
CPSC-320: Intermediate Algorithm Design and Analysis 10

.

Motivation; Introduction and

Mathematical Foundations

CPSC-320: Intermediate Algorithm Design and Analysis 11

Introduction and Motivation

To introduce you to what you will learn in this course, we’ll

look at a couple of simple puzzles.

? Puzzle 1: You have a seven link chain. You want

to cut this chain such that you can give a person one

link one night, then two links the next night, and so on

up to seven links on the seventh night. Your goal is to

minimize the number of cuts.



CPSC-320: Intermediate Algorithm Design and Analysis 12

? Puzzle 2: You are given 12 golf balls, one of which is

heavier than the rest, and a balancing scale. You want to

find the heavier ball, using as few weighings as possible.

CPSC-320: Intermediate Algorithm Design and Analysis 13

In this course, for several problem domains, we are given

• A computational problem to solve (i.e. given an

input produce an output).

• A “model of computation” i.e. a set of allowable

operations.

• A resource to measure.

Our goal is to design an algorithm that solves the problem

using the model, while minimizing the resources used.

? Puzzle 1 (seven links problem):

• Input:

• Output:

• Allowable operation:

• Measurable resource:



CPSC-320: Intermediate Algorithm Design and Analysis 14

The situation is somewhat different for the problems we

will study, because a computational problem is a set of

instances of varying sizes. As a result, the algorithm must

be designed to handle all possible input sizes. For this rea-

son, we typically measure the resources used as a function

of the size of the instance. (Think about the golf ball prob-

lem with n balls.) Examples of the types of problems to be

studied during the semester are:

1. Problems on Sorting and Searching.

? Sorting problem:

• Input: Array of n integers.

• Output:

• Allowable operation:

• Measurable resource:

CPSC-320: Intermediate Algorithm Design and Analysis 15

2. Problems on Graphs. Graphs can be used to model

all kinds of interesting problems. Think of the World

Wide Web as a graph and all sorts of prob-

lems arise. e.g., how to compute the shortest path

between a given pair of nodes, or how to compute the

likelihood that a node (webpage) will be visited.

3. Problems on Strings. An example of a problem in

this area that you should be familiar with from using ed-

itors is: given a pattern and a text file, find all instances

of the pattern in the text file. Text compression is an-

other example that is becoming increasingly important.

Algorithms for comparing strings have myriad applica-

tions in computational biology, such as in sequencing the

human genome.

4. Problems in Algebra and Number Theory.

Number theory algorithms are the basis for public key

cryptosystems.



CPSC-320: Intermediate Algorithm Design and Analysis 16

For each problem domain, we will be interested in the fol-

lowing:

1. Algorithm design. The goal is to design an algorithm

that minimizes some resource, as a function of input

size. Coming up with good algorithms for these problem

domains can be tricky. But there is a handful of design

techniques that we will learn, which are useful for a wide

variety of problems.

2. Reasoning about the correctness of algorithms.

Once you have a promising-looking algorithm, how do

you know if it is correct? We’ll look at ways of testing

and verifying that algorithms are correct.

3. Algorithm analysis. Once you believe your algorithm

is correct, how do you measure the resources used? Tools

that will help us with this include solving recurring

relations and finding closed-form expressions for

summations. We will also be interested in comparing

CPSC-320: Intermediate Algorithm Design and Analysis 17

algorithms, in terms of the resources used, to see which

is better. O-notation will be very helpful for this pur-

pose. We will usually be concerned with two types of

analysis:

•Worst case analysis. For example, suppose we

are analyzing a sorting algorithm and are counting

the number of swaps done. It may be the case that

the number of comparisons done by the algorithm

on an array of n elements depends on the relative

order of the elements initially in the array. When

doing worst case analysis, we want to know what

is the maximum number of comparisons that the

algorithm does, over all possible input arrays with n

elements.

• Average case analysis is often concerned with

estimating the expected number of comparisons (as

a function of n), averaged over all possible inputs of

size n.



CPSC-320: Intermediate Algorithm Design and Analysis 18

4. Lower bounds. Finally, how do you know that your

algorithm is the best possible, in terms of minimizing the

required resources? For some problems, we will develop

lower bounds towards this end.

CPSC-320: Intermediate Algorithm Design and Analysis 19

Summations

The next lectures will cover mathematical background that

is used in analyzing algorithms, starting with summations.

? Example 1:
n∑

i=1

i.

Take the following simple code segment:

for i← 1 to n do

for j ← i to n do

[code]

How many times is [code] executed?



CPSC-320: Intermediate Algorithm Design and Analysis 20

We are interested in finding a closed form expression for

this summation. That is, we’d like to express the summation

as a function of n. With the closed form expression in hand,

it is easier to compare the number of times [code] is executed

by this algorithm with other algorithms, for example.

You may have seen this summation before and recall that

the solution is
n∑

i=1

i =
n(n + 1)

2
.

In general, if you have a guess as to what the solution of a

summation is, you may be able to use proof by induction

to prove that your answer is correct. It is handy to be able

to use proof by induction in this way, since often you vaguely

remember the closed form expression for a summation but

may not be sure you remember it correctly.

