
1

Automatic Non-interference Lemmas for
Parameterized Model Checking

Jesse Bingham

Abstract —Parameterized model checking refers to any method that extends traditional, finite-state model checking to handle systems
with an arbitrary number of processes. One popular approach to this problem uses abstraction and so-called guard strengthening. Here
a small number of processes remain intact, while the rest are abstracted away. This initially causes counter-examples, but the user
can write non-interference lemmas, which eliminate spurious behavior by the abstracted processes. The technique is sound in that if
the user writes a lemma that is not invariant, the proof will never succeed. Though the non-interference lemmas are typically much
simpler than writing a full inductive invariant, there is still a non-trivial amount of human insight needed to analysis counter-examples
and concoct the lemmas. In our work, we show how the process of inferring appropriate non-interference lemmas can be automated.
Our approach is based on a very general theory that simply assumes a Galois connection between the concrete and abstract systems.
Effectively, we start with the non-interference conjecture False, and iteratively weaken it until it is provable using the Galois connection.
This produces the strongest non-interference lemma provable in the Galois connection. Hence, if the approach fails to prove the
property, then no human lemma would help, since it is the strongest possible lemma. We instantiate this theory to a class of symmetric
parameterized systems, and show how BDDs can be used to perform all involved computations. We also show how BDD-blow up that
can arise when concretizing can be mitigated by using a sound over-approximation. We successfully applied the resulting tool to three
parameterized verification benchmarks: the GERMAN protocol with data path, the GERMAN2004 protocol, and the FLASH protocol.
To our knowledge, this is the first time automatic parameterized model checking has been done on GERMAN2004.

✦

1 INTRODUCTION

Consider the problem of verifying a safety property
of a system S with an arbitrary number n processes.
One compelling method to solve this problem involves
model checking a finite state system A0 involving a
small number m (typically 2 or 3) of unmodified con-
crete processes, along with an abstracted process [21],
[6], [15], [18], [19], [27]. The abstracted process over-
approximates the behaviors of an arbitrary number of
processes. Because of this approximation, the abstracted
process usually interferes with the concrete processes in
some undesirable way, not possible in the unabstracted
system. Hence the invariant property typically fails in
A0. However, the method allows the human to write a
so-called non-interference lemma ψ1 which is a conjectured
invariant of S manually culled from counterexample
analysis. One uses ψ1 to restrict the abstracted process
in A0 via a technique called guard strengthening, which
yields a new system A1, which again may or may not
satisfy the safety property. If not, the user iterates the
process, writing non-interference lemmas ψ1, ψ2, . . . and
producing a succession of abstract systems A0, A1, A2, . . .
that are model checked. Assuming a system Ak is found
to satisfy the property, one must still confirm that

∧

i ψi

is an invariant of S. Surprisingly, the theory allows one
to decide this by checking that

∧

i ψi is an invariant of
Ak; this is counter-intuitive because Ak is in a sense con-
structed under the assumption that

∧

i ψi is an invariant.

The author’s email is jesse.d.bingham@intel.com. This version corrects a
minor typo over the submitted version, wherein N was defined to be m + `,
rather than the correct value m + ` + 1.

Assuming that this check also passes, we have proved
that the system S is safe for arbitrary n.

In this paper we automate this process. We compute
the strongest possible non-interference lemma that is prov-
able using the underlying abstraction. We then simply
check if this invariant implies the safety property. If this
approach fails to prove the property, i.e. the computed
invariant does not imply the property, then one must
necessarily use a better abstraction, for example by
adding more concrete processes or axillary variables. In
particular since there is no stronger invariant that can
be proved invariant using the approach, no manually
selected lemmas would have helped out.

Roughly, our approach involves starting with the
strong non-interference conjecture False. We strengthen
the concrete system with this conjecture, abstract, and
compute the reachable states in the abstract domain. We
then concretize the reachable states, which will yield
some weaker conjecture. We iterate, using the succes-
sively weaker conjectures found by concretizing the
reachable abstract states as lemmas for strengthening
the concrete system. Hence our approach involves an
inner loop that computes forward reachability in abstract
systems, and an outer loop that concretizes the reachable
abstract states, strengthens the concrete system with the
result, and re-abstracts. We terminate when the outer
loop reaches a fix-point in the sense that no new reach-
able abstract states are found.

Two primary contributions of this paper are a general
theory that supports this technique, and an instantiation
of the theory for a class of symmetric parameterized
protocols, similar to that of Krstić’s [15]. This class

2

Fig. 1. A process in our example parameterized system

admits a small model theorem not unlike that of Pnueli et
al. [23], which allows us to perform all necessary com-
putations using BDDs and symbolic model checking [4].
For complex examples, BDD blow up can become an
issue. To combat this well-known problem, we propose
a variant on our approach wherein only the abstracted
transitions (rather than all transitions) are strengthened
with the non-interference conjectures.

We’ve implemented an instance of approach using the
forte [26] formal verification system. The tool takes a
protocol described in forte’s functional language reFLect,
and automatically performs parameterized verification.
We have successfully verified properties of three caching
protocols: the original GERMAN protocol, a significantly
different version GERMAN2004 [19], [13], and the Stan-
ford FLASH protocol [16].

The paper is organized as follows Sect. 2 provides a
simple motivating example, which contrasts the classi-
cal guard strengthening approach with our approach.
Related work is discussed in Sect. 3. The general theory
behind our approach is presented in Sect. 4, which again
contrasts the classical approach with our own. This the-
ory is instantiated for a class of symmetric parameterized
protocols in section 5. Our case studies and further
discussion are presented in Sects. 6 and 7, respectively.
We note that proofs and some gory technical details have
been relegated to appendices.

2 MOTIVATING EXAMPLE

An example parameterized system is given in Fig. 1. The
system is the interleaved composition of an arbitrary
number n of identical processes.The system has two
state variables: prc : Nn → {s0, s1, s2, s3, s4}, where
Nn = {0, . . . , n− 1} are the process IDs (PID), and w,
which is a Boolean. So prc(i) is the “local” state of
process i, while w is a “shared” global variable. Initially,
all processes are in state s0 and w is false. The transitions
of an arbitrary process i are shown in Fig. 1; each
transition is labeled with a guarded command G B C,
which means that the transition can occur whenever G
is true and C is the resulting update. If G is omitted,
then the transition is always enabled; if B C is omitted,

then there is no update other than process i’s local state
change. Note that some guards and updates mention
other processes j 6= i. We wish to establish that the
following is an invariant:

∀i 6= j.¬(prc(i) = s4 ∧ prc(j) = s4) (1)

The states of the abstract systems are same as the param-
eterized system, except that there are only two processes
0 and 1. Hence the domain of prc is restricted to the two
PIDs N2. We call these abstract states views and write
them as a triple (w, prc(0), prc(1)). We now outline how
both the classic approach and our own approach tackles
parameterized verification of this example.

