
Abstract
In combinatorial auctions, multiple goods are sold
simultaneously and bidders may bid for arbitrary
combinations of goods. Determining the outcome
of such an auction is an optimization problem that
is NP-complete in the general case. We propose
two methods of overcoming this apparent intrac-
tability. The first method, which is guaranteed to
be optimal, reduces running time by structuring
the search space so that a modified depth-first
search usually avoids even considering alloca-
tions that contain conflicting bids. Caching and
pruning are also used to speed searching. Our
second method is a heuristic, market-based ap-
proach. It sets up a virtual multi-round auction in
which a virtual agent represents each original bid
bundle and places bids, according to a fixed
strategy, for each good in that bundle. We show
through experiments on synthetic data that (a) our
first method finds optimal allocations quickly and
offers good anytime performance, and (b) in
many cases our second method, despite lacking
guarantees regarding optimality or running time,
quickly reaches solutions that are nearly optimal.

1 Combinatorial Auctions
Auction theory has received increasing attention from
computer scientists in recent years.1 One reason is the
explosion of internet-based auctions. The use of auctions
in business-to-business trades is also increasing rapidly
[Cortese and Stepanek, 1998]. Within AI there is growing
interest in using auction mechanisms to solve distributed
resource allocation problems. For example, auctions and
other market mechanisms are used in network bandwidth
allocation, distributed configuration design, factory
scheduling, and operating system memory allocation

1 This material is based upon work supported by DARPA un-
der the CoABS program, contract #F30602-98-C-0214, and by
a Stanford Graduate Fellowship.

[Clearwater, 1996]. Market-oriented programming has
been particularly influential [Wellman, 1993; Mullen and
Wellman, 1996].

The value of a good to a potential buyer can depend on
what other goods s/he wins. We say that there exists
complementarity between goods g and h to bidder b if
ub({g,h})> ub({g})+ub({h}), where ub(G) is the utility to b
of acquiring the set of goods G. If goods g and h were
auctioned separately, it is likely that neither of the typi-
cally desired properties for auctions—efficiency and
revenue maximization—would hold. One way to ac-
commodate complementarity in auctions is to allow bids
for combinations of goods as well as individual goods.
Generally, auctions in which multiple goods are auctioned
simultaneously and bidders place as many bids as they
want for different bundles of goods are called combina-
torial auctions2.

It is also common for bidders to desire a second good
less if they have already won a first. We say that there
exists substitutability between goods g and h to bidder b
when ub({g,h}) < ub({g})+ub({h}). A common example of
substitutability is for a bidder to be indifferent between
several goods but not to want more than one. In order to be
useful, a combinatorial auction mechanism should provide
some way for bidders to indicate that goods are substi-
tutable.

Combinatorial auctions are applicable to many
real-world situations. In an auction for the right to use
railroad segments a bidder desires a bundle of segments
that connect two particular points; at the same time, there
may be alternate paths between these points and the bidder
needs only one [Brewer and Plott, 1996]. Similarly, in the
FCC spectrum auction bidders may desire licenses for
multiple geographical regions at the same frequency band
while being indifferent to which particular band they re-
ceive [Milgrom, 1998]. The same situation also occurs in
military operations when multiple units each have several
alternate plans and each plan may require a different
bundle of resources.

2 Auctions in which combinatorial bidding is allowed are al-
ternately called combinatorial and combinational.

Taming the Computational Complexity of Combinatorial Auctions:
Optimal and Approximate Approaches

Yuzo Fujishima, Kevin Leyton-Brown and Yoav Shoham
Computer Science Department, Stanford University, Stanford CA, 94305

fujisima@ccs.mt.nec.co.jp (visiting from NEC Corporation)
kevinlb@cs.stanford.edu
shoham@cs.stanford.edu

While economics and game theory provide many in-
sights into the potential use of such auctions, they have
little to say about computational considerations. In this
paper we address the computational complexity of com-
binatorial auctions.

