

Bayesian Optimization for Parameter Selection
of Random Forests Based Text Classifier

Anonymous Author(s) 1

Affiliation 2
Address 3

email 4

Abstract 5

While random forest algorithm has been found to be prominent for various 6
classification tasks, like many other machine learning algorithms it requires 7
a number of parameters to be tuned to ensure better performance. Even 8
though the strong influence of different parameters on random forest is 9
evident, an attempt to systematically optimize these parameters is rare. 10
Common techniques for parameter tuning such as cross validations are not 11
often sufficient in this case, as the number of choices are increased. In this 12
context, we propose a Bayesian optimization method to tune the parameters 13
of random forest. We implemented a text classification system using the 14
random forest package of Scikit-learn. To evaluate our approach, we 15
compare the results on different parameter settings generated during 16
optimization procedure. We also examine how various choices of 17
acquisition functions could potentially affect the optimization. Our results 18
suggest that by tuning the parameters for random forest, we could enhance 19
the classification performance over default choices of parameters provided 20
in Scikit-learn package. 21

 22

1 Introduct ion 23

 24

In recent years, due to its algorithmic simplicity and prominent classification performance 25
for high dimensional data, random forest has become a promising method for different 26
classification tasks such as text categorization. Random forest is an ensemble of a set of a 27
single type of decision trees. The algorithm randomly selects a subset of features at each 28
node to grow branches of a decision trees. Then, the voting mechanism operates on the top 29
of base learners to ensure highly accurate predictions of the ensemble. This ensemble 30
method helps to avoid overfitting, and is less sensitive to noisy data compared to other 31
classification methods [1]. 32

Even though the performance of random forest classifier is impressive, it has a number of 33
crucial parameters that can significantly influence the behavior and performance that it 34
offers. For instance, the size of the random forest, the maximum allowed tree depth, the 35
number of features chosen at random, and the split criteria: all of them are reported to affect 36
the performance of the classifier [2]. Despite such influential characteristics, very little 37
attention is provided to carefully tune these parameters for classification tasks. While cross 38
validations or some brute-force searches are often applied to adjust the hyperparameters, as 39
the number of parameters becomes high they may not be viable options. This leads to great 40
appeal for automatic approaches that can optimize the performance of random forest 41
algorithm. 42

One of the good choices of automatic optimization of parameters is Bayesian optimization, 43
which has been shown to outperform other state of the art global optimizations on a number 44
of benchmark functions [3]. Bayesian optimization can be used on top of Gaussian process, 45
by assuming that the unknown function was sampled from a Gaussian process and 46
maintaining a posterior distribution for this function as observations are made. To pick the 47
set of parameter values for the next experiment one can use different acquisition functions. 48

In this project, we are interested in applying Bayesian optimization on top of Gaussian 49
process to tune the parameters of random forest. In particular, we would like to use the 50
observations made from the results of running random forest algorithm experiments, and use 51
them to pick a next values of the parameters. Our hypothesis is that by using such automatic 52
parameter tuning, the performance of random forest can be improved for many different 53
classification tasks. In addition, we are also interested to know whether any particular choice 54
of acquisition function would lead to better performance than the others. 55

The primary task that we have chosen is text classification over a standard dataset. In text 56
classification, we can literally have millions of dimensions, causing the different parameters 57
of random forest to play more crucial role in affecting the performance of the classifier than 58
many other types of classification. Thus, this task makes a suitable scenario for automatic 59
tuning via Bayesian optimization. 60

Remainder of this report is organized as follows: in Section 2 we describe the random forest 61
and its crucial parameters as well as Bayesian optimization method. The implementation of 62
text classification and Bayesian optimization are provided in Section 3. We analyze our 63
results empirically in Section 4. Finally, we discuss what lessons have been learned 64
throughout the project and what are the possible future directions. 65
 66
2 Background 67
 68
2 . 1 Random Fore st s and i t s mode l par ame te r s 69

