method call.

Passing primitive type values vs. objects?

8

Real Life Analogy

You show me a $20 bill. I make a photocopy.
Can I spend your money? If I burn my
photocopy, do I destroy your $20 bill?
You show me your credit card. I make a
photocopy Can I spend your money? If Iphotocopy. Can I spend your money? If I
burn my photocopy, do I destroy your credit
card?
$20 bill is like a primitive type. It is the value.
Credit card is like an object reference. It
says how to find the value (your credit line).

Thoughts
In every case, the variables in main still stored the

same values they did before.
Java is “pass-by-value”; we only pass the values of

arguments to the parameters of a method.
So, we can never change those arguments.

But… if the variable is a reference variable, the object
it points to can be changed!

That’s what happened to dataB.

Why didn’t dataA change?

Parameter Passing Challenge #3
Consider the following method:

public void swap(int[][] a, int[][] b)
{
int[][] temp = a;
a = b;
b = temp;

}

and the following code that calls swap:

int[][] x = new int[][] {{0, 0}, {0, 0}};
int[][] y = new int[][] {{1, 1}, {1, 1}};
swap(x, y);

What values are stored in the x and y after the above code segment has executed?

Just as swap is called

Just before swap’s first line Just as swap completes

9

After returning to main How do I get swap to work?
Java doesn’t really have a good way to do this.
How do I swap the contents of two pockets if you
give me just copies of the contents?
With object references, I can kind of do it:

I can’t swap your references, but I can follow the
object references to the objects and change theobject references to the objects and change the
contents of the objects.

Other languages (like C++) let you create
references to any variable (even primitive types).

If two of you give me (a copy of) the locations of
your dorm rooms, I can swap the contents.
This is called “call by reference” or “pass by
reference”.

Something like swap
private static void swap(int[][] a, int[][] b) {

assert a.length == b.length;
int[][] temp = new int[a.length][];
for (int i=0; i<a.length; i++) {

temp[i] = a[i];
}
for (int i=0; i<b.length; i++)

a[i] = b[i];[] [];
for (int i=0; i<b.length; i++)

b[i] = temp[i];
}
and the following code that calls swap:

int[][] x = new int[][] {{0, 0}, {0, 0}};
int[][] y = new int[][] {{1, 1}, {1, 1}};
swap(x, y);

What values are stored in the x and y after the above code segment has executed?