The Classic Approach starts by model checking an
initial abstract system, created by conservatively ab-
stracting away all processes except 0 and 1. This yields
the following counterexample (i.e. a view sequence)

(0,s0,s0), (0,s0,s1), (0,s4,s1), (1,s4,s4)

The human realizes that the counterexample stems from
an abstracted process transitioning from s2 to s0, with
j = 0 in the update. This forces process 0 into s4, leading
to a violation of (1). By inspection, the human concludes
that s2 is in fact unreachable, and writes the following
lemma:

ψ1 = ∀i.prc(i) 6= s2 (2)

Strengthening the the concrete system with ψ1 effectively
removes the transition from s2 to s0, which is justified
since if s2 is unreachable, we don’t need any transitions
out of it. Abstracting and then model checking, we find
that ψ1 holds, but we get another counterexample of (1):

(0,s0,s0), (0,s1,s0), (0,s1,s1),
(1,s4,s1), (0,s4,s1), (1,s4,s4)

Here an abstracted process transitions from s4 to s0,
which “interferes” by clearing w, which allows process
1 to get to s4. The user writes another lemma

ψ2 = ∀i 6= j.w ⇒ ¬(prc(i) = s4 ∧ prc(j) = s4)

Strengthening with ψ1 ∧ ψ2 allows us to label the s4-s0
transition with ψ2 B w := 0. This disallows an abstracted
process from transitioning from s4 to s0 whenever a
concrete process is in s4. Model checking for the third
time, we find all three of (1), ψ1, and ψ2 are invariants.
The theory allows us to conclude that (1), as well as ψ1

and ψ2, is invariant in the original parameterized system.
Our Approach employs a concretization function

which takes a set of views V to a universally quanti-
fied formula γ(V) that is used to strengthen the con-
crete system. Intuitively, γ(V) characterizes the concrete
states such that for all distinct PIDs i and j, the view
(w, prc(i), prc(j)) is in V . We first model check the ab-
stract system obtained by strengthening the concrete sys-
tem with the “non-interference conjecture” γ(∅), which
equals False . Strengthening with γ(∅) disables all tran-
sitions, and hence the set of reachable states is just the
singleton of the initial view R1 = {(0,s0,s0)}. We now

3

take γ(R1) as our new, weakened conjecture. Strengthen-
ing with γ(R1), abstracting, and computing the reachable
states yields R2 = R1∪{(0,s1,s0), (0,s0,s1), (0,s1,s1)}. We
iterate, now using γ(R2) to strengthen. The reachable
views are now

R3 = R2 ∪

{

(1,s3,s0), (1,s4,s0), (1,s3,s1), (1,s4,s1),
(1,s0,s3), (1,s0,s4), (1,s1,s3), (1,s1,s4)

}

Strengthening with γ(R3) yields reachable views R4

where R4 = R3. Since we’ve reached a fix-point, our
theory tells us that γ(R3) is an invariant of the concrete
system. Next we simply check that γ(R3) implies our
property, which it does. We note that γ(R3) properly
implies ψ1 ∧ ψ2; this is no coincidence as our algorithm
computes the strongest lemma provable in the given
abstraction/concretization.

3 RELATED WORK

There have been many approaches to parameterized
model checking and the more general paradigm of infi-
nite state model checking, for examples well-structured
transition systems [11], [12], regular model checking [3],
the work of Emerson and Kahlon [9], and that of Pong
and Dubois [24]. To our knowledge, none of these have
been applied to a system with the complexity of the
FLASH protocol. The rest of this section focuses on
approaches that are closer to our own.

The idea of using non-interference lemmas for param-
eterized model checking is attributed to McMillan [20],
[21], who added support for this style of reasoning
into Cadence SMV. The idea was later used along with
Murphi by Chou et al. [6] and formalized further by
Krstić [15] and Li [18]. Both papers [21], [6] verify
the FLASH coherency protocol [16] using several user-
supplied lemmas and the addition of history variables.
Similar types of reasoning have been applied by Chen et
al. to verify non-parameterized (yet complex) hierarchi-
cal protocols [5]. Finally, a simultaneous submission to
FMCAD [27] simplifies the process of concocting non-
interference lemmas by incorporating the notion of a
protocol flow. We view this work as complementary to
ours, since if our aggressive automatic approach blows-
up, then it is desirable to fall back onto an intuitive
manual lemma framework.

The most closely related work was done recently by
Lv et al. [19]. Like us, they employ BDD-based meth-
ods to automatically generate non-interference lemmas.
Essentially they use the heuristic for generating can-
didate “invisible invariants” [23] to generate possible
non-interference lemmas. Our work also draws from the
invisible invariants work [23] . In particular, our BDD-
based concretization computation is inspired by their
techniques. Furthermore, we employ a similar small
model theorem, though we use slightly tighter syntactic
restrictions in order to make the “small” smaller. How-
ever, our respective applications of the small model the-
orems are distinct. We compare against these papers [19],
[23] further in Sect. 7.

Other related work includes that of Pandav et al. [22],
who have proposed a set of heuristics to aid in construct-
ing invariants for caching protocols. Also, environment ab-
straction [7] uses what amounts to existentially quantified
predicate abstraction on the environment of a (concrete)
process.

4 THEORETICAL FOUNDATION

The method of guard strengthening for parameterized
verification has been formalized by others [6], [15],
[18]. Our re-formalization here is motivated by three
factors. First, our formalization is tailored to show how
automation is achieved. Second, ours is more general
than parameterized systems; it in fact applies to a fi-
nite abstraction of any finite or infinite state transition
system that is a Galois connection. Finally, we believe
this formalization in terms of Galois connections is more
succinct than previous explanations.

Given a set S called a state space, a transition system
over S is a triple T = (S, I, T) where I ⊆ S are called
the initial states and T ⊆ S × S is called the transition
relation. A state s ∈ S is said to be reachable in T if there
exists states s0, s1, . . . , s` such that s0 ∈ I , s` = s, and
(si, si+1) ∈ T for all 0 ≤ i < `. The set of all reachable
states of T is denoted Reach(T). A set ψ ⊆ S is call an
invariant if Reach(T) ⊆ ψ. A transition relation T ⊆ S×S
induces a post image operator post[T] : 2S → 2S defined by
post[T](φ) = {s′ | ∃s ∈ φ.(s, s′) ∈ T }. We will identify
subsets φ of S with logic formulas that characterize them,
and call such formulas state formulas.

Our goal is to verify that a state formula p is an
invariant of T = (C, I, T), which we call the concrete
system. The concrete state space C consists of the type-
consistent assignments to some set of state variables. In
the case of parameterized systems, these types depend
on a natural parameter n, but this is not relevant for the
theoretical development of this section.