2 The Complexity Problem
There has been much work in economics and game theory
on designing combinatorial auctions. The
Clarke-Groves-Vickrey mechanism (also known as the
Generalized Vickrey Auction, or GVA) has been particu-
larly influential [Mas-Colell et al., 1995; Varian, 1995]. It
is beyond the scope of this paper to review such mecha-
nisms, but they share a central problem: given a collection
of bids on bundles, finding a set of non-conflicting bids
that maximizes revenue. (A more precise definition is
given in Section 3.) This problem is easily shown to be
NP-complete3 [Rothkopf et al., 1995].

Several methods have been conceived to cope with the
computational complexity of combinatorial auctions, most
aiming to ease the difficulty of finding optimal allocations.
They can be classified into three categories based on the
strategies they use.

One strategy is to restrict the degree of freedom of
bidding to simplify the task of finding optimal allocations.
Rothkopf et al. show that an optimal allocation can be
found in polynomial time if (1) each bid contains no more
than two goods; (2) for any two bids, either they are dis-
joint or one is a subset of the other; or (3) each bid contains
only consecutive goods given a one-dimensional ordering
of goods [Rothkopf et al., 1995].

Another strategy is to shift the burden of finding an
optimal allocation to bidders. [Banks et al., 1989] and
[Bykowsky et al., 1995] have reported a mechanism called
AUSM in which non-winning bids are pooled in a stand-by
queue. Bidders can combine their bids with other bids
currently in the queue to form new allocations. A new
allocation is adopted if it generates more revenue than the
previously best allocation.

A third strategy is to attempt to find an optimal alloca-
tion but to be satisfied with a sub-optimal allocation when
the expenditure of further resources becomes unacceptable.
In other words, the optimality of the allocation is
traded-off with the resources required, especially time.

In this paper we present two algorithms. The first is an
anytime algorithm that attempts to exploit a problem’s
particular bid structure to reduce the size of the search. It
also reduces search time by caching partial results and by
pruning the search tree. The second algorithm uses a
market-based approach to determine an acceptable allo-
cation, although it is not guaranteed to find an optimal one.
We then show results of experiments with synthetic data
suggesting that these methods, though not provided with
formal guarantees, appear to have surprisingly good per-

3 The GVA has the additional shortcoming of requiring bidders
to submit an unreasonably large number of bids, but we do not
address this issue here.

formance. Additionally, the market-based approach ap-
pears to produce allocations that are always optimal or
nearly optimal.4

3 Precise Problem Statement
In this paper we propose two methods for finding desirable
allocations based on bids submitted. We start by formally
defining the optimization problem. Denote the set of goods
by G and the set of non-negative real numbers by R+. A bid
b=(pb,Gb) is an element of S= R+×(2G-{∅}). Let B be a
subset of S. A set F⊆B is said to be feasible if ∀b,c≠b∈F
Gb∩Gc=∅. Denote the set of all feasible allocations for B
by Φ(B). Further, let G(B)=∪b∈BGb be the set of goods
contained in the bids of B.

[Problem] Find an allocation W∈Φ(B) such that
∀F∈Φ(B) ∑b∈Fpb≤∑b∈Wpb. Such an allocation is said to be
optimal or revenue maximizing.

What kind of value interrelation between goods can be
represented by the bids defined above? Clearly, comple-
mentary values are easily accommodated. Suppose a bid-
der bids $20 for each of {g} and {h}, and $50 for {g,h}. In
this case any revenue-maximizing algorithm will correctly
select the {g,h} bid instead of {g} and {h}.

This bid format is also sufficient for representing sub-
stitutability through an encoding trick. Suppose a bidder is
willing to pay $20 for {g} and $30 for {h} but only $40 for
{g,h}. In this case, bids cannot be submitted as before
since the revenue-maximizing algorithm would select the
pair {g} and {h} over {g,h}, charging the bidder $50 in-
stead of $40 for g and h. However, this problem can be
solved by the introduction of ‘dummy goods’—virtual
goods that enforce an exclusive-or relationship. (Each
dummy good must appear only in a single bidder’s bids.)
In our example, the bidder could submit the following
bids: ($20, {g,d}), ($30, {h,d}), and ($40, {g,h}) where d
is a new, unique dummy good. The first two bids are now
mutually exclusive and so will never be allocated together.
This technique can lead to a combinatorial explosion in the
number of bids if many goods are substitutable, but in
many interesting cases this does not arise.

