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Abstract 5 

While random forest algorithm has been found to be prominent for various 6 
classification tasks, like many other machine learning algorithms it requires 7 
a number of parameters to be tuned to ensure better performance. Even 8 
though the strong influence of different parameters on random forest is 9 
evident, an attempt to systematically optimize these parameters is rare. 10 
Common techniques for parameter tuning such as cross validations are not 11 
often sufficient in this case, as the number of choices are increased. In this 12 
context, we propose a Bayesian optimization method to tune the parameters 13 
of random forest. We implemented a text classification system using the 14 
random forest package of Scikit-learn. To evaluate our approach, we 15 
compare the results on different parameter settings generated during 16 
optimization procedure. We also examine how various choices of 17 
acquisition functions could potentially affect the optimization. Our results 18 
suggest that by tuning the parameters for random forest, we could enhance 19 
the classification performance over default choices of parameters provided 20 
in Scikit-learn package. 21 

 22 

1 Introduct ion 23 

 24 

In recent years, due to its algorithmic simplicity and prominent classification performance 25 
for high dimensional data, random forest has become a promising method for different 26 
classification tasks such as text categorization. Random forest is an ensemble of a set of a 27 
single type of decision trees. The algorithm randomly selects a subset of features at each 28 
node to grow branches of a decision trees. Then, the voting mechanism operates on the top 29 
of base learners to ensure highly accurate predictions of the ensemble. This ensemble 30 
method helps to avoid overfitting, and is less sensitive to noisy data compared to other 31 
classification methods [1]. 32 

Even though the performance of random forest classifier is impressive, it has a number of 33 
crucial parameters that can significantly influence the behavior and performance that it 34 
offers. For instance, the size of the random forest, the maximum allowed tree depth, the 35 
number of features chosen at random, and the split criteria: all of them are reported to affect 36 
the performance of the classifier [2]. Despite such influential characteristics, very little 37 
attention is provided to carefully tune these parameters for classification tasks. While cross 38 
validations or some brute-force searches are often applied to adjust the hyperparameters, as 39 
the number of parameters becomes high they may not be viable options. This leads to great 40 
appeal for automatic approaches that can optimize the performance of random forest 41 
algorithm. 42 



One of the good choices of automatic optimization of parameters is Bayesian optimization, 43 
which has been shown to outperform other state of the art global optimizations on a number 44 
of benchmark functions [3]. Bayesian optimization can be used on top of Gaussian process, 45 
by assuming that the unknown function was sampled from a Gaussian process and 46 
maintaining a posterior distribution for this function as observations are made. To pick the 47 
set of parameter values for the next experiment one can use different acquisition functions.  48 

In this project, we are interested in applying Bayesian optimization on top of Gaussian 49 
process to tune the parameters of random forest. In particular, we would like to use the 50 
observations made from the results of running random forest algorithm experiments, and use 51 
them to pick a next values of the parameters. Our hypothesis is that by using such automatic 52 
parameter tuning, the performance of random forest can be improved for many different 53 
classification tasks. In addition, we are also interested to know whether any particular choice 54 
of acquisition function would lead to better performance than the others. 55 

The primary task that we have chosen is text classification over a standard dataset. In text 56 
classification, we can literally have millions of dimensions, causing the different parameters 57 
of random forest to play more crucial role in affecting the performance of the classifier than 58 
many other types of classification. Thus, this task makes a suitable scenario for automatic 59 
tuning via Bayesian optimization.  60 

Remainder of this report is organized as follows: in Section 2 we describe the random forest 61 
and its crucial parameters as well as Bayesian optimization method. The implementation of 62 
text classification and Bayesian optimization are provided in Section 3. We analyze our 63 
results empirically in Section 4. Finally, we discuss what lessons have been learned 64 
throughout the project and what are the possible future directions.  65 
 66 
2 Background 67 
 68 
2 . 1 Random Fore st s  and i t s  mode l  par ame te r s 69 