One can conjoin a state formula ψ with the concrete
transition relation T to strengthen it. Formally, let us
define

T � ψ = (C, I, T ∩ (ψ × C))

We call T �ψ the strengthening of T by ψ. Intuitively, T �ψ
is the same as T , except that any state c ∈ C in which ψ
does not hold has no transitions. The following theorem
is well-known (see e.g. Krstić [15]) and underlies the
approach of using strengthening:

Theorem 1: ψ is invariant in T if and only if ψ is
invariant in T � ψ.

The concrete system is verified by constructing a
succession of abstract systems that over-approximate the
concrete system. The abstract systems are over a finite set
A called the abstract domain, which, along with a partial
order v, is a lattice. Each element of A is an object
that represents a certain set of concrete states, and v
corresponds to inclusion of the represented sets. Often
A will be a powerset and v is ⊆. We assume a Galois
connection (α, γ) between 2C and A. This means that

4

α : 2C → A and γ : A → 2C are monotonic functions such
that for all φ ⊆ C and A ∈ A, we have that α(φ) v A if
and only if φ ⊆ γ(A). We add the additional requirement
that α ◦ γ is the identity.1 The functions α and γ are
respectively referred to as abstraction and concretization.
Intuitively, α defines the mapping that associates ele-
ments of the abstract domain with sets of concrete states.
We say that a concrete state formula ψ is representable if
ψ = γ(α(ψ)). The representable formulas are those that
can be abstracted without loosing information.

Since the objects in A represent sets of concrete states,
it is natural to approximate the concrete post image
operator by a function over A called an abstract post-
image. For U ⊆ C×C there is the notion of a best abstract
post-image bap[U] : A → A defined by

bap[U] = α ◦ post[U] ◦ γ (3)

Intuitively, bap[U] first concretizes, then takes the post-
image of U in the concrete domain, and then abstracts
the result. We say that a function post : A → A abstracts
the concrete transition system (C, I, U) if for all A ∈ A we
have that bap[U](A) v post(A). We extend Reach to apply
to abstract post-images: if A0 ∈ A and post : A → A is
a monotonic function, then Reach(A0, post) = postk(A0),
where k is minimal such that postk+1(A0) v postk(A0)
(note that k must exists since A is finite). We say that
A ∈ A is an invariant of (A0, post) if Reach(A0, post) v A.

Both the classic approach and our own approach
employ a mechanism for performing strengthening and
abstraction of the concrete transitions. We will denote
this mechanism by Ω, which is not made explicit in
the classic papers. We do so here since it is a key
ingredient in our method, and serves to compare the
two approaches. Given a non-interference conjecture ψ,
Ω first strengthens the concrete system T with ψ and
then builds an abstract post-image for the strengthened
system T � ψ. Formally, Ω takes a representable state
formula ψ and returns a function Ω(ψ) : A → A
such that Ω(ψ) abstracts T � ψ. We now describe how
the classic approach and our approach manifest in this
formal setting.

The Classic Approach. Some papers that use the
classic approach compute their Ω automatically [21],
[19] while others involve the human manually selecting
guarded commands to strengthen [6], [27]. Also, the
user may strengthen with formulas that are weaker than
ψ [6], [15], [27]; this is certainly permissible under our
definition of Ω.

Let us say that a representable concrete state formula
p is a provable invariant if there exists a representable
concrete state formula ψ (i.e. the non-interference
lemma) such that both Reach(α(I),Ω(ψ)) v α(ψ) and
Reach(α(I),Ω(ψ)) v α(p). It is straightforward to show
that a provable invariant deserves this title:

1. Classic work on predicate abstraction [14] adds this requirement
too.

Theorem 2: If p is a provable invariant, then p is an
invariant.

Of course the converse does not hold; the Galois
connection or Ω is necessarily too weak to prove many
(semantically true) invariants. Theorem 2 succinctly justi-
fies the classical approach, although it hides the fact that
the non-interference lemma ψ used to prove p is typically
constructed iteratively via counter-example analysis as a
conjunction

∧

i ψi.
Our Approach makes a minor additional monotonic-

ity requirement on Ω. We call Ω monotonic if for all
representable concrete state formula ψ1 and ψ2 such
that ψ1 ⇒ ψ2, and for all A ∈ A, we have that
Ω(ψ1)(A) v Ω(ψ2)(A). This effectively disallows Ω from
giving us a better abstract post-image from a weaker ψ.

Our algorithm can now be described. Let us assume a
monotonic Ω, and define the function Reach◦Ω : A → A
to be the composition of Reach(α(I), ·) with Ω. I.e. for any
A ∈ A we define Reach◦Ω(A) = Reach(α(I),Ω(γ(A))) So
Reach◦Ω maps an element of the abstract domain to the
best abstract approximation (afforded by Ω, α, and γ) of
the reachable states of the concrete system strengthened
with γ(A). We note that Reach◦Ω is monotonic and acts
on a finite domain, hence it has a well defined least fixed
point (LFP). This LFP is computed as (Reach ◦Ω)k(⊥),
where k ≥ 0 is minimal such that (Reach◦Ω)k+1(⊥) v
(Reach◦Ω)k(⊥) and ⊥ is the bottom element of A, which
is ∅ if A is a powerset.

Theorem 3: Assume that Ω is monotonic, let p be a
representable concrete state formula, and let Lfp be the
least fixed point of Reach ◦ Ω. Then p is a provable
invariant if and only if Lfp v α(p).

Theorem 3 is the crux of our approach. We simply
compute Lfp, and test if Lfp v α(p). If so, we can
conclude that p is an invariant of the concrete system
T . If Lfp v α(p) does not hold, then either p is not an
invariant, or Ω, α, and/or γ are too weak to prove that
p is an invariant.

Automation aside, our approach is in a sense dual
to the classical approach. The latter initially doesn’t
strengthen at all, i.e. the strengthened is done with
True. Then the user repeatedly conjuncts constraints, i.e.
strengthens the formula, until a lemma is found that
proves the property p. On the other hand, we start
with the conjecture False, and iteratively weaken it until
we have a provable lemma. Since we are left with the
strongest lemma (afforded by Ω, α, and γ), we know that
no human intervention (respecting Ω) could help.

We can eliminate the possibility that Ω is too weak by
using a best Ω relative to (α, γ). Say that Ω is best if it
always yields the best abstract post image. Formally, this
means that for all A ∈ A, post[Ω(A)] = bap[T ∧ γ(A)].
If Ω is best, it follows that Lfp is the strongest non-
interference lemma that is provable under Galois connec-
tion (α, γ). In our instantiation of this theory in the next
section, we will first define Ω to be best. However, we
have found that our BDD-based methods can potentially
blow-up when using a best Ω. In this case we propose

5

weaker variants that are not best, but are still good
enough to automatically prove the desired invariant.

