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Abstract

A learning strategy for distributed channel selection in Cognitive Radio networks
is proposed. The goal of the learning is quality of service (QoS) provisioning
by which competing secondary users cooperatively converge to their rank-optimal
channels while channel availability statistics are initially unknown. By this con-
vergence, collisions reaches zero since users eventually work on their own chan-
nels. The proposed learning strategy, kth −MAB, is inspired from the Multi-
Armed Bandit problem but it converges to the kth best arm. The rank-optimal
channel for each user\player is identified based on the user’s QoS demands. We
believe that under this learning and allocation policy, cognitive users get services
proportional to their QoS level since evaluation results represent order optimality
in terms of average throughput.

1 Introduction

Due to extensive need for wireless spectrum and the inefficiency in utilizing it, Cognitive Radio(CR)
technology is emerged to allow unlicensed\secondary users(SU) for opportunistic access to the spec-
trum when licensed\primary users(PU) are not active. To take advantage of the possible empty
spaces in the spectrum, SUs sense a part of the spectrum and use it for transmission if it is found
free. Thus, it is crucial for SUs to make optimal decisions about which part of the spectrum to sense
at different times. This gives rise to the trade-off between exploration: sensing new channels in
the hope of obtaining better availability and exploitation: ensuring successful transmission in the
current time.

When there are multiple SUs, there is a competition among SUs to access the channel with the best
availability. Hence collision is likely since there is no explicit information exchange among SUs
about their observations and channel selection strategy. Moreover, SUs demand diverse levels of
quality of service (QoS) requirements proportional to their traffic importance. To provision these
requirements, SUs should cooperatively find their own unique rank-optimal channels and work on
them.

The goal of this paper is proposing a learning strategy for channel selection by which SUs estimate
the rank of channels with respect to their availabilities through sensing samples. This strategy helps
SU-i with rank k to allocate itself to an orthogonal channel with kth highest availability, in a dis-
tributed manner. In this regard, Multi-Armed Bandit (MAB) problem for finding the best channel
is reviewed in Section 2. kth −MAB channel-selection strategy for finding the kth best arm, is
proposed in Section 3. Performance evaluation and conclusion of the paper are covered in Section 4
and 5 respectively.
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2 Multi-Armed Bandit (MAB) problem

MAB problem formulizes exploitation\exploaration trade-off for choosing the best arm by selecting
one out of M possible arms in each trial t ∈ 1, ..., T . For the chosen arm i in trial t, reward x(t)i is
drawn from some fixed but unknown distributions D1, D2, ..., DM while the rewards for other arms
excluding i, i.e. i ∈ {1, ...,M}\i, are not revealed. The appropriate strategy for the MAB problem,
pursues the goal of maximizing the total reward up to the observation period T, i.e.

∑T
t=1 x

(t)
i where

the upper expected total reward is obtained by the best distribution Di. The difference between this
upper bound and the achieved total reward is defined as regret.

The exploration\exploitation trade-off is reflected on one hand by the necessity for trying all arms
and on the other hand by the regret suffered by trying a non-optimal arm. Too little exploration might
make a sub-optimal alternative look better than the optimal one because of random fluctuations while
too much exploration prevents the algorithm from playing the optimal often enough which also result
in a large regret.

2.1 Upper confidence bound (UCB) algorithm

Upper Confidence Bound (UCB) algorithm for solving the MAB problem, chooses arm i(t) in trial

t as: i(t) = arg maxi∈M (x̄
(t)
i +

√
ζlog(t)

n
(t)
i

)

UCB calculates weight of arm i based on x̄(t)i +σ
(t)
i when this arm has distributionsDi and expected

reward Ri. The first term, x̄(t)i , is the current average reward which is an estimate for the true
expected reward Ri. And the second term, σ(t)

i , corresponds to the confidence interval that both the
true and average rewards fall in with high probability, i.e. x̄(t)i − σ