4 CASS Algorithm
When the number of goods and bids is small enough, an
exhaustive search can be used to determine the optimal
allocation. We propose an algorithm, Combinatorial
Auction Structured Search (CASS), presented as a naïve
brute-force approach followed by four improvements.
CASS considers fewer partial allocations than the
brute-force method because it structures the search space
to avoid considering allocations containing conflicting
bids. It also caches the results of partial searches and
prunes the search tree. Finally, it may be used as an any-

4 We do not analyze the impact of the approximation on the
equilibrium strategies in auction mechanisms such as GVA; we
will address this issue in a future paper.

time algorithm, as it tends to find good allocations quickly.

4.1 Brute-Force Algorithm
Suppose there are |G| goods 1, 2, ..., |G|, and |B| bids 1, 2,
…, |B|. First, bids that will never be part of an optimal
allocation are removed. That is, if for bid bk=(pk,Gk) there
exists a bid bl=(pl,Gl) such that pl >pk and Gl⊆Gk, then bk is
removed because it can always be replaced by bl, in-
creasing revenue. Then for each good g, if there is no bid
b=(x,{g}) a dummy bid b=(0,{g}) is added.

Our brute-force algorithm examines all feasible alloca-
tions through a depth-first search. Let x be the first bid and
y be the last bid. Our implementation follows:

1. If x does not conflict with the current allocation, add
x to the current allocation

2. Increment x
3. If more bids can be added to the allocation, go to 2.
4. Update best revenue and allocation observed so far.
5. If y is contained in the current allocation, remove it,

set x=y+1 and repeat from 2.
6. Decrement y.
7. If y is not the first bid, go to 5.

4.2 Improvement #1: Bins
A great deal of unnecessary computation is avoided in the
brute-force algorithm by checking whether bids conflict with
the current allocation before they are added. However, work
is still required to determine that a combination is infeasible
and to move on to the next bid. It would be desirable to
structure the search space to reduce the number of infeasible
allocations that are considered in the first place.

We can reduce the number of infeasible allocations con-
sidered by sorting bids into bins, Di, containing all bids b
where good i ∈ Gb and for all j such that j∈[1, i-1], j ∉ Gb.
Rather than always trying to add each bid to our allocation,
we add at most one bid from every bin since all bids in a
given bin are mutually exclusive.

In fact, we can often skip bins entirely. While considering
bin Di, if we observe that good j>i is already part of the al-
location then we do not need to consider any of the bids in Dj.
In general, instead of considering each bin in turn, skip to Dk

where k∉G(F) and ∀i<k, i∈G(F).

4.3 Improvement #2: Caching
Let Fi be the partial allocation under consideration when Di is
reached during a search. Define Ci ⊆ G(Fi) where ∀j ∈ G(Fi),
j>i ↔ j ∈ Ci. Note that there are many different partial al-
locations Fi1, Fi2, etc., that share the same Ci, and that if
Ci1=Ci2 then the search trees for Fi1 and Fi2 are identical
beyond Di. It is therefore possible to cache partial searches
based on Ci. However, caching all possible values of Ci

would require a cache of size 2|G|-(i-1), which would quickly
become infeasible. Therefore, we only cache when Ci in-
cludes no more than k goods, where k is a threshold defined at

runtime for each bin. Di requires a cache of size
∑
=

 −k

j j

iG

0

|| .

4.4 Improvement #3: Pruning #1
Performance can be improved by backtracking whenever a
given search path is provably unable to lead to a new best
allocation. We can prune whenever C (Fi1) ⊂ C (Fi2) and
p(Fi2) + p(cache (Fi1)) ≤ bestAllocation. In this case, the sum
of the revenue from the cached path beyond Fi1 and the
revenue leading up to Fi2 is less than the revenue from the
best allocation seen so far. Since Fi1 allocates a superset of
the goods allocated in Fi2 (thus overestimating revenue), a
better allocation would not be found by expanding Fi2.