A simple optimization over out algorithm described
here is as follows. Rather than computing the LFP of
(Reach ◦ Ω), it is more efficient to compute the LFP
of the sequence A0, A1, . . . defined by A0 = α(I) and
Ai+1 = Reach(Ai,Ω(γ(Ai))). This means that rather
starting each reachable state computation with the initial
state abstraction, we start abstract object computed in the
previous iteration. This converges on the same fix point
Lfp.

5 PARAMETERIZED PROTOCOLS

The theory of Sect. 4 is general, and applies whenever
one is dealing with Galois connections. In this section,
we instantiate the theory for a class of symmetric param-
eterized protocols. We restrict the state variables to be of
four basic types, which are the same used by others [6],
[15], [27], [23]. The types are Booleans, functions from
PIDs to Booleans, PIDs, and functions from PIDs to PIDs;
we call the functional state variables arrays. The PIDs are
Nn = {0, . . . , n− 1} for some arbitrary natural n. Clearly
the multiple Booleans can be used to to encode any
finite enumerated type. We let P(n) denote the protocol
instance with PIDs being Nn.

Our protocol class is defined by a syntax that enforces
symmetry and allows for a certain small model theorem.
The syntax is quite similar to that of Krstić [15], and we
expect the expressiveness is equivalent. The syntax is
expressive enough to admit well-known cache protocol
case studies, such as the three protocols we consider in
Sect. 6. The class easily allows for so-called conjunctive
guard and broadcast communication primitives, which
renders even invariant verification undecidable [10].
Thus using an incomplete verification approach such as
abstraction is necessary.

The abstract domain is (a certain subset of) the power-
set of a set of objects called views [6]. A view is essentially
a state of P(m), where m is a small constant that the user
selects, except that PID-valued variables can take on a
special value called oth , which represents an unknown
PID in {m,m+ 1, . . . , n}. Clearly the set of views, and
hence its powerset, are both finite. The Galois connection
we employ maps a set of protocol states to its set of
constituent views, as well as all permutations of such.
Similarly, concretization of a given set of views returns
(a formula characterizing) the set of states having its
views contained in the given set. We show that there
exists a small constant N , such that the views of the
strengthened transition relation of P(N) � γ(V) (where
V is a set of views) capture the views of the transition
relation of P(n) � γ(V) for any n ≥ N ; this is our
small model theorem. Here N = m + ` + 1, where `
is the number of existentially quantified variables in
the transition relation and m is the number of concrete
states in the views. The key corollary of the small model
theorem is that we can use P(N) � γ(V) to compute

variable set type in protocol n-state state type in view
W B B

X Nn → B Nm → B

Y Nn N
oth
m

Z Nn → Nn Nm → Noth
m

TABLE 1
The four types allows for protocol variables, and how

they are typed in views.

the best Ω for our Galois connection. This is done using
BDD-operations on P(N). We note that our small model
theorem assumes that n ≥ N , hence our parameterized
model checking in fact establishes that P(n) is safe for
all n ≥ N , rather than all n ≥ 0. We regard this as a
negligible limitation.

We now elaborate on these ideas; first describing the
concrete syntax in Sect. 5.1, then the abstract domain of
sets of views in Sect. 5.2, then the Galois connection in
Sect. 5.3, and finally how we compute our Ω in Sect. 5.4.
To reduce the flood of notation, we simply denote the
Galois connection of this section by (α, γ).

5.1 Concrete System

The parameterized protocol P(n) has variables from four
sets W , X , Y , and Z . We call the variables in W∪X∪Y ∪Z
the protocol variables. The variables are typed according
to the middle column of Table 1, where B are the two
Boolean constants. The states of P(n) are the set of type-
consistent assignments to W ∪X ∪ Y ∪ Z . We call these
assignments protocol n-states. For protocol n-state s and
protocol variable ν, we write s[ν] for the value assigned
to ν by s. For ν ∈ X∪Z , we write s[ν(i)] for the ith entry
in the array s[ν].

The transition relation of P(n), and strengthenings
thereof, are expressed as formulas we call protocol tran-
sition formula. A rigorous definition of protocol formula
is given in Appendix A ; here we give a more intu-
itive description. The important point is that the syntax
provides a balance between the two conflicting require-
ments of expressiveness and having a small enough
small model theorem, which will be stated in Sect. 5.4.
A protocol transition formula is a restricted first order
formula over atomic propositions called atoms. These
atoms perform various queries on the protocol variables,
such as indexing into an array, comparison between PID
variables, and evaluating a Boolean. Atoms also allow
for priming of protocol variables to refer to the next state.
We employ three sets of PID variables (disjoint from Y)
to quantify over: E = {e0, . . . , e`−1}, U = {u0, . . . , uk−1},
and Q = {q0, . . . , qm−1}. We will write ~e for the list
e0, . . . , e`−1 and similarly for ~u and ~q. Protocol transition
formulas are of the form

(∃~e.∀~u.φ0) ∧ (∀~q.φ1) (4)

Where φ0 and φ1 are quantifier-free Boolean combi-
nations of atoms with certain constraints (see Ap-
pendix A). Here φ0 characterizes the unstrengthened

6

transition relation; the existential quantification allows
for “Murphi”-like rulesets [8] constructs over PIDs.
Hence ` = |E| is the maximum level of nesting of
PID rulesets. The second conjunct ∀~q.φ1 is the non-
interference conjecture. We will see in Sect. 5.3 that
our concretization function produces formula of this
form; we note that m here is the number of “concrete
processes” used in views.

Our initial state formula I will also be required to be
protocol transition formula, except no primed variables
may appear in I . In our case studies I only uses the sec-
ond conjunct, since there is no existential quantification
necessary.

5.2 Abstract Domain: Symmetric Sets of Views

A view is an assignment to the protocol variables, but
with typing according to the rightmost column in Ta-
ble 1. Here N

oth
m = {0, . . . ,m− 1}∪ {oth}, where oth is a

fresh symbol that will represent an arbitrary element of
Nn \ Nm. Our abstract domain is simply the set of sym-
metric sets of views, along with the inclusion ordering ⊆.
This notion of symmetric is best defined using the Galois
connection, which is the focus of the next subsection.
Hence we postpone the definition momentarily.