The primary idea of random forest is to build a large collection of de-correlated trees, and then 70 
average the prediction over all of them [1].  Random forest improves the variance reduction of 71 
bagging by reducing the correlation between the trees, without increasing the variance too much. 72 
This is achieved in the tree-growing process through random selection of the input variables. To 73 
grow each tree, the algorithm draws bootstrap samples 푍 ∗ of size 푁 from the training data and 74 
then recursively split nodes based on a random set of 푚 different features drawn from 푝 different 75 
features, until a minimum node size is reached. To classify a new object from its features, the 76 
algorithm pushes the input feature vector through each of the decision trees in the forest (starting 77 
at the root), until it reaches the corresponding leaves. Thus, each tree gives a class prediction, in 78 
other words it votes for that class. The forest chooses the classification having the most votes over 79 
all the trees in the forest. More elaborated description of the algorithm can be found at [1, 2]; here 80 
we focus our discussion on different model parameters of the algorithm and their influences, as 81 
they are the primary interests of this paper. 82 

There are a number of influential model parameters of random forests. A nice description of the 83 
effect of some of these parameters can be found at [2]. Here we are summarizing some of the key 84 
parameters that we are interested to tune: 85 

1) Depth of the tree (푫): The tree depth is a crucial parameter in avoiding under-fitting or 86 
over-fitting. By experimenting with varying tree depth 퐷, the authors observe that as the 87 
tree depth increases, the overall prediction confidence also increases [2]. It has also been 88 
found that too shallow trees leads to under-fitting (class boundary become too course). 89 
On the contrary, a large value of tree depth tends to produce over-fitting, i.e., posterior 90 
tends to split off isolated clusters of noisy training data. In essence, the maximum tree 91 
depth parameter 푫 controls the amount of over-fitting. Therefore, one needs to be very 92 
careful to select the most appropriate value of 푫 as its optimal value. 93 

2) Number of samples for Bagging: In bagging, randomness is injected by randomly 94 
sampling different subsets of training data. So, each tree sees a different training 95 
subset. The choice of how many samples should be in each subset controls the effect 96 
of randomness. If we avoid bagging and use all the training data, then we would 97 



reproduce a max-margin behavior, while increasing randomness leads to smoother 98 
posteriors whose optimal boundary does not coincide with the maximum margin. In 99 
other words, bagging gives immunity to outliers. Overall, this behavior is controlled 100 
by how much randomness is injected through selecting the number of samples for 101 
bagging.  102 

3) Number of features for splitting node (풎): In random forests, only a subset of 103 
features (휏) of size 푚 is used from the original set of features having size 푝 to split 104 
the node. A smaller value of 푚 enhances randomness making the trees very different 105 
from each other.  The ratio of 푚/푝 controls the randomness. 106 

4) Forest size (푻): Previous research works have pointed out how the testing accuracy 107 
increases monotonically with the forest size 푇 [2]. It has been found that single tree 108 
produces over-confidence, and ultimately leads to imperfect generalization. On the 109 
contrary, more trees give much smoother class posterior. While this would 110 
encourage us to use larger size of 푇, computation could take much longer time. In 111 
addition, note that results will stop getting significantly better beyond a critical 112 
number of trees. Hence, finding an optimum forest size that is big enough to 113 
produce smoother boundary, yet small enough for computation cost is essential. 114 

Beside the abovementioned parameters, we also have a set of other choices that needs to be 115 
made, such as the split criteria (Information Gain (IG) verses Gini index), and the minimum 116 
number of samples to have in newly created leaves etc. In Section 3, we will describe how we 117 
apply Bayesian optimization to tune the abovementioned parameters. 118 
 119 
2 . 2 B aye s i an opt i mi z at i on  wi th Gauss i an Proc e ss  120 

Bayesian optimization has been found to be increasingly popular in recent years [3]. It could 121 
be a very effective strategy for finding the extreme of objective functions that are expensive 122 
to evaluate. The technique is particularly useful when we do not have a closed-form 123 
expression for the objective functions, but we can make observations of the function at 124 
sampled values.  125 

