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Abstract 
Email is more and more important in everybody’s life. Large quantity of 
emails makes it difficult for users to efficiently organize and retrieve. 
Although there are many text categorization methods, email categorization 
is still challenging, because of the large quantity of its unique 
characteristics. Our paper managed to provide extensive analysis of email 
categorization using real-world email message dataset from former Enron 
employees. Challenges of email categorization are discussed, which do not 
exist in traditional text categorization. Various design choices of email 
categorization are presented and two automated classification methods are 
tested: Wide-Margin Winnow (WMW) and Supported Vector Machine 
(SVM). We showed experimental results using both classifiers, discussed 
the cause of the result and lessons we learnt, and confirmed that our 
pre-processing and wide-margin winnow classifier outperformed existing 
system in reference paper. 

 

1  Introduction 
Nowadays, emails are becoming more and more important pervasive in people’s daily lives. 
People are usually overwhelmed by all kinds of email, some dealing with serious business, 
but also others, such as sign up information, ads, and spam, which is unexpected. 

The explosion of emails becomes a big burden for users to processs organize and retrieve 
them efficiently. To deal with this problem, users folders emails by categorize emails based 
on their topics and originals. Doing this manually is time consuming and not human friendly. 
Among all solutions, email automatic categorization is one of the most promising one. 

Whereas there are a lot great work on general text mining in the literatures, for example, 
categorize documents into different se-mantic topics (Lewis, 1992). More recently, 
Cohen(1996) considers a number of binary classification problems of one folder vs. all the 
other folders. Two classifiers, RIPPER and a tfidf. Naive Bayes are used in Provost (1999) 
and Rennie (2000). SVM is first adopted in Kiritchenko and Matwin (2001) for email 
foldering task. (Bekkerman et al., 2004), is the first work that presents an extensive 
benchmark test on four classifiers: Maximum Entropy, Naive Bayes, SVM and Winnow. 

 

The email foldering task has many challenges that distinguish it from traditional topic-based 
categorization. Here we list some of the challenges. First, almost all custom folders are 
created when a new message belongs to this topic arrives. While users keep creates new 
folder, old ones fall out of use. For messages belong to the same folder, the topics can vary 
as well. For example, for a graduate student, a folder named “research” can contain messages 
sent by his/her supervisor discussing research, which can be very technical, or messages sent 
by research group administrators announcing weekly research meetings, or travel 
information of a conference, etc. 

Second, email foldering strategies can be very different from one user to another. These 
differences arise from many facts, such as amount of preferred active folders, granularity of 
topic classification, classification criteria, folder structure (single level or nested structure). 
It might be interesting to see how different classifiers’ performance differs for different 



users. 

In addition, emails arrive in a stream over time, which may span a long period. Topics in one 
folder may shift as time passes, which makes emails received long time ago not suitable for 
training classifiers. We did not find any existing analysis to this problem, but this could be 
an interesting problem to investigate in the future. 

Last but not least, one problem in the email foldering area is that there is not much 
real-world, publicly accessible email dataset, which makes comparison of different 
classifiers very difficult. 

In this paper we present a comparative study of two email categorization methods: 
Wide-Margin Winnow (WMW) and Support Vector Machine (SVM). Followed by a brief 
description of the target dataset (Enron email dataset), we present various design choices 
regarding to target problem representation, data pre-processing and feature construction. A 
detailed description is provided on how the WMW is implemented and the way SVM is 
applied. We have shown that our WMW outperforms not only the existing SVM package, but 
also the previous email categorization work that uses WMW on the same dataset. I describe 
my evaluation method designed particularly for email categorization task, which divides a 
dataset into time-based data trunk and test classification performance on each chuck based on 
all previous chunks. 

The rest of the paper is organized as follows: Section 2 describes the data set and the way 
splitting the dataset into training and test set; Section 3 discusses various design choices for 
the experimental setup; Section 4 presents a detailed description of the classifiers adopted in 
this project, especially WMW; Section 5 reports and discusses the result obtained; and 
conclusions and future work are presented in the last section. 