5.3 Galois Connection

Let τ be a protocol transition formula (4) and let s0 and
s1 be protocol n-states. We write (s0, s1) � τ to indicate
that τ is satisfied when its unprimed and primed free
variables are interpreted by s0 and s1, respectively. Call
an injection π : Nm → Nn a view map. For any i ∈ Nn and
view map π, define π̂(i) to be π−1(i) if i is in the range
of π, otherwise π̂(i) = oth . Now, given view map π, the
π-view of protocol n-state s is the view v = Viewπ(s)
defined by

• for all w ∈ W define v[w] = s[w]
• for all x ∈ X and i ∈ Nm define v[x(i)] = s[x(π(i))]
• for all y ∈ Y define v[y] = π̂(s[y])
• for all z ∈ Z and i ∈ Nm define v[z(i)] = π̂(s[z(π(i))])

So, essentially, v permutes PIDs so that PIDs in the image
of π become the first m PIDs Nm, and PIDs in Nn \ Nm

are replaced with oth.
We now introduce the abstraction function α that takes

sets of concrete states to sets of views and a correspond-
ing concretization function γ. For a set of concrete states
ϕ, define

α(ϕ) = {Viewπ(s) | s ∈ ϕ and π is a view map}

Thus α(ϕ) is the set of all views that are the π-views of
some state in ϕ for some π. Computing α using BDDs
is straightforward, especially when ϕ is symmetrical. In
this case, α(ϕ) can be computed by Viewid(ϕ), where id is
the identity function on Nm. In our algorithm, α is only
directly applied to such sets, i.e. the initial states and the
invariance property.

Concretization is be expressed by

γ(V) = ∀~q.distinct(~q) ⇒
∨

v∈V

Π(v) (5)

Here distinct(~q) expresses that qi 6= qj for all 0 ≤ i < j <
m. For a view v, the formula Π(v) is a quantifier-free
Boolean combination of atoms that precisely character-
izes the concrete states having π-view being v, where
π takes i ∈ Nm to (a valuation of) each qi ∈ Q.
Intuitively, then, γ(V) says that for any m distinct PIDs
{q0, . . . , qm−1} one selects, the corresponding view must
be an element of V . Defining Π(v) is straightforward
but tedious, hence we relegate it to Appendix B. We
emphasize that (5) is given for exposition purposes only
and is never used directly during computation.

In Sect. 5.2 we defined views and mentioned that our
abstract domain is a subset of the powerset of views,
i.e. those that are symmetric. We can now succinctly
define what this notion means. A set of views V is
said to be symmetric if α(γ(V)) = V . We note that our
(α, γ) is quite similar to the Galois connection used by
Lahiri and Bryant to do universally quantified predicate
abstraction [17].

Theorem 4: (α, γ) is a Galois connection between pro-
tocol n-states and symmetric sets of views.

5.4 Computing Ω with BDDs

In this section we explain how we the best abstract post-
image bap[τ] for a protocol transition formula τ . In turn,
this allows us to compute the best Ω. In summary, our
protocol transition formula admit a small model theorem.
Recall that ` is the number of existentially quantified
variables τ (4), and m is the number of “concrete”
processes in the views. let N = m+`+1, and let us write
τN for the set of all pairs of protocol N -states (s, s′) such
that (s, s′) � τ .

Theorem 5 (Small Model Theorem): Let τ be a protocol
transition formula and let N = m+ `+ 1. Then bap[τ] =
post[T], where T = {(Viewid(s),Viewid(s

′)) | (s, s′) ∈ τN}
Theorem 5 allows us to compute a BDD representation

of bap[τ] as follows. First, we build a BDD for the transi-
tion relation τN . Next we massage this BDD into a BDD
for T by applying Viewid to both the present and next
state variables; this involves two steps. First, all X-type
and Z-type variables (both primed and unprimed) with
indices in {m, . . . , N − 1} are existentially abstracted out
of τN . Second, oth is represented by any value ≥ m, thus
we canonicallize so that whenever a PID variable is ≥ m,
we allow it to be any such value; this is accomplished
through straightforward BDD operations. The result can
easily be seen to represent the T in the statement of
Theorem 5. Finally, post[T] can again be computed using
well-known BDD techniques [4].

Applying our approach of Sect. 4 requires us to map
an arbitrary symmetric set of views V to a best abstract
post-image Ω(γ(V)). This post-image must abstract the
formula

τ = (∃~e.∀~u.φ0) ∧ γ(V)

7

Note that τ is a valid protocol transition formula (4) since
γ(V) is of the form ∀~q.φ1. Let τN and γN (V) respectively
be the BDD for τ and γ(V) over protocol N -states. Once
we have γN (V), computing τN is straightforward, and
thus so too is bap[τ] via Theorem 5.

The BDD γN (V) is computed as follows. Recall that
γ(V) is defined by (5). Since γN (V) restricts us to PIDs
in NN , we can replace the universal quantifier and the
antecedent distinct(~q) with a conjunction:

γN (V) =
∧

~p

(

∨

v∈V

Π(v)[~p/~q]

)

(6)

where
∧

~p ranges over all m-tuples of distinct elements
of NN . We compute BDDs for each

∨

v∈V Π(v)[~p/~q] as
the post-image post[Θ(~p)](V), using a technique due to
Pnueli et al. [23], which defines Θ(~p) as

Θ(~p) =
∧

w∈W

w′ ⇔ w

∧
∧

x∈X

∧

0≤i<m

x′(pi) ⇔ x(i)

∧
∧

y∈Y

∧

0≤i<m

y′ = pi ⇔ y = i

∧
∧

z∈Z

∧

0≤i,j<m

z′(pi) = pj ⇔ z(i) = j

(7)

In effect, for each ~p (anm-tuple over NN), Θ(~p) constrains
the π-view of the primed state to some view in the
unprimed state, where π(i) = pi for each i ∈ Nm. By
taking the post-image of V with respect to Θ(~p), we get
the set of all protocol N -states that have π-views in V .
Finally, by conjuncting over all ~p, we arrive at γN (V) as
required.

We conclude this section by noting that when BDD
blow-up becomes an issue, a remedy is to soundly
weaken Ω, which can be done in two orthogonal ways.
First, one can remove various conjuncts from (7). This
amounts to identifying that certain variables are not
needed in the non-interference lemma. Second, when the
protocol transition formula is a disjunction of guarded
commands (e.g. Murphi [8]), one can apply different sub-
sets of the conjuncts in (6) to each command. This allows
one to leave unabstracted commands unstrengthened,
while applying strengthening to abstracted commands.
Previous approaches [19], [15], [6], [27] allow the human
to use such heuristics on a lemma-by-lemma basis; in
contrast we write a very simple weakening scheme
once and our algorithm then proceeds to compute the
strongest lemma provable under the weaker Ω. Weaken-
ing Ω tends to decrease the number of iterations of the
outer loop while increasing the number of iterations of
the inner loop of our algorithm.