More formally, Bayesian optimization aims to find the minimum (or maximum) of a function 126 
푓(푥), on some bounded set 푋. It constructs a probabilistic model for 푓(푥) and then exploits 127 
this model to make decisions about where in 푋 we should sample next. To sample efficiently, 128 
Bayesian optimization uses acquisition function which essentially trade-offs between 129 
exploration and exploitation [4].  130 

To perform Bayesian optimization one must select a prior over functions that will express 131 
assumptions about the functions being optimized. The Gaussian process (GP) serves as a 132 
convenient and powerful prior distribution of functions. A GP is an extension of the 133 
multivariate Gaussian distribution over functions, specified by its mean function 푚 and 134 
covariant function, 퐾: 푓(푠)~퐺푃(푚(푥),푘(푥, 푥′)). We assume that the function 푓(푥) is drawn 135 
from a Gaussian process prior and that our observations are of the form {푥 ,푦 } , where 136 
푦 ~푁(푓(푥 ,푣)) and v is the variance of the noise induced into the observations. 137 

The abovementioned prior and data induce a posterior over functions called acquisition 138 
functions. Maximizing the acquisition function is used to find the next point to evaluate the 139 
function, i.e., we wish to sample 푓 at	푎푟푔푚푎푥 푢(풙|퐷) , where 푢(. ) is the generic symbol for 140 
an acquisition function. 141 

Probability of Improvement: One strategy to maximize the probability of improving over 142 
the current best 푓(풙 +): 143 

 푃퐼(푥) = 푃(푓(푥) ≥ f(푥∗)) = 	Ф( ( ) ( )
( )

) 144 

Where, Ф is the normal cumulative distribution function. 145 

Expected Improvement: Alternatively, we can try to minimize the expected deviation from 146 
the true maximum f(푥∗), when choosing a new point to sample. Mockus et al. proposed 147 
maximizing the expected improvement with respect to f(푥 ) [5] as follows: 148 

푥 = 푎푟푔푚푎푥 	피(푚푎푥	{0, 푓 (푥) − 풇(풙 )}|푫풕) 



The expected improvement can be evaluated analytically: 149 

퐸퐼(푥) = µ(x)− f(푥 ) Ф(푍) + σ(x)ϕ(Z)							if	σ(x) > 0
0																																																																				푖푓	σ(x) = 0

 

푍 =
µ(x) − f(푥 )

σ(x)  

GP confidence bound criteria: Recently Srinivas et al. exploit confidence bound to 150 
construct acquisition functions that minimizes regret over the course of their optimization 151 
[6]. The acquisition function has the form: 152 

GP − UCB(x) = 	µ(x) + vt σ(x) 

The acquisition functions described above have analytical expressions that are easier to 153 
evaluate. A further improved way could be to follow an approach described by Eric Brochu 154 
et al., where a portfolio of acquisition functions governed by an online multi-armed bandit 155 
strategy was used which was reported to outperform the best individual acquisition function 156 
[7]. 157 

 158 
3 Random Forest  Parameter Select ion Using Bayesian 159 
Optimizat ion  160 

In this section, we first describe the implementation of text classification algorithm using 161 
random forest, as well as the parameter space that we explored in the experiments. Then, we 162 
discuss the implementation of Bayesian optimization along with the selection of covariance 163 
functions and acquisition functions. 164 

 165 
3 . 1 Te xt  c lass i f ic a t i on  us i ng  r andom fore st  166 
 167 
3 . 1. 1 Datase t  168 

20Newsgroups [8] data set is a popular text corpus for experiments in text applications of 169 
machine learning techniques. It is a set of 18,828 Usenet messages from 20 different online 170 
discussion groups. The corpus is sorted by date and divided in advance into a training (60%) 171 
set and a chronologically following test set (40%) (This way we avoid randomness in 172 
train/test set selection). 173 