 
2  Data set  description 
Since one of the challenges of email categorization is the lack of standard, publicly 
accessible real-world dataset on which different classifiers can be tested and compared. 
(Bekkerman et al., 2004) performs a benchmark test on two public email dataset: one from 
former Enron employees, another from participants in an SRI research project. Although the 
Enron dataset is still available, we failed to find the SRI dataset online. The Enron dataset is 
provided after some clean-up and removal of attachments. The version of the dataset I uses is 
released on August 21, 2009. 

 
3  Design choices 
Several main design choices are presented here in order to set up the email categorization task. 
These design choices considered different aspects of pre-processing, cleaning and organization. 
Usually, email data is unstructured and messy. All these design choices are made in order to 
provide clean and representative training and test data for the classifiers. 

 
3 . 1  T a r g e t  T r a i n i n g  U s e r s  

The dataset obtained from the web contains emails from 150 users, most of whom do not have 
enough messages to train the classifier. For experiment purpose, seven users who have most 
emails are selected: beck-s, farmer-d, kaminski-v, kitchen-l, lokay-m, sanders-r, williams-w3. 

 
3 . 2  R e m o v a l  o f  N o n - t o p i c a l  F o l d e r  

Non-topical folders are folders where the emails stored do not share the same topic. Common 
non-topic folders in a typical email system are Inbox, Sent Mail, Drafts and Trash, etc. The 
reason to remove these folders in the training case is because the emails in these folders do 
not share common topic, which is precisely the criteria most users adopt to categorize the 
email. Also, because it is unnecessary to assist users classifying email into these folders, 
perform training on these folders is meaningless in the first place. 



According to (Bekkerman et al., 2004), non-topic folders belong to three main categories: 
folders automatically created by email application (such as “inbox” and “sent”); folders that 
are standard for all the users of a certain organization (such as “all_documents” and 
“discussion_threads”); folders created by a particular user for archiving purpose. The first 
two types of non-topic folders are removed in the experiment. The third type of non-topic 
folder is remained mainly because the classifying strategy is different from one user to 
another. However, this type of personalization can be interesting potential future work. 

 
3 . 3  F l a t t e n  F o l d e r  S t r u c t u r e  a n d  R e m o v a l  o f  S m a l l  F o l d e r s  

Most users have email folder hierarchical trees: sub-folders can be created under existing 
folders to store messages which logically belong to the existing folder but share more 
specific common topics, such as sub-folder “Japan” under folder “Travelling”. 

The existence of sub-folder can make classification either easier or more difficult, depending 
on evaluation criteria. One may argue that if a message is misclassified, but into its parent 
folder or its sibling folders, fewer penalties should be enforced. However, from a 
user-centered design perspective, it is still expected that the message being classified exactly 
into the desired folder. Otherwise the user might be required to perform another manual 
classification so that future retrieval will be easier. Thus, I decide to flatten the folder 
structure so that all folders are treated equally. 

Folders with s small number of messages are commonly seen, and it is expected that the 
classifier can deal with these folders correctly. However, training dataset that is too small 
will not be able to train the classifier effectively. In my experiment, folders containing less 
than three messages are removed from the dataset. 

 
3 . 4  F e a t u r e  C o n s t r u c t i o n  

In most cases documents are represented as distributions over features, where features may 
be words, sequences of words, part-of-speech tags, word clusters, and so on. Document 
representations usually make a transformation of dimensionality reduction. 

In the pre-processing of dataset, I use Natural Language Toolkit (NLTK) as the main library 
for my flodering system. NLTK is a leading platform for building Python programs to work 
with human language data. It pro-vides easy-to-use interfaces to over 50 corpora and lexical 
resources such as WordNet, along with a suite of text processing libraries for classification, 
tokenization, stemming, tagging, parsing, and semantic reasoning. 

There are a lot of design choices in the feature construction. In the paper, I used the 
bag-of-words document representation: messages are represented as vectors of word counts. 
The steps of pre-processing are as follows. 

First, I consider words as sequences of alphabetic, digit and other punctuations that appear 
anywhere in the email header or body. Words are downcased, and Part-of-Speech tags 
method were applied on the words generated. 