6 CASE STUDIES

We applied our technique to three coherency protocols:
GERMAN, GERMAN2004, and FLASH. The GERMAN
protocol was originally poised as a challenge problem

example time mem outter inner
GERMAN 0.3 1.1 19 2,2,. . .,2
GERMAN2004 15.0 1.6 8 55, 74, 57, 30, 5, 6, 2, 1
FLASH 57.0 3.2 7 75, 51, 43, 39, 36, 9, 1

TABLE 2
Case studies results

for parameterized model checking by German [13], it
is rather simple and has been verified many times in
the literature [19], [6], [2], [23], [22]. GERMAN2004 is a
significant modification of GERMAN and is considerably
more complex; it was first formally verified by Lv et
al. [19], though they required some manually added his-
tory variables. Finally, FLASH [16] is quite well-known.
The control property for FLASH was first automatically
verified by Lv et al. [19]. As pointed out by Chou et
al. [6]: “FLASH is a good test for any proposed method of
parameterized verification; if the method works on FLASH,
then there is a good chance that it will also work on many
real-world cache coherence protocols.”

We implemented our approach using the forte formal
verification system [26]. We hand translated the proto-
cols from their Murphi descriptions into reFLect, forte’s
functional language. They were written as protocol tran-
sition formula, which required some minor refactoring in
some cases2. A tarball including our implementation and
the case study models is available [1].

We successfully verified the control and data proper-
ties for GERMAN, and the control properties for GER-
MAN2004 and FLASH. For GERMAN, we used a best
Ω and BDD-blow-up was a non-issue For the other two
protocols, the ability to weaken Ω was very useful to
curb BDD blow-up issues, as was dynamic variable re-
ordering [25].

Our results are given in Table 2. All runs were done on
a 64-bit linux machine. The columns “time” and “mem”
give the runtime in minutes and the memory usage in
GB, respectively. The “outer” column gives the number
of iterations of the outer loop of our algorithm, i.e. the
number of iterations to find the fix-point of Reach◦Ω. The
“inner” column gives the number of time-steps needed
to compute the reachable states in the abstract system,
for each iteration of the outer loop. Since the best Ω was
used for GERMAN, the inner loop always iterates just
twice.

7 DISCUSSION

7.1 Example of Insufficiency

Fig. 2 gives a very simple parameterized protocol for
which our approach of Sect. 5 fails, in the sense that
the property holds but our algorithm is unable to prove
it. Fig. 2 uses the same notation as Sect. 2. Initially, all

2. For example, protocol formula don’t allow for a Y variable to be
used to index into an array; however by using an existential variable
to index into the array, and adding the constraint that the existential
equals the Y variable, the same effect can be achieved.

8

Fig. 2. Example for which our algorithm fails.

processes are in s0, and we wish to prove the (clearly
true) invariant ∀i.prc(i) 6= s2. Our algorithm fails at
this verification; this stems from the fact the existentially
quantified lemma ∀i.∃j 6= i.prc(i) = s1 ⇒ prc(j) = s1
is needed. Our automatically generated lemmas are re-
stricted to be of the form (5), which only allows for
universal quantification. We note that adding history
variables can help in this situation; if done correctly our
algorithm can easily verify this example.

7.2 Comparison with Invisible Invariants

The most salient difference between our approach and
that of invisible invariants [23] and Lv et al. [19] is
that the lemma we generate is guaranteed to be an
invariant, while the other methods heuristically produce
a possible invariant. This possible invariant is constructed
by generalizing the reachable states of a small instance
of the concrete system. This leads to the question: are
there systems for which invisible invariants fail, while
our approach succeeds?

The answer is positive. Consider a parameterized
system where each process has a single bit, initially all
False. There is a global 15-bit counter initially 0. Any
process that has its bit clear can set it, and increment the
counter (unless it is saturated). We want to prove that if
any two processes have their bits set, then the counter
is at least 2. The invisible invariants method would
compute the reachable states of the concrete system with
2 processes. Generalizing this space does not yield an
invariant, However, our algorithm produces an invariant
that is strong enough to prove the property. Of course,
if a large enough concrete system is used to generate
the candidate invisible invariant, their approach will suc-
ceed. However, this would require model checking the
instance of size 215, which has over 215 state variables.

REFERENCES

[1] J. Bingham. Appendices and code for this paper.
http://www.cs.ubc.ca/˜jbingham/fmcad08.html .

[2] J. Bingham and A. J. Hu. Empirically efficient verification for a
class of infinite-state systems. In Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2005.

[3] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular
model checking. In 12th International Conference on Computer Aided
Verification (CAV), 2000.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2), 1992.

[5] X. Chen, Y. Yang, G. Gopalakrishnan, and C.-T. Chou. Reducing
verification complexity of a multicore coherence protocol using
assume/guarantee. In FMCAD ’06: Proceedings of the Formal
Methods in Computer Aided Design, pages 81–88, 2006.

[6] C. Chou, P. K. Mannava, and S. Park. A simple method for
parameterized verification of cache coherence protocols. In 5th
International Conference on Formal Methods in Computer-Aided De-
sign (FMCAD), 2004.

[7] E. Clarke, M. Talupur, and H. Veith. Environment abstraction
for parmeterized verification. In 7th International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI),
2006.

[8] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
pages 522–525, 1992.

[9] E. A. Emerson and V. Kahlon. Exact and efficient verification
of parameterized cache coherence protocols. In Correct Hardware
Design and Verification Methods (CHARME), 2003.

[10] E. A. Emerson and V. Kahlon. Model checking guarded protocols.
In 18th IEEE Symposium on Logic in Computer Science (LICS), pages
361–370, June 2003.

[11] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast
protocols. In 14th IEEE Symposium on Logic in Computer Science
(LICS), pages 352–359, 1999.

[12] A. Finkel and P. Schnoebelen. Well structured transition systems
everywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[13] S. German. Personal correspondence. 2008.
[14] S. Graf and H. Saidi. Construction of abstract state graphs

with pvs. In Proc. 9th International Conference on Computer Aided
Verification (CAV’97), 1997.

[15] S. Krstić. Parameterized system verification with guard strength-
ening and parameter abstraction. In Automated Verification of
Infinite-State Systems, 2005.

[16] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The stanford FLASH multi-
processor. In 21st Annual International Symposium on Computer
Architecture (ISCA), pages 302–313, 1994.

[17] S. K. Lahiri and R. E. Bryant. Constructing quantified invariants
via predicate abstraction. In 5th International Conference on Verifi-
cation, Model Checking and Abstract Interpretation (VMCAI), pages
267–281, 2004.

[18] Y. Li. Mechanized proofs for the parameter abstraction and guard
strengthening principle in parameterized verification of cache
coherence protocols. In SAC ’07: Proceedings of the 2007 ACM
symposium on Applied computing, pages 1534–1535, 2007.