The primary idea of random forest is to build a large collection of de-correlated trees, and then 70
average the prediction over all of them [1]. Random forest improves the variance reduction of 71
bagging by reducing the correlation between the trees, without increasing the variance too much. 72
This is achieved in the tree-growing process through random selection of the input variables. To 73
grow each tree, the algorithm draws bootstrap samples 푍 ∗ of size 푁 from the training data and 74
then recursively split nodes based on a random set of 푚 different features drawn from 푝 different 75
features, until a minimum node size is reached. To classify a new object from its features, the 76
algorithm pushes the input feature vector through each of the decision trees in the forest (starting 77
at the root), until it reaches the corresponding leaves. Thus, each tree gives a class prediction, in 78
other words it votes for that class. The forest chooses the classification having the most votes over 79
all the trees in the forest. More elaborated description of the algorithm can be found at [1, 2]; here 80
we focus our discussion on different model parameters of the algorithm and their influences, as 81
they are the primary interests of this paper. 82

There are a number of influential model parameters of random forests. A nice description of the 83
effect of some of these parameters can be found at [2]. Here we are summarizing some of the key 84
parameters that we are interested to tune: 85

1) Depth of the tree (푫): The tree depth is a crucial parameter in avoiding under-fitting or 86
over-fitting. By experimenting with varying tree depth 퐷, the authors observe that as the 87
tree depth increases, the overall prediction confidence also increases [2]. It has also been 88
found that too shallow trees leads to under-fitting (class boundary become too course). 89
On the contrary, a large value of tree depth tends to produce over-fitting, i.e., posterior 90
tends to split off isolated clusters of noisy training data. In essence, the maximum tree 91
depth parameter 푫 controls the amount of over-fitting. Therefore, one needs to be very 92
careful to select the most appropriate value of 푫 as its optimal value. 93

2) Number of samples for Bagging: In bagging, randomness is injected by randomly 94
sampling different subsets of training data. So, each tree sees a different training 95
subset. The choice of how many samples should be in each subset controls the effect 96
of randomness. If we avoid bagging and use all the training data, then we would 97

reproduce a max-margin behavior, while increasing randomness leads to smoother 98
posteriors whose optimal boundary does not coincide with the maximum margin. In 99
other words, bagging gives immunity to outliers. Overall, this behavior is controlled 100
by how much randomness is injected through selecting the number of samples for 101
bagging. 102

3) Number of features for splitting node (풎): In random forests, only a subset of 103
features (휏) of size 푚 is used from the original set of features having size 푝 to split 104
the node. A smaller value of 푚 enhances randomness making the trees very different 105
from each other. The ratio of 푚/푝 controls the randomness. 106

4) Forest size (푻): Previous research works have pointed out how the testing accuracy 107
increases monotonically with the forest size 푇 [2]. It has been found that single tree 108
produces over-confidence, and ultimately leads to imperfect generalization. On the 109
contrary, more trees give much smoother class posterior. While this would 110
encourage us to use larger size of 푇, computation could take much longer time. In 111
addition, note that results will stop getting significantly better beyond a critical 112
number of trees. Hence, finding an optimum forest size that is big enough to 113
produce smoother boundary, yet small enough for computation cost is essential. 114

Beside the abovementioned parameters, we also have a set of other choices that needs to be 115
made, such as the split criteria (Information Gain (IG) verses Gini index), and the minimum 116
number of samples to have in newly created leaves etc. In Section 3, we will describe how we 117
apply Bayesian optimization to tune the abovementioned parameters. 118
 119
2 . 2 B aye s i an opt i mi z at i on wi th Gauss i an Proc e ss 120

Bayesian optimization has been found to be increasingly popular in recent years [3]. It could 121
be a very effective strategy for finding the extreme of objective functions that are expensive 122
to evaluate. The technique is particularly useful when we do not have a closed-form 123
expression for the objective functions, but we can make observations of the function at 124
sampled values. 125

More formally, Bayesian optimization aims to find the minimum (or maximum) of a function 126
푓(푥), on some bounded set 푋. It constructs a probabilistic model for 푓(푥) and then exploits 127
this model to make decisions about where in 푋 we should sample next. To sample efficiently, 128
Bayesian optimization uses acquisition function which essentially trade-offs between 129
exploration and exploitation [4]. 130

To perform Bayesian optimization one must select a prior over functions that will express 131
assumptions about the functions being optimized. The Gaussian process (GP) serves as a 132
convenient and powerful prior distribution of functions. A GP is an extension of the 133
multivariate Gaussian distribution over functions, specified by its mean function 푚 and 134
covariant function, 퐾: 푓(푠)~퐺푃(푚(푥),푘(푥, 푥′)). We assume that the function 푓(푥) is drawn 135
from a Gaussian process prior and that our observations are of the form {푥 ,푦 } , where 136
푦 ~푁(푓(푥 ,푣)) and v is the variance of the noise induced into the observations. 137