(t)
i ≤ Ri ≤ x̄

(t)
i + σ

(t)
i . With

UCB, we may say that a trial is an exploitation trial if an alternative is chosen since x̄(t)i is large
and that is an exploration trial if σ(t)

i is large. Since σ(t)
i decreases rapidly with each choice of arm

i, the number of exploration trial is limited. Thus the use of UCB automatically trades off between
exploration and exploitations. An improved version, UCB-V, considers the effect of the empirical
variance, is proposed in [1] and estimates the best arm in trial t as following where ζ and c are
constant coefficients:

arg max
i∈M

(x̄
(t)
i +

√√√√ (x̄
(t)
i − (x̄

(t)
i )2)ζlog(t)

n
(t)
i

+
c.log(t)

n
(t)
i

)

3 MAB problem and K-th best arm

3.1 System model

We assume that time is slotted and a time-slot on channel i is occupied by PUs with Bernoulli
distribution with parameter µi, i.e. Wi ∼ B(µi). There is a set of U cognitive users grabbing
free time-slots from M independent and orthogonal channels on the premise of not interfering the
operation of licensed PUs. Also, cognitive user i has a prior information about its own unique
rank, k, among the rest of U-1 users. Here, users should learn channel mean availabilities, µ, in a
distributed manner and converge to an appropriate channel while on one hand they do not exchange
information on their decisions and observations and on the other hand they implement the pre-
allocated rankings. Note that we use two terms of time-slot and trial interchangeably. Thus, the
optimal channel selection strategy for a SU-i is the one that narrows operation of user i on the
channel with kth highest mean availability.

At the beginning of time-slot t, user i selects a channel, e.g. channel j, and keeps the history of its
selections on Ti,j . User i then senses the selected channel j to find if PU has occupied this slot or
not and keeps the history of sensing results regarding to channel j in Xi,j . User i approximate the
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mean availability of channel j as µ̂j =
Xi,j

Ti,j
where Ti,j indicates the number of times that channel

j is selected by user i so far. In time slot t+1, channel selection strategy of user i exploits previous
observations as the form of µ̂j , j ∈ 1, ...,M to pick a channel for sensing. Note that although
Xi,j = 0 indicates that this slot is free of PU transmission but it does not guarantee that user j is
the sole transmitter in this slot. In fact, collision is likely since multiple users may select a common
channel. However, a proper learning strategy eventually confines the operation of user i on the
channel with kth highest mean availability and consequently collision probability reaches zero in
the course of time. To estimate the achievable throughput, user i receives an acknowledgement on
whether its transmission on channel j was successful(Zi,j = 1) or not (Zi,j = 0).

3.2 Greedy distributed learning under pre-allocation (ρPRE)

Authors in [2] have proposed a distributed learning under pre-allocation, ρPRE , as a modified ver-
sion of the ε − greedy strategy for finding the K-th best channel. Their general idea is that a SU
should do a lot of experiments by selecting different channels to estimate their availability ratios
and eventually settles down in the appropriate one. In ρPRE , SU-i with rank k, selects a uniformly
random channel with probability εn = min(1, β/n) and selects the channel with kth highest sample
mean with probability 1− εn. It means that, there is a finite probability εn for user i to not select the
channel according to its rank and instead finds an opportunity to explore other channels to find better
estimation about their sample means. The value of β defines the trade-off between exploitation and
exploration and so the efficiency of ρPRE is highly sensitive to the appropriate choice of β. In the
next section we propose a new approach, kth −MAB to solve the problem of finding the kth best
channel which is more efficient than ρPRE as evaluated in Section 4.