4.5 Improvement #4: Pruning #2
We can also backtrack when it is provably impossible to
add any bids to the current allocation to generate more
revenue than the current best allocation. Before
starting the search we calculate an overestimate of the
revenue that can be achieved with each good, o(g) =

||/)(max
|

b
bgb

Gbp
∈

. o(g) is the largest average price per bid

of bids containing good g. We backtrack at any point
during the search with allocation F if p(F) + ∑

∉Fg

go)(≤

p(best_allocation). This technique is most effective when
good allocations are found quickly. Finding good alloca-
tions quickly is also useful if a solution is required before
the algorithm has completed (i.e., if CASS is used as an
anytime algorithm). We have found that good allocations
are found early in the search when the bids in each bin are
ordered in descending order of average price per good.
Similarly, the pruning technique is most effective when
the unallocated goods are those with the lowest o(g) val-
ues. To achieve this, we reorder bins so that for any two
bins i and j, o(gi) > o(gj) ↔ i < j.

5 VSA Algorithm
Our second algorithm is called Virtual Simultaneous
Auction (VSA). This market-based method was inspired
by market-oriented programming [Wellman, 1993; Mullen
and Wellman, 1996] and the simultaneous ascending auc-
tion [Milgrom, 1998]. VSA generates a virtual simulta-
neous auction from the bids submitted in a real combina-
torial auction, then simulates the virtual auction to find a
good allocation of goods in the real auction.

5.1 Algorithm
First, a virtual simultaneous auction is generated based on
the bids submitted in a real combinatorial auction. For
each bid b=(pb,Gb) a virtual bidder vb is created. The vir-
tual bidders compete in a virtual simultaneous auction that
has multiple rounds. Each virtual bidder vb tries to win all
the goods in Gb for the price pb on an all-or-nothing basis.
The virtual auction starts with no goods allocated and the

prices of all goods set to zero. The simultaneous auction is
repeated round by round until either an optimal allocation
is found or a pre-set time deadline is reached. In the latter
case the current best allocation is adopted as the final
result.

Each round of VSA has three phases: the virtual auction
phase, the refinement phase and the update phase. In the
virtual auction phase each virtual bidder bids for the goods
they want. Each individual good is allocated to the highest
bidder. If a bidder succeeds in winning all desired goods,
that bidder becomes a temporary winner. Otherwise the
bidder becomes a temporary loser and returns all allocated
goods to the auctioneer. In the refinement phase each of
the losers is examined in a random order to see whether
making that agent a temporary winner (and consequently
making a different winner into a loser) would increase
global revenue. If so, the list of winners is updated. Fi-
nally in the update phase the current highest price of each
good is changed to reflect the price that its current winner
bid. The current highest price for unallocated goods is
reset to zero.

Virtual bidders in VSA follow a simple strategy. If a
bidder was the temporary winner in the previous round, the
bidder does not bid in the current round. Otherwise, agents
calculate the sum of the current highest prices of the goods
required. If the sum exceeds an agent’s budget, the agent
does not bid because the agent will not be able to acquire
all the goods simultaneously. If the sum is less than the
budget, the agent bids such that the surplus (budget - sum)
is equally divided among the goods.

5.2 Properties
In certain circumstances, VSA will find an optimal allo-
cation. Additionally, it is sometimes possible to detect if
an optimal allocation has been found, allowing the virtual
auction to end before the deadline.

[Theorem] If no virtual bidder bids in a round in the vir-
tual auction, the current set of winners is optimal.

[Proof] Assume that no agents bid in a given round. De-
fine the function that calculates the revenue of an alloca-
tion F by r(F)=∑b∈Fpb and let O denote the optimal set of
winners. Split the current set of winners W into two parts
O1 and W2 such that O1=O∩W and W2=W∩¬O1. Also split
O into O1 and O2 such that O1 is defined as before and O2 =
O ∩ ¬O1. Further, split G into G1 and G2 such that
G1=∪b∈O1Gb and G2=G∩¬G1. By the assumption, for each
currently losing bidder, the sum of the current highest
prices of the goods needed exceeds the bidder’s budget.
This is especially true for bidders in O2, i.e., ∀b∈O2

pb<∑g∈Gbhg where hg is the current highest price of good g.
It follows that r(O2) = ∑b∈O2pb ≤ ∑b∈O2∑g∈Gbhg ≤ ∑g∈G2hg =
∑b∈W2∑g∈Gbhg = ∑b∈W2pb = r(W2). (Remember that the
minimum price of a good that is not allocated to any agent
is zero and agents always bid their entire budgets.) The
inequality means that W is optimal because r(O) =
r(O1)+r(O2) ≤ r(O1)+r(W2) = r(W).