The abovementioned prior and data induce a posterior over functions called acquisition 138
functions. Maximizing the acquisition function is used to find the next point to evaluate the 139
function, i.e., we wish to sample 푓 at	푎푟푔푚푎푥 푢(풙|퐷) , where 푢(.) is the generic symbol for 140
an acquisition function. 141

Probability of Improvement: One strategy to maximize the probability of improving over 142
the current best 푓(풙 +): 143

 푃퐼(푥) = 푃(푓(푥) ≥ f(푥∗)) = 	Ф(() ()
()

) 144

Where, Ф is the normal cumulative distribution function. 145

Expected Improvement: Alternatively, we can try to minimize the expected deviation from 146
the true maximum f(푥∗), when choosing a new point to sample. Mockus et al. proposed 147
maximizing the expected improvement with respect to f(푥) [5] as follows: 148

푥 = 푎푟푔푚푎푥 	피(푚푎푥	{0, 푓 (푥) − 풇(풙)}|푫풕)

The expected improvement can be evaluated analytically: 149

퐸퐼(푥) = µ(x)− f(푥) Ф(푍) + σ(x)ϕ(Z)							if	σ(x) > 0
0																																																																				푖푓	σ(x) = 0

푍 =
µ(x) − f(푥)

σ(x)

GP confidence bound criteria: Recently Srinivas et al. exploit confidence bound to 150
construct acquisition functions that minimizes regret over the course of their optimization 151
[6]. The acquisition function has the form: 152

GP − UCB(x) = 	µ(x) + vt σ(x)

The acquisition functions described above have analytical expressions that are easier to 153
evaluate. A further improved way could be to follow an approach described by Eric Brochu 154
et al., where a portfolio of acquisition functions governed by an online multi-armed bandit 155
strategy was used which was reported to outperform the best individual acquisition function 156
[7]. 157

 158
3 Random Forest Parameter Select ion Using Bayesian 159
Optimizat ion 160

In this section, we first describe the implementation of text classification algorithm using 161
random forest, as well as the parameter space that we explored in the experiments. Then, we 162
discuss the implementation of Bayesian optimization along with the selection of covariance 163
functions and acquisition functions. 164

 165
3 . 1 Te xt c lass i f ic a t i on us i ng r andom fore st 166
 167
3 . 1. 1 Datase t 168

20Newsgroups [8] data set is a popular text corpus for experiments in text applications of 169
machine learning techniques. It is a set of 18,828 Usenet messages from 20 different online 170
discussion groups. The corpus is sorted by date and divided in advance into a training (60%) 171
set and a chronologically following test set (40%) (This way we avoid randomness in 172
train/test set selection). 173

 174
3 . 1. 2 Fe ature e xtr ac t i on 175

In order to perform classification on text documents, we first need to convert the text content 176
into numerical feature vectors. A common way to do so is to utilize bags of words 177
representation. We first tokenize the text and filter the stopwords. Then we build a 178
dictionary from words and assign a fixed numeric index to each word occurring in any 179
document of the training set. We count the number of occurrences of each word. We then 180
compute Term Frequency times Inverse Document Frequency (tf-idf) and use it in the feature 181
vector representation. Bag of words are typically high-dimensional sparse datasets, so we 182
only store the non-zero parts of the feature vectors in memory. 183
 184
3 . 1. 3 Random fore st s c l ass i f i ca t i on 185

We use the Random forest algorithm using Scikit-learn: a machine learning toolkit in python 186
[9]. This implementation is similar to the description provided in [10]. However, this 187
implementation combines classifiers by averaging their probabilistic prediction, instead of 188
letting each classifier vote for a single class. Particularly, this implementation provides us 189
with a way to set the different parameters (such as tree depth, number of trees, number of 190
features to be used for splitting nodes, criteria for splitting node (entropy vs. gini index) etc. 191
This way we were able to run the algorithm with various set of parameters. 192

The four parameters that we experimented are listed in Table 1. Considering the 193

computational cost (and fact that the performance of random forest becomes optimum after 194
reaching certain size of forest), we keep the maximum forest size to be 100. Other 195
parameters are set based on the dataset. One point to note that the Scikit-learn 196
implementation does not provide the option to directly set the number of samples for 197
bootstrapping, rather a Boolean parameter is provided which can be set to turn on or off 198
bagging. Therefore, we did not use this parameter in this experiment and would like to 199
explore this in the future. 200