 174 
3 . 1. 2 Fe ature  e xtr ac t i on  175 

In order to perform classification on text documents, we first need to convert the text content 176 
into numerical feature vectors. A common way to do so is to utilize bags of words 177 
representation. We first tokenize the text and filter the stopwords. Then we build a 178 
dictionary from words and assign a fixed numeric index to each word occurring in any 179 
document of the training set. We count the number of occurrences of each word. We then 180 
compute Term Frequency times Inverse Document Frequency (tf-idf) and use it in the feature 181 
vector representation. Bag of words are typically high-dimensional sparse datasets, so we 182 
only store the non-zero parts of the feature vectors in memory. 183 
 184 
3 . 1. 3 Random fore st s  c l ass i f i ca t i on  185 

We use the Random forest algorithm using Scikit-learn: a machine learning toolkit in python 186 
[9]. This implementation is similar to the description provided in [10]. However, this 187 
implementation combines classifiers by averaging their probabilistic prediction, instead of 188 
letting each classifier vote for a single class. Particularly, this implementation provides us 189 
with a way to set the different parameters (such as tree depth, number of trees, number of 190 
features to be used for splitting nodes, criteria for splitting node (entropy vs. gini index) etc. 191 
This way we were able to run the algorithm with various set of parameters.  192 

The four parameters that we experimented are listed in Table 1. Considering the 193 



computational cost (and fact that the performance of random forest becomes optimum after 194 
reaching certain size of forest), we keep the maximum forest size to be 100. Other 195 
parameters are set based on the dataset. One point to note that the Scikit-learn 196 
implementation does not provide the option to directly set the number of samples for 197 
bootstrapping, rather a Boolean parameter is provided which can be set to turn on or off 198 
bagging. Therefore, we did not use this parameter in this experiment and would like to 199 
explore this in the future. 200 

Table 1: The set of parameters to be tuned for random forests 201 

 202 

Parameters Range of values Default value in Scikit 

Forest size (푇) Min:1, Max:100 10 
Depth of the tree (퐷) Min:10-Max:10000 None (nodes are expanded until 

all leaves are pure) 
The minimum number of 
samples required to split an 
internal node 

Min:5-Max: all samples 2 

Number of features for 
finding best split node (푚) 

Min:2-Max:100 sqrt(number of features) 

 203 
3 . 2 B aye s i an O pti mi z ati on  204 

As stated before, the main objective of using Bayesian optimization here is to find the 205 
suitable value for each parameter of random forest algorithm. To do so, we followed an 206 
approach of Bayesian optimization described in [3]. There are at least three important 207 
practical choices that we need to consider: the covariance functions, selection of its 208 
hyperparameters and the acquisition functions. A default choice of covariance function is to 209 
use squared exponential kernel. However, similar to [3], we use automatic relevance 210 
determination (ARD) Matern 5/2 kernel. 211 

퐾 (푥, 푥 ) = 휃 (1 + 5푟 (푥,푥 ) +
5
3 푟 (푥,푥′))exp	{− 5푟 (푥,푥 )} 

Then second question is that the above kernel function itself has few parameters that needs 212 
to be managed (such as covariance amplitude 휃  and the observation noise 푣). As pointed out 213 
in [3], we could do it by marginalize over hyperparameters and compute the integrated 214 
acquisition function. To serve this purpose we can blend acquisition functions arising from 215 
samples from the posterior over GP hyperparameters and have a Markov Chain Monte Carlo 216 
(MCMC) estimate of the integrated expected improvement. 217 

The final question is which acquisition functions to use. There are several different 218 
parameterized acquisition functions in the literature (some of them are mentioned in Section 219 
2), and often it is difficult to decide which one is the most suitable given the optimization 220 
tasks. In this work, we evaluate the results based on multiple acquisition functions and 221 
compare between them.  222 