However, there is no guarantee that auctions will always

finish, even if an optimal allocation is found.

[Theorem] There exists a set of bids B such that at least
one virtual bidder always bids in every round of the virtual
auction no matter what bidding strategy is used.

[Proof] Suppose B={a,b,c} where a={pa, {1,2}}, b={pb,
{2,3}}, and c={pc, {3, 1}}. Suppose further that pa < pb +
pc, pb < pc + pa, and pc < pa + pb. Because the real bids are
mutually exclusive, at most one virtual bidder becomes the
temporary winner. If none is winning, h1=h2=h3=0 and all
the bidders bid in the current round. Assume here that
bidder a is currently winning. Then h1+h2=pa and h3=0.
Assume that neither b nor c bids in the current round. Then
for each of b and c, the sum of the prices of goods needed
must be larger than or equal to the budget, i.e.,
h2+h3=h2≥pb and h3+h1=h1≥pc. This means that pa =
h1+h2≥pb+pc and contradicts pa<pb+pc. This argument
doesn't depend on the bidding strategy as long as an agent
bids if and only if their budget exceeds the sum of the
minimum prices of the goods needed.

It is this property that makes the refinement phase of
VSA important. Consider the case B=B1∪B2∪... where
∀i,j G(Bi)∩G(Bj)=∅, |Bi|=3 and each Bi satisfies the con-
dition from the proof above. If we omit the refinement
phase then the winner in each subset changes every round
except the case where there is no winner. Therefore, an
optimal global allocation is examined only when in every
subset the optimal winner is temporarily winning. Such
synchronization is unlikely to occur unless the number of
subsets is very small. The refinement phase causes the
optimal winners to become the temporary winners in every
round, leading to an optimal allocation even though it is
not detected as optimal. (In some cases where ∃i,j
G(Bi)∩G(Bj)≠∅ or |Bi| > 3 an optimal allocation may be
impossible to achieve regardless of the time limit.)

6 Experimental Evaluation
As we have not yet determined each algorithm’s formal
complexity characteristics we conducted empirical tests.
We evaluated (1) how running time varies with the number
of bids, and (2) how percentage optimality of the best
allocation varies with time, given a particular bid distri-
bution and a fixed number of bids and goods.

6.1 Assumptions and Parameters
The space of this problem is large. Roughly speaking it has
three degrees of freedom: the number of goods, the num-
ber of bids and the distribution of bids. Most problematic
among these is the distribution. Precisely because of the
computational complexity of combinatorial auctions there
is little or no real data available. In the absence of such
data we tested our algorithms against bids drawn randomly
from specific distributions.

Throughout the experiments we used the following
two distribution functions to determine how often a
bid for n goods appears. The first is binomial,
fb(n)=pn(1-p)N-nN!/(n!(N-n)!), p=0.2, in which the prob-

ability of each good being included in a given bid is in-
dependent of which other goods are included. The second
distribution is of exponential form, fe(n)=Ce-x/p, p=5,
representing the case where a bid for n+1 goods appears
e-1/p times less often than a bid for n goods. The prices of
bids for n goods is uniformly distributed between
[n(1-d), n(1+d)], d=0.5.

We do not present any experiments varying the number
of goods in this paper because of space constraints. We
found that for both CASS and VSA running time increased
exponentially with the number of goods.

We ran our experiments on a 450MHz Pentium II with
256MB of RAM, running Windows NT 4.0. 30 MB of
RAM was used for the CASS cache. All algorithms were
implemented in C++.