Table 1: The set of parameters to be tuned for random forests 201

 202

Parameters Range of values Default value in Scikit

Forest size (푇) Min:1, Max:100 10
Depth of the tree (퐷) Min:10-Max:10000 None (nodes are expanded until

all leaves are pure)
The minimum number of
samples required to split an
internal node

Min:5-Max: all samples 2

Number of features for
finding best split node (푚)

Min:2-Max:100 sqrt(number of features)

 203
3 . 2 B aye s i an O pti mi z ati on 204

As stated before, the main objective of using Bayesian optimization here is to find the 205
suitable value for each parameter of random forest algorithm. To do so, we followed an 206
approach of Bayesian optimization described in [3]. There are at least three important 207
practical choices that we need to consider: the covariance functions, selection of its 208
hyperparameters and the acquisition functions. A default choice of covariance function is to 209
use squared exponential kernel. However, similar to [3], we use automatic relevance 210
determination (ARD) Matern 5/2 kernel. 211

퐾 (푥, 푥) = 휃 (1 + 5푟 (푥,푥) +
5
3 푟 (푥,푥′))exp	{− 5푟 (푥,푥)}

Then second question is that the above kernel function itself has few parameters that needs 212
to be managed (such as covariance amplitude 휃 and the observation noise 푣). As pointed out 213
in [3], we could do it by marginalize over hyperparameters and compute the integrated 214
acquisition function. To serve this purpose we can blend acquisition functions arising from 215
samples from the posterior over GP hyperparameters and have a Markov Chain Monte Carlo 216
(MCMC) estimate of the integrated expected improvement. 217

The final question is which acquisition functions to use. There are several different 218
parameterized acquisition functions in the literature (some of them are mentioned in Section 219
2), and often it is difficult to decide which one is the most suitable given the optimization 220
tasks. In this work, we evaluate the results based on multiple acquisition functions and 221
compare between them. 222

 223
4 Empirica l Analyses 224

In this section, we empirically analyze the parameter optimization of random forest 225
performed by Bayesian optimization. Our primary goals are two-folds. First, we would like 226
to compare the optimization results based on different acquisition functions. Second, we 227
want to examine whether Bayesian optimization leads to better classification performance of 228
random forests, when comparing with the results produced by Scikit-learn's default 229
parameter setting. 230

 231
4 . 1 Expe r i me nts 232

We perform experiments using three different types of optimization strategies that were 233

implemented in [3]: GP EI MCMC, GP EI OPT and random grid search. For each 234
experiment, we run 40 iterations of the Bayesian optimization. At each iteration, a new set of 235
parameters were generated by the acquisition functions, and the random forest algorithm was 236
called based on these parameters. 237

As the classifier is trained and prediction tasks are performed, we compute various matrices 238
such as average precision, recall and F-score. We choose the F1-score to be the best indicator 239
of performance, since it takes both precision and recall into account. These results are then 240
feed to the Bayesian optimization procedure. The objective of Bayesian optimization is then 241
to find the parameters of random forests that maximize this F1 score. 242

 243
4 . 2 Re sul t s 244

We collect the results obtained from different optimizations. While it is preferable to retrieve 245
results on multiple runs and average them, due to time constraint we collect one set of 246
results per optimization strategy (Each experiment needs several hours to complete). At each 247
iteration, we evaluate the function value (F1 score) and keep track of the best value obtained 248
so far. Figure 1 shows the performance of different optimization strategies. As we can see 249
GP EI MCMC performs the best followed by GP EI. In both cases, within very few 250
iterations, the maximum F1 score was achieved. Random Grid search produces better F1-251
score at the beginning but eventually other two methods found higher function values. 252

 253

Figure 1: Bayesian optimization results for text classification. The graph plots iterations on 254

X axis and F1 score obtained for that iteration on Y axis 255

 256

We also run the experiments of Random forest classification using default parameter settings 257
of Scikit-learn (as mentioned in Table 1). When we compare the results with the best value 258
obtained using Bayesian optimization with Random forest having default setting, we notice 259
significant improvement over F1 score (beating by over 4.1%). We regard this as 260
encouraging results. 261

