
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Adaptive Parallel Tempering MCMC

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper first provides an overview of the Metropolis-Hastings Markov-chain
Monte Carlo (MCMC) algorithm, and then discusses Parallel Tempered(PT)
MCMC and Adaptive MCMC. These have come into practice in order to address
problems that occur in practice when using straight forward implementations of
the Metropolis-Hastings algorithm. An experiment is then proposed that compares
two methods for automatically tuning the parameters of the PTMCMC method.

1 Metropolis-Hastings Markov-chain Monte Carlo Algorithms

MCMC algorithms are a very widely used tool for calculating integrals of complicated and high di-
mensional distributions that occur in a range of contexts, from computational physics and biology to
Bayesian statistics[1]. If one were to try to do these integrations in a straight forward manner,namely
by evaluating the distribution deterministically over the entire state space at a set resolution, the time
necessary for the computation would quickly become prohibitive. These distributions, as a function
of their dimensionality, take an exponential number of evaluations to integrate in this manner for a
given sampling resolution. MCMC algorithms take a different approach. Rather than providing a
high precision result only at the end of the computation, the Metropolis-Hastings MCMC algorithm
(Algorithm 1) takes a stochastic approach, and provides an approximation that gradually becomes
more accurate over the time the program executes.

Algorithm 1: Metropolis-Hastings MCMC
Input : p(x): Target distribution

q(x): Proposal distribution
Niter: Number of sample iterations

Output: {xi}: Chain of samples
begin

Initialize x(0)
for i = 1 . . . Niter do

Sample u ∈ U [0, 1]
Sample x∗ ∈ q(x∗|x(i))

α = min

(
1, p(x∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))

)
if u < α then

x(i+1) = x∗

else
x(i+1) = x(i)

Starting from a given, or randomly generated, initial sample over the state space, the algorithm uses
a stochastic transition function to produce a new, though not necessarily different in value, sample

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

using the proposal distribution q(x∗|x(i)). The α value determines the acceptance probability for
the newly generated sample, and it is what guarantees the chain will become an approximation of
p(x), the target distribution. The transition function is then recursively applied to each new sample,
producing a chain of samples. As long as the transition function can take the chain over the entire
state space of the distribution, the chain will eventually approximate the target distribution, and as
the algorithm runs that approximation will become more accurate. Once the chain has covered the
range, where the range consists of the areas of the state space of statistical interest, of the distribution
in question, the chain is said to have mixed.

It is one very desirable property to have a fast mixing chain, as this means the distribution will have
’forgotten’ where it started and have no bias towards being in the starting location. However, it
is also often the case that the chain will be initialized in a location of extremely low probability.
The first stretch of the chain will then make the rest of the chain a biased approximation for all but
very large numbers of samples, so it is often the case that a section of the chain at the beginning is
removed once it has reached a region of non-negligible probability, or after a few thousand samples
(depending on the distribution). The removed section of the chain is called the burn-in. For more
complete information on MCMC see [1].

The basic MH algorithm uses a q(x∗|x(i)) = x(i) + N(0, I) which is a step of random direction
and length in the state space from the previous point[2]. Using this transition function the M-H
algorithm will eventually approximate any distribution it is given, but here ’eventually’ is in the
mathematical sense and it guarantees that we will have good results assuming that we have forever
to wait for our program to run. In practice, however, we want reliable results as soon as possible. In
order to make sure the chain mixes quickly, the random step should be wide enough to mix quickly,
meaning the average acceptance isn’t too high, and to make sure that the average rate of new states
that are accepted is not too low which reduces deficiency of the algorithm.

This is where the idea of adaptive MCMC comes in [2], which aims to automatically tune the
parameters of the transition function towards good acceptance rates [3], here the parameter is the
width of the random step distribution. Figure 1(a) shows an example distribution that the basic
MH algorithm would have trouble sampling for any single transition function. In this distribution,
regions of high probability are separated by regions of low probability, making it unlikely that the
chain will visit all regions in a short amount of time for a small random step, or making for a very
low average acceptance rate for a large random step. The Parallel Tempered MCMC (PT) algorithm
is designed to overcome exactly this challenge.

(a) Example Distribution, t = 1 (b) Example Distribution, t = 10

Figure 1: a) shows an example distribution with different high probability regions that would be
difficult to sample using the basic random walk MH algorithm. b) shows the same distribution that
has been tempered with t = 10

1.1 Parallel Tempered MCMC

PTMCMC is a method for generating candidate samples from all over a distribution, overcoming
low probability regions between areas of importance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The inspiration for the parallel tempering MCMC algorithm comes from the idea that a temper-
ature parameter could be used to flatten out the target distribution, see Figure 1(b) . As the
temperature of the distribution is raised the distribution flattens out, making the random walk
chain for that temp more likely to mix quickly. Using the exponential in terms of negative en-
ergy p(x) = Exp(−E(x)), expressing higher temperature distributions is also relatively easy as
p(x, tk) = pk(x) = Exp(−E(x)/tk), which is related to the effect that temperatures have on some
physically based distributions, like the Boltzmann distribution.