3.3 UCB for ordring (kth −MAB)

In this section, a decentralized policy called kth −MAB is constructed by which a cognitive user
with rank k finds the best k channels in order, and converges to the one with kth highest mean
availability. Note that the higher the value of µis, i ∈ {1, ...,M}, the more available a channel is.
Without loss of generality, from now we suppose that user i has the ith highest rank and channel j
has the jth highest µ. With this assumption, user 1 and user 2 want to converge to channel 1 and 2
respectively. The basic idea is that user i selects the best i channels in a hypothetical frame structure
consists of i time-slots. The formal explanation of this policy is summarized in in Table 1.

As an example, consider a case of three cognitive users, i.e. U=3, in which SU-1 and SU-3 have the
highest and lowest priorities respectively. For SU-1, the problem is simplified as the common MAB
problem in which a player wants to find the best arm (channel). Thus, SU-1 always applies UCB-V
to efficiently learn and select the best channel. SU-2, works in frames of two time-slots since it
wants to find the best two channels. For this, in odd time-slot of each frame, it applies UCB-V to
find the best channel. In order to find the second best channel in an even time-slot of the frame, it
applies UCB-V policy to the remaining M-1 channels after removing the channel considered as the
best one in the odd time-slot. SU-3 wants to find the best three channels and finally converges to
channel 3. For this, it works in a hypothetical frame of three time-slots and considers finding the
best channel in the first time-slot. Then it applies UCB-V to M-1 channels remained from the first
time-slot, to find the second best channel. Finally, it estimates the third best channel by applying
UCB-V policy to the list of M-1 channels resulted from the case that the second best channel is
estimated. At the end of the third time-slot, the current frame of SU-3 is completed and this user
resumes its channel selection pattern from the next frame.

Since the goal of user i is convergence to the ith best channel, it switches to channel j with µ̂j > µ̂i
only with probability Pswitch ∼ B(min(1, 5.0√

t
)). This allows user i to smoothly converge to the ith

best channel. For example, SU-2 tries to find the best channel in odd time-slots only with probability
Pswitch. Similarly, in trials t, t%3 != 0, SU-3 estimates the best and the second-best channels with
probability Pswitch and estimates the third best one with probability 1− Pswitch.
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Table 1: kth −MAB for user i with kth highest rank

• Init:

– Slecting each channel j, j ∈ 1, ...,M once and updates Xi,j and Ti,js.

– Set K sub-sequences with µ̂j =
Xi,j

Ti,j
.

• At trial t = 0 ,..., T :

– Calculates j = t % k and Pswitch ∼ B(min(1, 5.0√
t
))

– if Pswitch = 0 :
∗ Applying UCB-V to the kth sub-sequence,
∗ Selecting the best channel, say h, and updates µh.

– else if Pswitch = 1 :
∗ if j = 0 :
· Applying UCB-V to the kth sub-sequence.
· Selecting the best channel, say h, and updates µh,

∗ else if j = 1 :
· Applying UCB-V to the first sub-sequence,
· Selecting the best channel, say h, and updates µh,
· Updating the second sub-sequence with first sub-sequence\ h

∗ else if j = 2 :
· Applying UCB-V to the second sub-sequence,
· Selecting the best channel, say h, and updates µh,
· Updating the third sub-sequence with second sub-sequence\ h

∗ ...

∗ else if j = (k-1) :
· Applying UCB-V to the k − 1th sub-sequence,
· Selecting the best channel, say h, and updates µh,
· Updating the Kth sub-sequence with the (k − 1)th sub-sequence\ h

4 Performance evaluation

We present simulations for comparing efficiency of two discussed schemes ρPRE and kth−MAB.
A set of M=5 orthogonal channels with mean availabilities characterized by the following Bernoulli
distributions is avaibale, CH1∼ B(.8), CH2 ∼ B(.6), CH3 ∼ B(.4), CH4 ∼ B(.2), CH5 ∼
B(.1).