Second, in general, words with tags of noun, adjective, verb and adverb are reserved, because 
they represent more concrete meaning that might be related to the topic. Others e.g. pronoun, 
preposition, article, conjunction interjection and most punctuation marks, are filtered out. 

In this step, I referred to Brown Corpus as the part-of-speech tags definition, and used 
Natural Language Toolkit (NLTK) 2.0 as our library for part-of-speech tagger, which is 
implemented in Python. It provides much finer classification mechanism. For example, a 
verb can be in its base form (VB), or can be in past participle (VBN). To be more specific, 
words with following tags are reserved: ABL, ABN, ABX, AP, CD, EX, FW, JJ, JJR, JJS, 
JJT, NC, NN, NN$, NNS, NNS$, NP, NP$, NPS, NPS$, NR, OD, PN, RB, RBR, RBT, RN, 
VB, VBD, VBG, VBN, VBP, VBZ. 

Third, grouping words of different forms together further reduces the dimensionality. For 
example, "describes" is a 3rd singular present verb, but it's exactly the same as the base form 
"describe". So "describes" is transformed to its base form "describe". The same procedure is 



applied for plural noun, past tense verb, morphologically superlative adjective, comparative 
adverb, etc. The library I used for this task is WordNet, also provided by NLTK 2.0. 

At last, I removed the 100 most frequent words from the training set, and the words that 
appear only once in the whole training set are removed. So the remaining words are counted 
in each message to compose a vector. 

Compared to the (Bekkerman et al., 2004), we applied part-of-speech tagger and WordNet to 
reduce the dimensionality of the training data, making the words more related. This extra 
step results in much better classification results compared to existing work, as can be seen in 
Section 5.  

 
4  Classif ier  description 
In this experiment, two classifiers are tested for the email categorization task: Support 
Vector Machine (SVM) and Wide-Margin Winnow (WMW), a variant of the Winnow 
classifier. 
 
4 . 1  W i d e - M a r g i n  W i n n o w  

Winnow belongs to the family of on-line learning algorithms, which means it attempts to 
minimize the number of incorrect guesses during training as training examples are presented to it 
one at a time. It has several important theoretical properties, including the ability to easily handle 
domains with sparse data and high dimensionality, such as text classification. Winnow is similar 
to a perceptron because it attempts to construct a linear separator for each class. As a matter of 
fact, Winnow is guaranteed to find a linear separator if it exists. It's different from the perceptron 
by doing multiplicative updates instead of additive updates of the weight vectors during training. 

My multi-class implementation of the Winnow algorithm is called Wide-Margin Winnow is 
learned from the reference paper (Bekkerman et al., 2004). The parameters used in my Winnow 
algorithm are as follows. Let c be the number of folders, m be the size of the feature space, and n 
be the number of training examples. I keep (m+1)-dimensional weight vectors w1, w2, …, wc, all of 
which are initialized to contain all 1's. Given a new example (x, y), Winnow guesses its label to be 
j = argmaxi=1,...,c{wi·x}. I performed t iterations through the training set, adjusting the weight 
vectors when its guesses are incorrectly (i.e., j != y). I adjusted the weight vectors by increasing wy 
and decreasing wj at those coordinates where x has non-zero feature values. The amount by which 
we adjust the weights depends on how many iterations we have made through the training data: 
during the p-th iteration, we increase weight wi,f by setting wi,f = wi,f(1+εαp) or decrease it by 
setting wi,f = wi,f(1-εαp). 

If there is not only one best j (i.e. tied for first place), I still increase the true weight vector, but 
decrease all the wrong guessed weight vectors. This is different from the original Wide-Margin 
Winnow algorithm designed in (Bekkerman et al., 2004). 

In addition, as an attempt to disambiguate all training examples, I use the following heuristic to 
keep wide margins between classes: instead of only adjusting weight vectors after an incorrect 
guess during training, I also adjust the weights when it barely gets the correct answer (i.e., when j 
= y but the ratio between the second and first largest dot products is bigger than δ. 

Another detail is that when we compute dot products, the vector x is augmented with an additional 
(m+1)-th feature whose value is always set to 1.0. This is used to make Winnow classify test 
examples as the largest class seen during the training time in the degenerate case when there are 
no relevant features.  