6.2 Results
To answer question (1) we measured the running time of
CASS, VSA and the brute-force algorithm. Since VSA is
not guaranteed to reach the optimal revenue, it was passed
this value—calculated by CASS—and stopped when it
found an allocation with revenue of at least 95% of opti-
mal. All the results reported here are averages over 10
different runs. Figure 1 shows running time as a function
of the number of bids with a binomial distribution, with
the number of goods fixed at 30. Figure 2 shows the same
thing for an exponential distribution, without the
brute-force algorithm. To answer question (2), we
measured the optimality of the output of both VSA and
CASS as a function of time. Figure 3 shows both algo-
rithms’ performance with 15000 bids for 150 goods with a
binomial distribution and Figure 4 shows 4500 bids for 45
goods with an exponential distribution.

6.3 Discussion
CASS demonstrates excellent performance both in finding
optimal allocations and as an anytime algorithm. In Fig-
ures 1 and 2 CASS remains roughly an order of magnitude
faster than VSA as the number of bids increases. Both
curves appear to grow sub-linearly on the logarithmic
graph, suggesting polynomial-time performance. As the
size of the problem is increased (Figures 3 and 4) CASS
still performs better than VSA for the binomial distribu-
tion, but initially offers worse anytime performance for the
exponential distribution. These results—and other ex-
periments we have conducted—suggest that VSA is most
likely to outperform CASS when the number of goods is
relatively large compared to average bid length. (Note that
VSA runs to a time limit, so the point at which VSA’s
curve ends is not meaningful.)

CASS’s effectiveness is strongly influenced by the
distribution of bids, particularly as the number of goods
increases. If bids contain a large number of goods on
average, improvement #1 will have a substantial effect
because more bins will be skipped between every pair of
bins that are considered, eliminating the need to indi-
vidually examine all the bids in those bins. However, our

0.0 01

0 .01

0.1

1

10

1 00

0 50 0 1 00 0 15 00 20 00 2 50 0 30 00

B id s (a lw ay s 3 0 g o o d s)

V SA (9 5%) C A S S B rute F o rce

Figure 1: Running Time Comparison (Binom. Dist.)

0.001

0 .01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Bids (a lw ays 30 goods)

VS A (95%) CA S S

Figure 2: Running Time Comparison (Exp. Dist.)

0.6 5

0.7 5

0.8 5

0.9 5

0 5 0 1 00 15 0 2 00

T im e (se c) - 15 0 g o o d s, 15 00 0 b id s, b in o m ia l d is trib .

V SA C A S S

Figure 3: Anytime Behavior (Binom. Dist.)

0 .9

0.9 5

1

0 1 00 2 00 30 0 4 00 50 0 6 00

T im e (s ec) - 4 5 g o o d s, 45 00 b id s , e xp o n e n tia l d is trib .

VS A C A SS

Figure 4: Anytime Behavior (Exp. Dist.)

caching scheme favors distributions with small bids be-
cause they increase the likelihood that partial allocations
will be cacheable. The pruning technique described in 4.4
reduces the number of nodes that are cached, lowering

memory consumption and making CASS feasible for lar-
ger problems. Our second pruning technique often im-
proves performance by two orders of magnitude, though it
is most effective when the variance of average price per
bid is relatively small. This technique also reduces the
optimal cache size, further reducing memory consumption.
As a result of pruning, with pruning the amount of memory
available for caching does not seem to be a limiting factor
in CASS’s performance.

VSA is interesting for two reasons. Firstly, it appears to
offer good anytime performance in cases with small bids
and many goods. Secondly, it provides a case study in the
power of market-based optimization. Further work is
needed to reach firm conclusions, but it appears that as a
centralized optimization method VSA is overshadowed by
other techniques. However, other attractions of mar-
ket-based optimization—in particular its inherent distrib-
uted nature and robustness to change in problem specifi-
cation—may make VSA attractive for some domains.

7 Related and Ongoing Work
As far as we are aware, the work most directly relevant to
the ideas presented here is a paper by Sandholm [1999]
that appears in these proceedings. Sandholm’s Bidtree
algorithm appears to be closely related to CASS, but im-
portant differences hold. In particular, Bidtree performs a
secondary depth-first search to identify non-conflicting
bids, whereas CASS’s structured approach allows it to
avoid considering most conflicting bids. Bidtree also
performs no pruning analogous to our Improvement #3
and no caching. On the other hand, Bidtree uses an IDA*
search strategy rather than CASS’s branch-and-bound
approach, and does more preprocessing. We intend to
continue studying the differences between these algo-
rithms, including differences in experimental settings.

