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K-means algorithm

1. Imitialisation: Choose k = 2 means ft1.o at random.

2. Compute distances: For ¢ = 1.....k and ¢ =
. 2
1,...,n compute the distance ||x; — p.||°.
}. Assign data to nearest mean: 1o keep trac
assignments, introduce the indicator vari:
ssig s ; :
that ‘((3) -

0 otherwise

(
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That is. I5(z) = 1 if observation r; is closer to cluster
- 4

2. I.(z,) end up being the entries of an n x A matrix
eI L
%«6{/ /}

with only one 1 per row and many zeros.




K-means algorithm (continued)
Z][C(q;) - #Pa‘.wk N

Clusler ¢
4. Update means:

1y = >y Loz,
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5. Repeat: Go back to step 2. until the means and as-

signments stop changing.

Hard Vs Soft assignments

‘T'he problem with this algorithm is that the assignments are
hard. Something is either this or that. Sometimes, however,
we would like to say that something is this with probability

0.7 or that with probability 0.3.

We would like to find not only the means, but also the vari-
ances of each cluster and the probabilities of belonging to

each cluster.




Clustering

Desired output
Hard labeling Soft labeling

0 05 (a) 1 0 05 (a) 1
K-means EM
K=3 is the number of clusters, here chosen by hand ‘L
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Probabilistic approach

For the 2 clusters, we approximate the probability of each

data point with a weighted combination of Gaussians
Mmixtuce clusler 1 Cluster 2
pla|pro,010) = pl2; = 1)N(:l?,~\,ul,af)+p(z; = 2N (| pio, 05)

Here, the unknown parameters are (/¢;.9, 0%2) and the cluster
probabilities p(z; = 1) and p(z, = 2), which we rewrite as
p(1) and p(2) for brevity. Note that p(1)4+p(2) = 1 to ensure

that we still have a probability.
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Probabilistic approach

In general, we have

..F‘i'

pla;]0) = ZP(C)N(Iff

=1

Foes 0_(2 )

.) \ .
where 6 = (1., 01..) summarises the model parameters and

plc) = p(z; = c). Clearly, Zf:l ple) = 1.

The EM algorithm

In this section., we use intuition to introduce the expectation-
maximisation (EM). If we know I.(z;). then it is easy to
compute (yi..0?) by maximum likelihood. We repeat this
for each cluster. The problem is that we have a chicken and
ego situation. To know the cluster memberships, we need
the parameters of the GGaussians. To know the parameters,

we need the cluster memberships.

Onmne solution is to approximate I.(z;) with our expectation of
it given the data and our current estimate of the parameters

g. That is. we replace II.(z;) with

Cie 2 E[I.(2)|x;, 6]
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The EM algorithm

Once we know &;,.. we can compute the Gaussian mixture

parameters:
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The EM algorithm

The EM for Gaussians is as follows:
1. Initialise.

2. E Step: At iteration ¢, compute the expectation of the
indicators for each 7 and ¢:
(0 _ o) ON i, )
ic T L t t
S P ON () 2

and normalise it (divide by sum over ¢).

3. M Step: Update the parameters p(c)"), ,ugf), E((f).

Clustering images




EM for text data

“Large” text dataset:

« 1,000,000 words 67
« 1,000,000,000,000 words #006

Success stories:

» Speech recognition
* Machine translation

What is the common thing that makes both of these work well?

* Lots of labeled data
* Memorization is a good policy

[Halevy, Norvig & Pereira, 2009]

Statistical machine translation

love you | love chocolate | am

Yote amc Yo amo el chocola YO so0)

A

Get many sentence pairs — easy.
Compute correspondences

Compute translation table:3@anish|Englisn)
Repeat steps 2 and 3 till convergence




Statistical machine translation

Gorgeo”us red sea, sun sun sea sky
and sky

sun sea sky

[Duygulu, Barnard, d F, Forsyth, 2001]
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K-means for feature learning

1. Extract random patches from unlabeled training images.
2. Apply a pre-processing stage to the patches.

3. Learn a feature-mapping using an unsupervised learning algorithm,

The above steps, for a particular choice of unsupervised learning algorithm, yield a function f that

transforms an input patch € RY to a new representation y = f(x) € R¥. Using this feature
extractor, we now apply it to our (labeled) training images for classification.

[Adam Coates, Honglak Lee & Andrew Ng 2009]
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[Adam Coates, Honglak Lee & Andrew Ng 2009]




K-means for feature learning

K-means clustering: We apply K-means clustering to learn K centroids ¢'*) from the in-

put data. Given the learned centroids ¢(*), we consider two choices for the feature mapping
f. The first is the standard 1-of-K, hard-assignment coding scheme:

(1 ifk = argmin; |[cY) — 2|3
fiulz) = {0 otherwise. )

The second is a non-linear mapping that attempts to be “softer” than the above encoding,
but also yield sparse outputs through simple competition:

fil) = max {0, u(2) — 2} [RETE)

where 21, = ||z — ¢'®)||2 and u(z) is the mean of the elements of 2.
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[Adam Coates, Honglak Lee & Andrew Ng 2009]

Learned bases (centroids)
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(a) K-means (with and without whitening) (b) GMM (with and without whitening)
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(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

[Adam Coates, Honglak Lee & Andrew Ng 2009]




Mapping image to feature vector

Input Image
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Figure [: Illustration showing feature extraction using a w-by-w receptive field and stride s. We first
extract w-by-w patches separated by s pixels each, then map them to K -dimensional feature vectors
to form a new image representation. These vectors are then pooled over 4 quadrants of the image to
form a feature vector for classification. (For clarity we have drawn the leftmost figure with a stride
greater than w, but in practice the stride is almost always smaller than w.

[Adam Coates, Honglak Lee & Andrew Ng 2009]

K-means for feature learning

Performance for Raw and Whitened Inputs
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[Adam Coates, Honglak Lee & Andrew Ng 2009]