In this experiment, I set t = 5, ε = 0.5, α = 0.5, and δ = 0.5. The pseudo-code of the core 
implementation of Wide-Margin Winnow training algorithm is presented as below. The Winnow 
classifier is implemented in Python v2.7. 

 

 

 



 
Algorithm 1: The Wide-Margin Winnow algorithm 

Input: {(xk, yk)|k = 1, …, n} is training set 
Output: w1, …, wc are (m+1)-dimensional weight vectors for each category 
ε is weight adjustment rate 
α is the cooling rate 
δ is the confidence measure 
 
Initialize vectors w1, …, wc to all 1’s 
for  p from 1 to t 
for k from 1 to n 
    j = argmaxi=1, …, c{wi·xk} 
    j’=argsecondmaxi=1,…,c{wi·xk} 
    if j ≠ y 
        wy,f = wy,f (1+εαp) at those coordinates f where xk is non-zero 
        wj’,f = wj,f (1-εαp) at those coordinates f where xk is non-zero 
    else if wy·xk<δwj’·xk 
        wy,f =wy,f(1+εαp) at those coordinates f where xk is non-zero 
        wj’,f =wj,f(1-εαp) at those coordinates f where xk is non-zero 
 
Given an unseen example x, guess its label to be argmaxi=1, …,cwi·x 

 
4 . 2  S u p p o r t  V e c t o r  M a c h i n e  

The Support Vector Machine (Boser et al., 1992) is a very popular vector-space classification 
method widely used in areas such as text classification. The basic SVM takes a set of input 
data and predicts, for each given input, which of the two classes this data belongs to, making 
it non-probabilistic binary linear classifier. The goal of the two-class SVM is to find a 
maximum-margin hyperplane that separates training instances into two classes. By 
introducing various kernels, SVM can be used to perform nonlinear classification as well. 

In multiclass settings, the classification problem is decomposed to multiple binary 
sub-problems by observing one class vs. all the others. 

In this study, due to limited time range, instead of implementing m own SVM, one of the 
existing SVM packages, SVM light (version 2.20) by Thorsten Joachims (Joachims, 1999) is 
applied. There is existing work (Bekkerman et al., 2004) which uses the same package to 
perform email classification on the same dataset by using a two-class classifier. Instead, a 
multi-class classifier is used to see if it outperforms existing work. 

 
5  Experimental  results  and discussion 
 
5 . 1  T r a i n i n g / t e s t  s e t  s p l i t s  

In many classification settings, the standard training/test split is done uniformly at random. 
However, actually email datasets are constantly growing over time, so random splits may 
create unnatural dependencies of earlier email on later email. In this way, a more reasonable 
split would be the one that is based on time: train on earlier email, and test on later email. 

In addition, a serious problem of this approach can arise when the test set is large: topics 
discussed in email far in the future may have nothing in common with the email the classifier 
was trained on. Another problem occurs when some of the folders in the test set did not exist 
at training time. 

In this study, we propose an incremental time-based split similar to (Bekkerman et al., 2004): 
after sorting the messages according to their time stamp, we train a classifier on the first N 
messages and test it on the following N messages, then train on the first 2N messages and 
test on the following N messages, until we finally train on the first (K - 1) N messages and 
test on the rest of the messages. This approach provides a practical and intuitively clear split 



of the data that allows us to monitor the classifiers' performance as the number of messages 
increases over time. If a test set contains messages of a newly created folder, so that no 
messages of this folder have been seen in the training data, then such test messages are 
ignored in the accuracy calculation. We use N = 100 for Enron datasets. 

To address the problem of achieving statistically significant classification results using a 
time-based evaluation method, I average the results over all the training/test set splits. 
Intuitively, such averaging might appear inadequate, because we expect the system to 
improve its performance as the training set grows, but in practice this improvement is 
unlikely to occur, which in turn approves the applicability of the averaging approach. 

