

CPSC540

Decision trees

Outline of the lecture

This lecture provides an introduction to decision trees. It discusses:

- ☐ Decision trees
- ☐ Using reduction in entropy as a criterion for constructing decision trees.
- ☐ The application of decision trees to classification

Motivation example 1: object detection

Motivation example 2: Kinect

Image classification example

[MSR Tutorial on decision forests by Criminisi et al, 2011]

Classification tree

A generic data point is denoted by a vector $\mathbf{v} = (x_1, x_2, \dots, x_d)$ $\mathcal{S}_j = \mathcal{S}_j^{\mathsf{L}} \cup \mathcal{S}_j^{\mathsf{R}}$

Another commerce example

From a spreadsheet to a decision node

Examples described by attribute values (Boolean, discrete, continuous, etc.)

E.g., situations where will/won't wait for a table:

Example					Attributes				D		Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
$\rightarrow X_1$	→T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	l hai	<i>30–60</i>	— F ●
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T •
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Eull	<i>\$\$\$</i>	F	Ŧ	French	>60	F ●
X_6	F	T	F	Τ	Some	<i>\$\$</i>	T	T	Italian	0–10	T_
X_7	F	T	F	F	Von	\$	7	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T •
X_9	F	T	T	F	Fall	\$	T	F	Burger	>60	F 🕨
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F.
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Classification of examples is positive (T) or negative (F)

[AI book of Stuart Russell and Peter Norvig]

How do we construct the tree? i.e., how to pick attribute (nodes)?

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives **information** about the classification

For a training set containing
$$p$$
 positive examples and n negative examples, we have:
$$H(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

How to pick nodes?

- \square A chosen attribute A, with K distinct values, divides the training set E into subsets E_1, \ldots, E_K .
- The Expected Entropy (EH) remaining after trying attribute A (with branches i=1,2,...,K) is

ches
$$i=1,2,...,K$$
) is
$$EH(A) = \sum_{i=1}^{K} \underbrace{\frac{p_i + n_i}{p_i + n_i}}_{p_i + n_i} H(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

☐ Information gain (I) or reduction in entropy for this attribute is:

$$I(A) = H(\frac{p}{p+n}, \frac{n}{p+n}) - EH(A)$$

☐ Choose the attribute with the largest I

Example

☐ Consider the attributes *Patrons* and *Type* (and others too):

$$I(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6}, \frac{4}{6})\right] = 1541 \text{ bits}$$

$$I(Type) = 1 - \left[\frac{2}{12}H(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}H(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}H(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}H(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$

[Hwee Tou Ng & Stuart Russell]

Classification tree

A generic data point is denoted by a vector $\mathbf{v} = (x_1, x_2, \dots, x_d)$

$$\mathcal{S}_j = \mathcal{S}_j^{\mathtt{L}} \cup \mathcal{S}_j^{\mathtt{R}}$$

Use information gain to decide splits

Advanced: Gaussian information gain to decide splits

[Criminisi et al, 2011]

Each split node j is associated with a binary split function

$$I_j = H(\mathcal{S}_j) - \sum_{i \in \{L,R\}} \frac{|\mathcal{S}_j^i|}{|\mathcal{S}_j|} H(\mathcal{S}_j^i)$$

[Criminisi et al, 2011]

Alternative node decisions

$$\mathbf{v} = (x_1 \ x_2) \in \mathbb{R}^2$$

Next lecture

The next lecture introduces random forests.