Our problem can of course be abstracted away from the
auction motivation and viewed as a straightforward com-
binatorial optimization. This suggests a wealth of litera-
ture that could be applied. We are currently implementing
some of these techniques and comparing them to our
present results. We are especially interested in compari-
sons with mixed-integer programming and greedy meth-
ods. In particular, we have been investigating a new al-
gorithm5 that orders bids in descending order according to
average price per good, and does a depth-first search with
extensive pruning. This algorithm appears to offer per-
formance similar to CASS, and we intend to report on it in
a follow-up paper.

8 Conclusion
We have proposed two novel algorithms to mitigate the
computational complexity of combinatorial auctions.

CASS determines optimal allocations very quickly, and
also provides good anytime performance. In the future we

5 This ongoing work is joined by Liadan O’Callaghan and
Daniel Lehmann.

intend to pursue a formal analysis of CASS’s computa-
tional complexity, and to test both CASS and VSA with
data collected from real bidders.

VSA can determine near-optimal allocations even in
cases with hundreds of goods and tens of thousands of bids.
Since it has been infeasible to run CASS on much larger
problems we do not yet know how close VSA comes to
optimality in these cases. An investigation of VSA’s limits
remains an area for future work.

References
[Banks, et al., 1989] Jeffrey S. Banks, John O. Ledyard, and
David P. Porter. Allocating uncertain and unresponsive re-
sources: an experimental approach. RAND Journal of Economics,
20(1): 1-25, 1989.

[Brewer and Plott, 1996] P.J. Brewer and C.R. Plott. A binary
conflict ascending price (BICAP) mechanism for the decentral-
ized allocation of the right to use railroad tracks. International
Journal of Industrial Organization, 14:857-886, 1996]

[Bykowsky et al., 1995] Mark M. Bykowsky, Robert J. Cull, and
John O. Ledyard. Mutually destructive bidding: the FCC auction
design problem. Social science working paper 916, California
Institute of Technology, 1995.

[Clearwater, 1996] Scott H. Clearwater, editor. Market-Based
Control: A Paradigm for Distributed Resource Allocation.
World Scientific, 1996.

[Cortese and Stepanek, 1998] Amy E. Cortese and Marcia Ste-
panek. Good-bye to fixed pricing? Business Week, pages 71-84,
May 4, 1998.

[Mas-Colell et al., 1995] Andreu Mas-Colell, Michael D.
Whinston, and Jerry R. Green. Microeconomic Theory. Oxford
University Press, New York, 1995.

[Milgrom, 1998] Paul Milgrom. Putting auction theory to work:
the simultaneous ascending auction. Working paper 98-002,
Dept. Economics, Stanford University, 1998.

[Mullen and Wellman, 1996] Tracey Mullen and Michael P.
Wellman. Some issues in the design of the market-oriented
agents. In M.J. Wooldridge, J.P. Muller, and M. Tambe, editors,
Intelligent Agents II: Agent Theories, Architectures, and Lan-
guages. Springer-Verlag, 1996.

[Rothkopf et al., 1995] Michael H. Rothkopf, Aleksandar Pekeč,
and Ronald M. Harstad. Computationally manageable combi-
natorial auctions. DIMACS Technical Report 95-09, April 1995.

[Sandholm, 1999] Tuomas Sandholm. An algorithm for optimal
winner determination in combinatorial auctions. Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI-99), Stockholm, 1999.

[Varian, 1995] Hal R. Varian. Economic mechanism design for
computerized agents. In Proceedings of the First Usenix Con-
ference on Electronic Commerce, New York, July 1995.

[Wellman, 1993] Michael P. Wellman. A market-oriented pro-
gramming environment and its application to distributed mul-
ticommodity flow problems. Journal of Artificial Intelligence
Research, 1:1-23, 1993.