I use traditional classification accuracy as our evaluation method, which is getting the ratio 
of correctly classified instances to the total number of instances in the test set. And the 
correctly classified instance means the folder that has the largest possibility to be the correct 
one is just the actual correct folder. In this study, due to limited time range, instead of 
implementing m own SVM, one of the existing SVM packages, SVMlight (version 2.20) by 
Thorsten Joachims (Joachims, 1999) is applied. There already exists work (Bekkerman et al., 
2004) which uses the same package to perform email classification on the same dataset by 
using a two-class classifier. Instead, a multi-class classifier is used to see if it outperforms 
existing work. 
 
5 . 2  E x p e r i m e n t a l  R e s u l t s  

Figure 1 shows the results for each Enron user with both SVM and Winnow classifiers, X axis is 
the training dataset and Y axis is the accuracy. Each figure depicts the accuracy over the timeline 
for one user. Table 1 presents more detailed numerical results, with both mean and standard 
deviation available. 
 
5 . 3  D i s c u s s i o n  

From both Figure 1 and Table 1, it is obvious that Winnow outperforms SVM significantly, even 
for every user we tested. The performance of multi-class version of SVM light is worse than the 
binary version for the email foldering task on the Enron dataset. One of the reason may be that 
there are a bunch of free parameters needed to be tuned in SVM light.  One important parameter, 
trade-off between training error and margin, was extensively tested with a wide range of values 
(from 0.01 to 0.15), but we failed to find any significant difference. 

The Winnow classifier in this study is less accurate than the one presented in (Bekkerman et al., 
2004), but not much (the average accuracy of seven users is 5% lower than their result). The 
reason can been speculated from the graph: although there are many data points that are higher 
than 60%, there are still quite a lot of data points whose values are very low (lower than 40%), and 
some of which reaches zero. Data points with low values can occur because of various reasons. 
Below are some of my understandings worth mention.  

One reason is that email foldering task itself is challenging especially because different emails can 
have quite different words distribution, while semantically they are talking about similar topics. 
This indicates that using word count as features may not be adequate. 

The second reason might be the way that the dataset is split in each training/test case. It is actually 
very common for users to create a folder and classify incoming emails into this folder. What I 
found in the experiment is that for many test cases, while one hundred emails are presented, most 
of which belong to folders that do not exist in the training cases. Recall that these emails are not 
included in the actual test case, which results in very few test messages. For these cases, a small 
number of incorrect errors will decrease the accuracy dramatically. To fix this problem, a solution 
that might make more sense will be collecting legitimate emails until one hundred testing emails 
are available. 

 
6  Conclusion and future work 



  

  

  

 

Figure 1: Train/test split timeline results on 
Enron datasets. 

 
Table 1: Train/test split statistical results on Enron datasets. 

User beck-s farmer-d Kaminski-
v 

kitchen-l lokay-m sanders-r williams-
w3  

SVM 17.9±18.3 15.0±24.0 7.0±9.5 12.0±18.9 15.3±16.5 40.5±34.3 14.3±31.2 
WMW 46.7±35.5 68.0±32.4 62.5±27.8 40.0±32.7 74.8±26 59.7±35.6 92.4±22.9 



In our study, the problem of email foldering is analyzed in detailed, especially various challenges 
which make it more difficult than general text categorization tasks. Various designed choices are 
discussed, including introducing Part-of-Speech Tagger and WordNet for pre-processing. Two 
methods, Wide-Margin Winnow and Support Vector Machine are tested on seven users of the 
Enron email dataset. The experimental results are analyzed in detail, and some observations from 
the results are presented and discussed. 

For future work, there are some other classifiers we can apply to perform email foldering task, 
such as Maximum Entropy, Random Forest, etc. It would be valuable to test different classifiers 
on the same dataset to test the performance and accuracy compared with the Winnow and SVM. 

We can also try some other feature construction method besides bag-of-words, such as word 
clusters. Word clustering is a different approach to the induction of word senses consists of 
clustering words, which are semantically similar and can thus bear a specific meaning. In this way, 
the semantic information of the email header and body could be remained, which to some degree, 
could improve the performance of our classifiers. 

Another point worth mentioning is that in this study we did not provide any information regarding 
to training and testing efficiency of different classifiers. In real-world application, this can be very 
important criteria for engineers to select different classifiers. 
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