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Directed graphical models

• Directed acyclic graph (DAG)
– Nodes– random variables

– Edges– direct influence (“causation”)

• X i independent of Xancestors| Xparents

Earthquake Burglary

AlarmRadio

• Simplifies chain rule by using 
conditional independencies

AlarmRadio

Call







Markov blankets for DAGs
• The Markov blanket of a node is the set that renders 

it independent of the rest of the graph.

• This is the parents, children and co-parents.

p(Xi|X−i) =
p(Xi, X−i)∑
x p(Xi, X−i)

p(Xi, U1:n, Y1:m, Z1:m, R)

∑

=
p(Xi, U1:n, Y1:m, Z1:m, R)∑
x p(x, U1:n, Y1:m, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]P (U1:n, Z1:m, R)∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x, Zj)]P (U1:n, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x, Zj)]

p(Xi|X−i) ∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj)

Useful for Gibbs sampling



Inference
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Explaining away effect 

P(E=t|C=t,R=t)=0.97 P(B=t|C=t,R=t) = 0.1



Example model

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)



Joint distribution

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040



Inference

• Prior that sprinkler is on

p(S = 1) =

1∑

c=0

1∑

r=0

1∑

w=0

p(C = c, S = 1, R = r,W = w) = 0.3

p(S = 1|W = 1) =
p(S = 1,W = 1)

p(W = 1)
= 0.43

• Posteriorthat sprinkler is on given that grass is wet

• Posterior that sprinkler is on given that grass is wet 
and it is raining

p(S = 1|W = 1, R = 1) =
p(S = 1,W = 1, R = 1)

p(W = 1, R = 1)
= 0.19

Explaining away!



Directed graphical models
• A prob distribution factorizes according to a DAG 

if it can be written as

where πj are the parents of j , and the nodes are 
ordered topologically (parents before children). 

p(x) =

d∏

j=1

p(xj |xπj )

ordered topologically (parents before children). 
Each row of the conditional
probability table (CPT) defines
the distribution over the child’s
values given its parents values.
The model is locally normalized.

p(x1:6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)

p(x5|x3)p(x6|x2, x5)



Efficient inference in DAGs



Efficient inference in DAGs



Efficient inference in DAGs



Junction tree algorithm



Diagnoses



Microsoft Windows Printer Troubleshooter
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Pedigree tree
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Latent variables



Plates



Hidden Markov Models (HMMs)



Hidden Markov Models (HMMs)



Hidden Markov Models (HMMs)



Hidden Markov Models (HMMs)



HMMs



Dynamic Bayesian networks

Y1 Y3

X1 X2 X3

Y2

Unknown player location

Observed video frames



Dynamic Bayesian networks

X1 X2 X3
Unknown robot location

M1 M2 M3
Unknown map

Y1 Y3Y2
Sensor readings



Dynamic Bayesian networks

X1 X2 X3

Unknown continuous signals

M1 M2 M3
Unknown internal discrete state

Y1 Y3Y2
Sensor readings



Sequential problems



Sequential problems



Kalman Filtering





Kalman Filtering
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