[19] Y. Lv, H. Lin, and H. Pan. Computing invariants for parameter
abstraction. In MEMOCODE ’07: Proceedings of the 5th IEEE/ACM
International Conference on Formal Methods and Models for Codesign,
pages 29–38, 2007.

[20] K. L. McMillan. Verification of infinite state systems by composi-
tional model checking. In Correct Hardware Design and Verification
Methods (CHARME), pages 219–234, 1999.

[21] K. L. McMillan. Parameterized verification of the FLASH cache
coherence protocol by compositional model checking. In Correct
Hardware Design and Verification Methods (CHARME), pages 179–
195, 2001.

[22] S. Pandav, K. Slind, and G. Gopalakrishnan. Counterexample
guided invariant discovery for parameterized cache coherence
verification. In CHARME, pages 317–331, 2005.

[23] A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification
with invisible invariants. In Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 82–97,
2001.

[24] F. Pong and M. Dubois. Formal automatic verification of cache
coherence in multiprocessors with relaxed memory models. IEEE
Transactions on Parallel and Distributed Systems, 11(9):989–1006,
September 2000.

[25] R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM
international conference on Computer-aided design, pages 42–47, 1993.

[26] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aa-
gaard, C. Barrett, and D. Syme. An industrially effective environ-
ment for formal hardware verification. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 24(9):1381–1405,
September 2005.

[27] M. Talupur and M. R. Tuttle. Going with the flow: Parameterized
verification using message flows. In Submitted to FMCAD ’08,
2008.

9

APPENDIX A
PROTOCOL FORMULA

Definition 1 (atom): Let B and C be sets of variables of
type Nn. An (B,C)-atom is one of the following formulas

1) w or w′ for some w ∈ W
2) x[p] or x′[p], for some x ∈ X and p ∈ B ∪ C
3) y

.
= c or y′

.
= c for some y ∈ Y and c ∈ C

4) y′
.
= y for some y ∈ Y

5) b
.
= c for some b ∈ B and c ∈ C

6) c1
.
= c2 for some c1, c2 ∈ C

7) z[p]
.
= c or z′[p]

.
= c for some z ∈ Z , c ∈ C, and

p ∈ B ∪ C
8) z′[b]

.
= z[b] for some z ∈ Z and b ∈ B

Protocol formula are then defined to be those of the
form (4), repeated here for convenience:

(∃~e.∀~u.φ0) ∧ (∀~q.φ1)

Here ~e, ~u, and ~q are respectively the lists of variables
e0, . . . , e`−1, u0, . . . , uk−1, and q0, . . . , qm−1. Intuitively, C
are quantified variables that can be used to compare
against Y - and Z- type protocol variables and also used
to index into X- and Z- type protocol array variables,
while the variables of B can only be used for indexing.
The sub-formulas φ0 and φ1 are respectively Boolean
combinations of (U,E)-atoms and (∅, Q)-atoms; further
φ1 contains no primed variables. Lastly, we add the
constraint that no atom of type 4 or 8 appears under
an odd number of negations in φ0.

APPENDIX B
CONCRETIZATION DEFINED

Recall our definition of γ (5):

γ(A) = ∀~q.distinct(~q) ⇒
∨

v∈V

Π(v)

Here we formalize the definition of Π(v) where v is a
view. We define

Π(v) = ΠW (v) ∧ ΠX(v) ∧ ΠY (v) ∧ ΠZ(v)

where

• ΠW (v) =
∧

w∈W wv[w], where wv[w] is the positive
literal w if v[w] = True, or the negative literal ¬w
otherwise

• ΠX(v) =
∧

x∈X

∧

0≤i<m x(qi)
v[x](i), where the super-

script is interpreted as in the previous bullet
• ΠY (v) =

∧

y∈Y f(y), where f(y) is
∧

0≤i<m ¬qi
.
= y

if v[y] = oth , otherwise f(y) is y
.
= qv[y]

• ΠZ(v) =
∧

z∈Z

∧

0≤i<m f(z, i) where f(z, i) is
∧

0≤j<m ¬qj
.
= z(qi) if v[z(i)] = oth , otherwise f(z, i)

is z(qi)
.
= qv[z(i)]

APPENDIX C
PROOFS

Theorem 1: ψ is invariant in T if and only if ψ is invariant
in T � ψ.

Proof: A simple induction.

Theorem 2: If p is a provable invariant, then p is an
invariant.

Proof: Let R = Reach(α(I),Ω(ψ)). There exists a
representable concrete state formula ψ such that R v
α(ψ), thus γ(R) ⊆ γ(α(ψ)) = ψ. Similarly we have
that γ(R) ⊆ p. Since Ω(ψ) abstracts T � ψ, we have
that α(Reach(T � ψ)) v R and hence γ(α(Reach(T �
ψ))) ⊆ ψ and Reach(T � ψ) ⊆ ψ. Similarly we arrive at
Reach(T �ψ) ⊆ p. By Theorem 1, ψ must be an invariant
of T , which implies that Reach(T �ψ) = Reach(T). Thus
Reach(T) ⊆ p.

Theorem 3: Assume that Ω is monotonic, let p be
a representable concrete state formula, and let Lfp be
the least fixed point of Reach◦Ω. Then p is a provable
invariant if and only if Lfp v α(p).

Proof: (if) Since Reach(α(I),Ω(γ(Lfp))) v Lfp and
Lfp = α(γ(Lfp)), we have that p is a provable invariant
with ψ = γ(Lfp). (only if) Conversely, suppose p is
a provable invariant. Then there exists ψ as in the
definition of provable invariant. Since Reach◦Ω(α(ψ)) =
Reach(α(I),Ω(γ(α(ψ)))) = Reach(α(I),Ω(ψ)) v α(ψ)
(the second equality following from the fact that ψ is rep-
resentable), we have that α(ψ) is a fix-point of Reach◦Ω;
similarly we also have that Reach ◦ Ω(α(ψ)) v α(p).
Using the Knaster-Tarski Theorem, the former implies
that Lfp v α(ψ). By monotonicity of Reach◦Ω, this entails
Lfp = Reach◦Ω(Lfp) v Reach◦Ω(α(ψ)) v α(p).

Theorem 4: (α, γ) is a Galois connection between proto-
col n-states and symmetric sets of views.

Proof: Straightforward.

C.1 Proof of Small Model Theorem 5

This proof requires a few definitions and lemmas. Let Σn

denote the set of protocol n-states. First there is a notion
of a collapsing a “large” protocol n-state s ∈ Σn into a
protocol N -state r ∈ ΣN , where n ≥ N = m+ `+ 1.

Definition 2: Let s be a protocol n-state for some n ≥
N , and let g : NN → Nn be an injection such that g(i) = i
for all i ∈ Nm. Define G : Nn → NN so that G(i) = g−1(i)
if i ∈ g(NN), otherwise G(i) = m. Then the g-collapse of
s is the state r ∈ ΣN defined as follows.