Note that in a presence of a centralized arbitrator, SU-i with rank k is centrally assigned to work
on the kth best channel. This assignment of SUs to their rank-optimal orthogonal channels makes
collision occurrence is unlikely and guarantees the optimum throughput. However, without such an
optimal allocation, users may not choose their desired channels and face with collision. For SU-i,
three criteria are introduced which represent how well learning policies work in comparison to the
optimal case:

1) regretTi = T.µh−
∑M
j=1 Zi,j indicates how much throughput is lost up to an observation period

T where ’h’ is the kth best channel with mean availability µh.

2) rankiopt =
Ti,h∑M

j=1
Ti,j

gives an estimate about efficiency of the learning strategy in bounding the

operation of user i on its desired channel ’h’.

3) Throughputi =

∑M

j=1
Zi,j∑M

j=1
Ti,j

estimates the percentage of channel selections that lead to a success-

ful packet transmission. Under the presence of a centralized arbitrator, the average throughput for
SU-i would be µh.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: {(a)-(d)-(g)} is normalized regret, regretTi
log(T )

, vs. T slots, {(b)-(e)-(h)} is rankiopt vs. T slots, {(c)-

(f)-(i)} is Throughputi vs. T slots.

Fig. 1 and Fig. 2 represent the results for kth −MAB, ρPREβ=200 and ρPREβ=1000 where two and three
competitive SUs, i.e. U=2 and U=3, exist. SUs compete on a set of M=5 channels where SU-1 has
the highest rank and its desired channel is CH1 with 80% mean availability and SU-3 has the lowest
rank and its desired channel is CH3 with µ = 40%. To make the comparison easier, a vertical line
corresponds to 0.9% of the final value, is added to each graph.

Worthwhile to mention that performance of ρPRE is evaluated under various values of β. It is
empirically estimated that β = 200 gives the best results for rankiopt and Throughputi. Therefore,
results of kth−MAB are compared to the best empirical configuration of ρPRE . To emphasize that
performance of ρPRE directly hinges on the configuration parameter β, results related to β = 1000
are also provided. In figures 1 and 2:

• Subfigures (a),(d) and (g) indicate how fast an applied learning strategy converges to the
desired channel. Under kth −MAB, after trial 2000 the desired channel is selected with
probability higher than 80% while for ρPREβ=200, similar situation happens after 4000 trials.

• Subfigures (b),(e) and (h) represent normalized regret up to time-slot T as regretTi
log(T ) . Com-

parison of the results justifies that at each arbitrary trial T, SU-i, i ∈ {1, 2, 3} suffers the
least regret when it works based on kth −MAB.

• Subfigures (c),(f) and (i) represent that under kth −MAB learning policy, Throughputi
reaches 0.9% of its highest value around trial T=2500 while similar results are obtained
around trial T=4000 for the case of ρPREβ=200.
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Figure 2: {(a)-(d)-(g)} is normalized regret, regretTi
log(T )

, vs. T slots, {(b)-(e)-(h)} is rankiopt vs. T slots, {(c)-

(f)-(i)} is Throughputi vs. T slots.

5 Conclusion

In this paper, we design a distributed learning policy by which SUs estimate channel statistics and
cooperatively converge to their rank-optimal channels. Under this online learning strategy, achieved
throughput for each SU would be proportional to the level of its QoS requirements. Simulation
results represent that convergence rate to the desired channel is high and SUs get rank-based average
throughput. We plan to extend this work for the non-greedy case in which SUs may have less traffic
than channel availability of their desired channels. Thus, SUs can improve their average throughput
by capturing leftover of channels with higher ranks.

References

[1] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002) Finite-time Analysis of the Multiarmed Bandit Prob-
lem.Journal of Machine Learning.

[2] Anandkumar, A., Michael, N. & Tang, A. (2010) Opportunistic Spectrum Access with Multiple Users:
Learning under Competition. Proceedings of IEEE INFOCOM.

[3] Liu, K. & Zhao, Q. (2010) Distributed learning in cognitive radio networks: Multi-armed bandit with
distributed multiple players. Proceedings of IEEE International Conference on Acoustics Speech and Signal
Processing.

6