Algorithm 2: Parallel Tempered MCMC
Input : {tk}: Temperature set

M : Number of temperatures
Niter: Number of iterations per sweep
Nsweep: Number of sweeps of PT

Output: {xik}: Chains of samples
begin

for i = 1 . . . Nsweep do
for k = 1 . . .M do
{xik} =Metropolis-Hastings(pk(·), q(x∗|x(i)) = x(i) +N(0, I/tk) , Niter)

for i = 1 . . .M − 1 do

Swap xik with xik+1 with probability αk = min

(
1, pk(xk+1)pk+1(xk)

pk(xk)pk+1(xk+1)

)

Once we have an expression for the target distribution for a given temperature parameter pk(x),
which we will call replicas, we run the basic MCMC algorithm on each distribution. After a number
of iterations on each replica, called a sweep, the current samples are considered probabilistically
for exchanges between different temperature levels with probability αk, which is analogous to the
α acceptance probability within one chain. In practice only pairs between neighboring temperature
values are considered for swapping, where the chances of accepting a trade are more likely to be
higher.

The lowest temperature setting is the target distribution t1 = 1, with several distributions of higher
temperatures to accommodate the full exploration of the distribution. A high temperature sample
can travel anywhere the target distribution has high probability, ’cool’ as it is swapped to lower
temperatures, then be considered for acceptance in the target distribution chain. This can effectively
produce candidate samples in regions that are not otherwise reachable, on practical time scales,
because the high temperature chains can cross regions that that have relatively low probability in the
cooler chains[4].

This technique very effectively overcomes much of the shortcomings of basic random walk MCMC
for disconnected distributions, where here disconnected means there are high probability regions in
the distribution that are very unlikely to be sampled in the same chain, with steps yielding good
acceptance rates. Without this technique the random walk step would have to be made very large
to ensure mixing, but this would increase computation time because of the low acceptance rate
that would likely result. The simulation of multiple chains does incur a linear increase of time
complexity, however in practice the algorithm is often still more effective than the non-tempered
approach, including the linear penalty [5].

Parallel Tempered MCMC does however have an additional set of parameters that need to be tuned
before performance becomes optimal, which are the number of replicas M , and their temperatures
{tk}. Poor spacing of the temperatures can cause the replica systems to be too far apart, limiting
the exchange chancesαk , or too close, limiting the improvement in sample variety. It is often
difficult even for experts to provide good temperature spacings, and adaptive approaches have been
introduced to automatically tune the number of replica systems, and the temperature spacings. For
more in depth about Parallel Tempered MCMC see [4].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

1.2 Adaptive PTMCMC

The benefit of having multiple tempered replicas of the target system is that the samples from one
area can be exchanged between temperatures, and are able to eventually wonder everywhere over
the range of p(·). In order to make this a reality we need to make sure the replicas are at the right
temperature spacings, to allow for a good average swapping rate, αk, over all sweeps.

However, making sure that there are exchanges between neighboring replicas is not enough to guar-
antee that the samples are mobile beyond just one transition[5]. For example, the samples might
only be exchanged in cycles between a few neighboring temperature levels without ever traveling to
the highest or lowest levels, making that replica, pk(·), and its neighbors useless for sampling the
distribution we are interested in. What we really want is for the samples to be exchanged between
the lowest, p1(·), and highest, pM (·), replicas after wondering through the intermediate replicas.

We measure this as F (tk) which is the fraction of upward traveling samples to visit replica system
k [5]. An upward traveling sample has visited the lowest temperature replica more recently than
the highest temperature replica, the total number of upward traveling samples to visit replica k is
nup(tk). Similarly a downward traveling sample has visited the highest temperature replica more
recently, and the total number of downward traveling samples to visit replica k is ndown(tk). Sam-
ples that have not yet reached either of the terminal replicas do not contribute to either count. With
this notation:

F (tk) =
nup(tk)

nup(tk) + ndown(tk)
(1)

The FOPT adaptive method changes the temperatures based on making ∆F = F (tk) − F (tk+1)
a constant value for any adjacent replica systems. This means that the fraction of upward moving
particles increases linearly as one moves from the highest temperature replica to the target system,
where F (tM) = 0 and F (t1) = 1. Intuitively this means that we want each replica system to
contribute equally to the flow of samples between the high and low temperature systems, so that
ideally no single replica system is less useful than any other. For more information on feedback
optimized parallel tempering MCMC, see [5].

Algorithm 3: Adaptive PT Template
Input : {tk}: Initial parameter set

M : Number of parameters
Niter: Number of feedback iterations
Nsweep: Number of sweeps of PT within an iteration

Output: {tk}: Optimized parameter set
begin

for i = 1 . . . Niter do
ParallelTempering(λk) for Nsweep steps, calculate F
{λk} = Adaptive Update(F ,{λk})

1.2.1 Feedback Optimized Parallel Tempering

This would involve replacing the Adaptive Update function with the Feedback Optimized PT Up-
date, Algorithm 4, function[5]. The algorithm moves the replica systems away from where F has
a low slope, towards where it has a high slope, in the hopes that the ∆F will be made constant
between consecutive replicas.