 223 
4 Empirica l Analyses  224 

In this section, we empirically analyze the parameter optimization of random forest 225 
performed by Bayesian optimization. Our primary goals are two-folds. First, we would like 226 
to compare the optimization results based on different acquisition functions. Second, we 227 
want to examine whether Bayesian optimization leads to better classification performance of 228 
random forests, when comparing with the results produced by Scikit-learn's default 229 
parameter setting. 230 

 231 
4 . 1 Expe r i me nts  232 

We perform experiments using three different types of optimization strategies that were 233 



implemented in [3]: GP EI MCMC, GP EI OPT and random grid search. For each 234 
experiment, we run 40 iterations of the Bayesian optimization. At each iteration, a new set of 235 
parameters were generated by the acquisition functions, and the random forest algorithm was 236 
called based on these parameters.  237 

As the classifier is trained and prediction tasks are performed, we compute various matrices 238 
such as average precision, recall and F-score. We choose the F1-score to be the best indicator 239 
of performance, since it takes both precision and recall into account. These results are then 240 
feed to the Bayesian optimization procedure. The objective of Bayesian optimization is then 241 
to find the parameters of random forests that maximize this F1 score. 242 

 243 
4 . 2 Re sul t s  244 

We collect the results obtained from different optimizations. While it is preferable to retrieve 245 
results on multiple runs and average them, due to time constraint we collect one set of 246 
results per optimization strategy (Each experiment needs several hours to complete). At each 247 
iteration, we evaluate the function value (F1 score) and keep track of the best value obtained 248 
so far. Figure 1 shows the performance of different optimization strategies. As we can see 249 
GP EI MCMC performs the best followed by GP EI. In both cases, within very few 250 
iterations, the maximum F1 score was achieved. Random Grid search produces better F1-251 
score at the beginning but eventually other two methods found higher function values. 252 

 253 

 
Figure 1: Bayesian optimization results for text classification. The graph plots iterations on 254 

X axis and F1 score obtained for that iteration on Y axis 255 

 256 

We also run the experiments of Random forest classification using default parameter settings 257 
of Scikit-learn (as mentioned in Table 1). When we compare the results with the best value 258 
obtained using Bayesian optimization with Random forest having default setting, we notice 259 
significant improvement over F1 score (beating by over 4.1%). We regard this as 260 
encouraging results. 261 
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There are a number of limitations of the experiments reported here, that we would like to 262 
address in the future. Overall, our results are generated by a small set of experiments and 263 
therefore further experiments are required for each optimization strategy to conclude 264 
whether the results are significantly different. Also sufficient error analysis is required to 265 
perform, when comparing between different results. Finally, further experiments are required 266 
on large text dataset to examine how Bayesian optimization could potentially improve 267 
accuracy and recall in such scenarios. 268 

 269 
5 Conclusion and Future Work 270 

In this project, we explore the idea of using Bayesian optimization to tune the 271 
hyperparameters of random forests algorithm. Previously, only a little attention was 272 
provided to tune these parameters, and they were primarily tuned based on cross validations. 273 
Our results show that Bayesian optimization can be very effective to find the optimized 274 
parameter values that maximize classification performance. Moreover, we found that such 275 
optimal values were obtained within a few iterations, thus reducing the cost of evaluating 276 
functions, which often takes longer to compute for random forest algorithm. We believe that 277 
these results are encouraging enough for those who want to ensure the optimized 278 
performance of random forest algorithm for various classification tasks. 279 

There are a number of avenues that we would like to explore in the future. First, we would 280 
like to explore other variants of Bayesian optimization such as portfolio of acquisition 281 
functions governed Bayesian online multi-armed bandit strategy, which outperforms 282 
individual acquisition functions [4], or applying binary trees partition on the input 283 
parameters [11] and compare the performance. Secondly, while we wanted to optimize 284 
random forest parameters through Bayesian optimization, this optimization method itself 285 
could have some choices as explained before, which also need to be optimized (such as 286 
choice of acquisition function, co-variance function, and along with the parameters). Finally, 287 
we would like to experiment on sufficiently large-scale dataset to see how having billions of 288 
features could possibly lead to different possible settings of parameters. 289 
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