CPSC-320: Intermediate Algorithm Design and Analysis 21

? Claim:
n∑

i=1

i =
n(n + 1)

2

Proof:

Basis: First we prove that the claim is true for some n,

say n = 1:

Induction Step: Now we assume that the claim is true for

n, and prove that it is true for n + 1:

Therefore,
n∑

i=1

i =
n(n + 1)

2
for all n.



CPSC-320: Intermediate Algorithm Design and Analysis 22

If you are not already familiar with the summation of ex-

ample 1, you can derive it using a geometrical approach. If

the code segment: (for j ← i to n do) began at 1, instead

of at i, [code] would be executed n2 times. The graphical

representation would look like a square of dots.

• • • •
• • • •
• • • •
• • • •

But since the for loop starts at i, instead of 1, the actual

graphical representation would be a triangle of dots (basi-

cally, 1/2 of the square including the diagonal).

• • • •
• • •
• •
•

n2

2
+

n

2
=

n(n + 1)

2
.

CPSC-320: Intermediate Algorithm Design and Analysis 23

Still another approach is the method that Gauss employed

as a student: The story goes that he was given the task of

summing up all the numbers from 1 to 100. Rather than

tediously adding each number in sequence, Gauss observed

that if the numbers were paired as follows:

1 2 3 4 5 . . . 48 49 50

100 99 98 97 96 . . . 53 52 51

the sum of each numbered pair equaled 101, and there were

50 pairs of numbers. He then proceeded to calculate 101 ×
50 = 5050. More generally with n numbers (n even) the

sum is

(n + 1) · n
2

=
n(n + 1)

2
.



CPSC-320: Intermediate Algorithm Design and Analysis 24

? Example 2:

How many subsquares of size 1× 1, 2× 2, . . . are there

in an n× n square?

• • • •
• • • •
• • • •
• • • •

Can you find a summation whose value is the desired

number of subsquares? Can you find a closed form ex-

pression for this summation? One way to approach this

problem is to consider small values of n.

• For n = 2: 4 (1× 1) and 1 (2× 2) squares.

• For n = 3:

• For n = 4:

• It is starting to look like the number of squares in

an n× n square is

CPSC-320: Intermediate Algorithm Design and Analysis 25

Here is another approach to answering this question. Each

k × k square to be counted has a unique dot of the grid as

its top left corner. How many dots from the first row can be

the top left dot of some k × k square?

? Consider the case k = 2 first.

An extension of this argument shows that there are (n−k +

1)2 k × k squares. To sum up all the squares, we can let k

run from 1 to n (the smallest-sized square to the largest-sized

square, respectively). Hence, the total number of squares is



CPSC-320: Intermediate Algorithm Design and Analysis 26

?

We need to find a “closed form” expression for
∑n

k=1 k2.

Since
∑n

k=1 k is a quadratic polynomial in n, a reasonable

guess is that
∑n

k=1 k2 is a cubic polynomial, i.e. of the form

An3 + Bn2 + Cn + D,

where A, B, C and D are constants to be determined. If

we can generate four independent equations containing our

four unknowns, we can solve these to compute A, B, C and

D. The four independent equations can be generated by

letting n in the summation take on four different values, for

simplicity, say 1, 2, 3 and 4. This gives us

CPSC-320: Intermediate Algorithm Design and Analysis 27

?

n = 1 :
1∑

k=1

k2 = 1 =

n = 2 :

2∑

k=1

k2 = 12 + 22 =

n = 3 :
3∑

k=1

k2 = 12 + 22 + 32 = 14 =

n = 4 :

4∑

k=1

k2 =

Solving the four independent equations simultaneously yields

A = 1/3, B = 1/2, C = 1/6, D = 0. Therefore

n∑

k=1

k2 =
1

3
n3 +

1

2
n2 +

1

6
n + 0

= · · · (algebraic manipulation) · · ·

=
n(n + 1)(2n + 1)

6
.



CPSC-320: Intermediate Algorithm Design and Analysis 28

So, if our guess (that
∑n

k=1 k2 is a cubic polynomial) is

correct, we have the desired closed form expression. Since

the answer is based on a guess, though, we still haven’t

proved that
∑n

k=1 k2 = n(n+1)(2n+1)
6 . Luckily, we can now

use proof by induction (as in the previous summation) to

verify that this is correct.

Lower and Upper Bounds

We next show simple upper and lower bounds on
∑n

k=1 k2.

For an upper bound:

?

CPSC-320: Intermediate Algorithm Design and Analysis 29

and for a lower bound:

?

Therefore, by just calculating very rough bounds, we can

see that the n3 term in our guess for the polynomial falls

within these bounds. If our main interest is not in exact

numbers, but rather in finding the order of the growth rate of

our summations, these bounds show us that the summation
∑n

k=1 k2 has a growth rate proportional to the function n3.

(More on this in the next lecture.) Throughout this course,

we will be making these “back of the envelope” estimations.