1.2.2 Bayesian Inference Optimization

Another approach would be to use Bayesian inference to calculate a choice of parameters, using
a parametric bandit interpretation of the problem. This method would be based on the method
proposed in[6], which was originally tested on Hybrid Monte Carlo simulation tuning, but is fairly
general. The method uses radial basis functions (BRMs) to model nonlinearities. A set of {tk} is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 4: Feedback Optimized PT Update
Input : {tk}: Initial parameter set

F (tk): The upward flow fraction
Output: {tk}: Optimized parameter set
begin

Define g(f) such that:
1. g(f(λk)) = λk

2. Within (λk, λk+1), g(f) is a linear interpolation between g(f(λk)) and g(f(λk+1))

for k = 2 . . .M − 1 do
λk ← g((k − 1)/(M − 1))

the action taken, and by expanding the action in terms of the RBMs a linear model can be used.
The reward function would use a measure of the average deviation of the ∆F between consecutive
replicas. For low variations in the slope of F, ie F is close to linear, the reward would need to be
high , and for high variations in slope, or highly nonlinear F, the reward should be low. This method
would also steer the spacing of the replica systems so that each would contribute roughly the same
amount to the global exchange between the target system and the highest temperature replica. Using
Bayes Rule we can derive the update for our model[6], and use Algorithm 5 to update {tk} [6].

Algorithm 5: Bayesian Inference Update
Input : {tk}: Initial parameter set

F (tk): The upward flow fraction
Output: {tk}: Optimized parameter set
begin

Compute the standard deviation of ∆F , as σ
Augment the data D1:i = {D1:i−1, ({tk}i, σ)}
Update the Linear Model
Find {tk}∗ by optimizing the acquisition function argmax{tk}∗ [u({tk}∗|D1:i)]
Draw u ∈ U [0, 1]

if u < p then
{tk}i+1 = {tk}∗

else
{tk}i+1 = {tk}i

end if

2 Experiment Proposal

The experiment I propose here would compare the FOPT, Algorithm 4, method of adjusting the
temperature parameters, to the Bayesian inference method, Algorithm 5. As PT is a fairly widely
used algorithm, finding an efficient and general method for automatically tuning {tk} may increase
the variety of distributions that can be effectively approached with this method. The experiment
would test the two methods on at least one procedurally generated distribution, somewhat like that
in image 1, but likely in higher dimensions. Ideally it would also be tested using a few distributions
used in different fields, so that the results would be as close to real practice as possible. If the
Bayesian inference method turns out to be competitive with FOPT, it could then be compared to the
Robust Feedback Optimized PT algorithm proposed in []. Robust FOPT is more stable as it also
allows for the introduction of more replicas into the system, in order to maintain a minimum swap
rate between neighboring replicas. Data collected for the experiment would be in the form of the
time of execution, and the relative accuracy of the results as a function of run time, and the time
taken to do the optimization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3 Conclusion

Parallel Tempering MCMC is a popular method for simulating and integrating high dimensional
probability distributions, and these adaptive techniques discussed here show promise of expanding
the applicability of the technique. It could be beneficial to carry out the proposed experiment, and is
unfortunate I was unable to do so in time.

References

[1] Andrieu, Christophe. de Freitas, Nando. Doucet, Arnaud. Jordan, Michael I. (2003) An Introduc-
tion to MCMC for Machine Learning . Machine Learning 50, pp. 5-43. Kluwer Academic Publishers.
http://homepage.psy.utexas.edu/homepage/group/loveLAB/love/classes/CompCogsci/mcmc-ml.pdf

[2] Roberts, Gareth O. Rosenthal, Jeffrey S. (2008) Examples of Adaptive MCMC
http://probability.ca/jeff/ftpdir/adaptex.pdf

[3] Atchade, Yves. Fort, Gersende. Moulines, Eric. Priouret, Pierre. (2011) Bayesian Time Series Models,
Ch1. Cambridge University Press. www.stat.lsa.umich.edu/ yvesa/afmp.pdf

[4] Earl, David J. Deema, Michael W. (2008) Parallel Tempering: Theory, Applications, and New Perspectives
http://arxiv.org/abs/physics/0508111v2

[5] Hamze, Firas Dickson, Neil. Karimi, Kamran. (2010) Robust Parameter Selection for Parallel Tempering
D-Wave Systems. http://arxiv.org/abs/1004.2840v1

[6] Wang, Ziyu. de Freitas, Nando. (2011) Adaptive Hybrid Monte Carlo with Bayesian Parametric Bandits
and Predictive Adaptation Measures http://www.cs.ubc.ca/ nando/publications.php

6