• for each w ∈W , r[w] = s[w]
• for each x ∈ X and i ∈ NN , r[x(i)] = s[x(g(i))].
• for each y ∈ Y , r[y] = G(s[y])
• for each z ∈ Z , and i ∈ NN , r[z(i)] = G(s[z(g(i))])

Lemma 1: Let s be an protocol n-state, and let r be
its g-collapse for some g as in Def. 2. Then Viewid(s) =
Viewid(r).

Proof: Follows from Def. 2.

10

Theorem 5 (Small Model Theorem): Let τ be a protocol
transition formula and let N = m+ `+ 1. Then bap[τ] =
post[T], where T = {(Viewid(s),Viewid(s

′)) | (s, s′) ∈ τN}
Proof: Recalling that bap[τ] = α ◦ post[τ] ◦ γ,

we must show that for all symmetric sets of views
V that α(post[τ](γ(V)) = post[T](V). The ⊇ direc-
tion follows from the definitions. For ⊆, let Vi =
{(Viewid(s),Viewid(s

′)) | (s, s′) � τ and s, s′ ∈ Σi}.
Thanks to symmetry, clearly we have T = VN ; hence
we will show that Vn ⊆ VN . Now, τ is of the form (4)
and conforms to the definition of Sect. A. We assume
without loss of generality that φ0 and φ1 are in CNF.
This implies that type 3 and type 6 atoms do not appear
negated in either of φ0 and φ1.

Let (Viewid(s),Viewid(s
′)) be a pair in Vn. Since (s, s′) �

φ, there exists a tuple ~f over Nn such that

(s, s′) � ∀~u.∀~q.(φ0 ∧ φ1)[~f/~e] (8)

(here we’ve legally moved quantifiers around). Let F be
the set of naturals appearing in ~f , and let H = F ∪Nm let
g : NN → Nn be the function that takes each 0 ≤ i < |H |
to the ith largest number in H , and each |H | ≤ i <
N to distinct elements of Nn so that g is an injection
(this can always be done since N ≤ n). Let us define a
corresponding G as in Def. 2.

Now define r, r′ ∈ ΣN to be the g-collapses of s and
s′, respectively. We claim that (r, r′) � φ. Specifically, we
claim that

(r, r′) � ∀~u.∀~q.(φ0 ∧ φ1)[G(~f)/~e] (9)

where G(~f) is G applied component wise to ~f . In order
to establish (9), letting ~p and ~t be arbitrary tuples of
appropriate length over NN , we will show

(r, r′) � (φ0 ∧ φ1)[G(~f)/~e, ~p/~u,~t/~q] (10)

Using (8) we have that

(s, s′) � (φ0 ∧ φ1)[~f/~e, g(~p)/~u, g(~t)/~q] (11)

For a literal θ appearing in the CNF φ0 ∧ φ1, let θ(10)
and θ(11) respectively be the corresponding literals in the
RHS of (10) and the RHS of (11). From (11), all clauses
in φ0 ∧ φ1 have a literal θ such that (s, s′) � θ(11). We
show that (r, r′) � θ(10), which establishes (10) and thus
(r, r′) � φ. Our proof case-splits on the form of θ. We
note that, depending on which of φ0 or φ1 the literal θ
appears in, it may be a (U,E)-atom or a (∅, Q)-atom (or
the negation of such). We also implicitly use the facts
that for all i ∈ N|H|, i = G(g(i)) and for all h ∈ H ,
h = g(G(h)). Note that because of the restrictions on type
3 and 6 atoms from Sect. A, the corresponding cases here
don’t need to handle the negated literal.

We start by considering the case of θ being a (U,E)-
atom literal, and case split according to the eight atom
flavors given in Def. 1 (except that we typically prove
for positive and negative literals for unprimed variables,
and simply mention that the primed variants are han-
dled analogously):

1) w or ¬w for some w ∈W . Trivial, since s[w] = r[w].
2) x[a] or ¬x[p], for some x ∈ X and a ∈ U ∪E. If a =

ei, then θ(10) is x(G(fi)) and θ(11) is x(fi). Since fi ∈
H , we have r[x(G(fi))] = s[x(g(G(fi)))] = s[x(fi)],
the result follows. On the other hand, if a = ui, then
θ(10) is x(pi) and θ(11) is x(g(pi)). Since r[x(pi)] =
s[x(g(pi))], we are done.

3) y
.
= ei or ¬y

.
= ei for some y ∈ Y and ei ∈ E. If θ

is a positive literal, then θ(10) is y
.
= G(fi) and θ(11)

is y
.
= fi. Thus s[y] = fi, and since r is defined so

that r[y] = G(s[y]), the result follows. Now if θ is
negative, then we note that s[y] 6= fi implies that
r[y] = G(s[y]) 6= G(fi), and the result follows.

4) y′
.
= y for some y ∈ Y . Since s[y′] = s[y] implies

that r[y′] = r[y], the result follows.
5) uj

.
= ei or ¬uj

.
= ei for some uj ∈ U and ei ∈ E.

Then θ(10) is pj
.
= G(fi) and θ(11) is g(pj)

.
= fi.

Since g(pj) = fi iff pj = G(fi), the result follows
for either polarity of literal.

6) ej
.
= ei or ¬ej

.
= ei or for some ej, ei ∈ E. Then

θ(10) is G(fj)
.
= G(fi) and θ(11) is fj

.
= fi. Since

fj = fi iff G(fj) = G(fi), the result follows for
either polarity of literal.

7) z[uj]
.
= ei for some z ∈ Z , ei ∈ E, and uj ∈ U .

Then θ(10) is z[pj]
.
= G(fi) and θ(11) is z[g(pj)]

.
= fi.

Since s[z(g(pj))] = fi iff r[z(pj)] = G(fi) , the result
follows. For the case of θ being z[ej]

.
= ei for some

z ∈ Z , ej, ei ∈ E, θ(10) is z[G(fj)]
.
= G(fi) and θ(11)

is z[fj]
.
= fi. Since s[z(fj)] = fi iff r[z(G(fj))] =

G(fi) , the result follows.
8) z′[ui]

.
= z[ui] for some z ∈ Z and ui ∈ U . Then θ(10)

is z′[pi]
.
= z[pi] and θ(11) is z′[g(pi)]

.
= z[g(pi)]. Since

s[z′(g(pi))] = s[z(g(pi))] implies that r[z′(pi)] =
r[z(pi)], the result follows.

Analogous arguments handle the cases involving
primed variables; analogous (but simpler) arguments
handle cases where θ is a (∅, Q)-atom (i.e. a literal from
φ1).