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 31 34 37 40

GPEI MCMC

GPEIOpt

Random Grid

Iterations

Fu
nc

tio
n

ev
al

ua
tio

n

There are a number of limitations of the experiments reported here, that we would like to 262
address in the future. Overall, our results are generated by a small set of experiments and 263
therefore further experiments are required for each optimization strategy to conclude 264
whether the results are significantly different. Also sufficient error analysis is required to 265
perform, when comparing between different results. Finally, further experiments are required 266
on large text dataset to examine how Bayesian optimization could potentially improve 267
accuracy and recall in such scenarios. 268

 269
5 Conclusion and Future Work 270

In this project, we explore the idea of using Bayesian optimization to tune the 271
hyperparameters of random forests algorithm. Previously, only a little attention was 272
provided to tune these parameters, and they were primarily tuned based on cross validations. 273
Our results show that Bayesian optimization can be very effective to find the optimized 274
parameter values that maximize classification performance. Moreover, we found that such 275
optimal values were obtained within a few iterations, thus reducing the cost of evaluating 276
functions, which often takes longer to compute for random forest algorithm. We believe that 277
these results are encouraging enough for those who want to ensure the optimized 278
performance of random forest algorithm for various classification tasks. 279

There are a number of avenues that we would like to explore in the future. First, we would 280
like to explore other variants of Bayesian optimization such as portfolio of acquisition 281
functions governed Bayesian online multi-armed bandit strategy, which outperforms 282
individual acquisition functions [4], or applying binary trees partition on the input 283
parameters [11] and compare the performance. Secondly, while we wanted to optimize 284
random forest parameters through Bayesian optimization, this optimization method itself 285
could have some choices as explained before, which also need to be optimized (such as 286
choice of acquisition function, co-variance function, and along with the parameters). Finally, 287
we would like to experiment on sufficiently large-scale dataset to see how having billions of 288
features could possibly lead to different possible settings of parameters. 289

Ac k nowl e dgme nts 290

Special thanks to Jasper Snoek for providing some clarifications regarding his publicly 291
available software (Spearmint) for Bayesian optimization. Also I would like to thank Bobak 292
Shahriari for useful suggestions. 293

Re fe re nce s 294
[1] Hastie T., Tibshirani R., and Friedman, J. (2009) The Elements of Statistical Learning: Data 295
Mining, Inference and Prediction. Springer, second ed. 296
[2] Criminisi, A., Shotton, J., & Konukoglu, E. (2011) Decision Forests for Classification, Regression, 297
Density Estimation, Manifold Learning and Semi-Supervised Learning, Technical report MSR-TR-298
2011-114. 299
[3] Snoek, J., Larochelle, H., and Adams, R. P. (2012) Practical Bayesian optimization of machine 300
learning algorithms. In Advances in Neural Information Processing Systems (NIPS). 301
[4] Brochu, E., Cora, V. M., and de Freitas, N. (2009) A tutorial on Bayesian optimization of 302
expensive cost functions, with application to active user modeling and hierarchical reinforcement 303
learning. Technical Report UBC TR-2009-23. arXiv:1012.2599, Dept. of Computer Science, 304
University of British Columbia. 305
[5] Mockus, J., Tiesis, V., and Zilinskas. A. (1978) The Application of Bayesian Methods for Seeking 306
the Extremum, Toward Global Optimization, 2:117-128. 307
[6] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2010) Gaussian process optimization in 308
the bandit setting: No regret and experimental design. In Proceedings of the International Conference 309
on Machine Learning (ICML). 310
[7] Homan, M., Brochu, E., and de Freitas, N. (2011) Portfolio allocation for Bayesian optimization. 311
In UAI, 327-336. 312
[8] Lang. K. (1995) Newsweeder: Learning to filter net-news. In Proceedings of the International 313

Conference on Machine Learning (ICML), pages 331–339. Morgan Kaufmann. 314
[9] Pedregosa et al. (2011) Scikit-learn: Machine Learning in Python, Journal of Machine Learning 315
Research, 12:2825-2830. 316
[10] Breiman, L. (2001). Random Forests. Machine Learning 45(1):5-32. 317
[11] Gramacy, R. B., Lee, H. K. H., & Macready, W. G. (2004) Parameter space exploration with 318
Gaussian process trees. In Proceedings of the International Conference on Machine Learning (ICML), 319
pages 45-52. 320

