J. Nutini, I. Laradji and M. Schmidt. Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence,
JMLR, 2022
[pdf][slides][poster][code].
Y. Sun, H. Jeong, J. Nutini and M. Schmidt. ``Are we there yet? Manifold identification of gradient related proximal methods",
AISTATS, 2019
[pdf] [poster].
J. Nutini, M. Schmidt and W. Hare. "Active-set complexity" of proximal gradient: How long does it take to find the sparsity pattern?,
Optimization Letters, 2018
[pdf] [poster].
I. Laradji, J. Nutini and M. Schmidt. Graphical Newton for Huge-Block Coordinate Descent on Sparse Graphs,
NeurIPS Optimization Workshop, 2017
[pdf] [poster].
H. Karimi, J. Nutini and M. Schmidt. Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition,
ECML-PKDD, 2016
[pdf] [slides] [poster].
J. Nutini, B. Sepehry, I. H. Laradji, M. Schmidt, H. Koepke and A. Virani. Convergence Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz Rules Using the Orthogonality Graph,
UAI, 2016
[pdf] [poster] [code].
*K. Bigdeli, W. Hare, J. Nutini and S. Tesfamariam. Optimizing Damper Connectors for Adjacent Buildings,
Optimization and Engineering, 17(1):47-75, 2016
[pdf].
J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander and H. Koepke. Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection,
ICML, 2015
[pdf] [slides] [poster] [video talk].
*W. Hare, J. Nutini and S. Tesfamariam. A survey of non-gradient optimization methods in structural engineering,
Advances in Engineering Software, 59:19-28, 2013
[pdf].
*W. Hare and J. Nutini. A derivative-free approximate gradient sampling algorithm for finite minimax problems,
Computational Optimization and Applications, 56(1):1-38, 2013
[pdf] [slides].
* authors listed in alphabetical order