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This paper formulates the optimal control problem for a class of mathematical
models in which the system to be controlled is characterized by a finite-state
discrete-time Markov process. The states of this internal process are not di-
rectly observable by the controller; rather, he has available a set of observable
outputs that are only probabilistically related to the internal state of the system.
The formulation is illustrated by a simple machine-maintenance example, and
other specific application areas are also discussed. The paper demonstrates
that, if there are only a finite number of control intervals remaining, then the
optimal payoff function is a piecewise-linear, convex function of the current
state probabilities of the internal Markov process. In addition, an algorithm
for utilizing this property to calculate the optimal control policy and payoff
function for any finite horizon is outlined. These results are illustrated by a
numerical example for the machine-maintenance problem.

THE TWO CONCEPTS of state and state transition are essential to the modeling

of complex dynamic systems. The concept of state allows one to focus on the
features of the system that are essential to the problem at hand, while the concept of
state transition provides the mechanism for structuring the system’s dynamic be-
havior. In most situations, there is an element of uncertainty in the transitions of
the process from one state to another, and this leads naturally to the use of Markov
processes as quantitative models of the system.

Unfortunately, in many practical applications we are not permitted exact ob-
servation of the state of the process. For example, there are many situations in
medicine in which we would like to model the dynamics of the patient’s physio-
logical state as a Markov process, but this state is not directly observable. In such
cases, we can often model what is observable as probabilistically related to the true
state of the system. Figure 1 presents a pictorial representation of such a model,
termed a partially observable Markov process. In this paper we shall consider
partially observable Markov processes for which the underlying Markov process is a
discrete-time finite-state Markov process; in addition, we shall limit the discussion
to processes for which the number of possible outputs at each observation is finite.

As an example of such a system, consider a hypothetical manufacturing opera-
tion that produces a finished product once an hour at the end of each hour. This
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machine consists of two identical internal components, each of which must operate
once upon the product before it is finished. Unfortunately, each component can
fail spontaneously and, if a component has failed, there is some probability that,
when operating upon the product, it will cause the product to be defective. For the
sake of simplicity, let us assume that the finished product is either not defective or
defective with a corresponding profit of one unit or zero units, respectively. If the
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Fig. 1. The partially observable Markov process.

machine must be disassembled in order to examine the status of the internal com-
ponents, then its internal state is not directly observable, and so Fig. 1 is a valid
representation of the process.

Suppose that there are several control options available to us during each one-
hour production interval. For the simplest alternative, we simply continue the
manufacturing process with no examination of the finished product. A second
alternative is to examine the quality of the product as it rolls off the production line
at the end of the hour. For the third alternative, we stop the machine for the one-
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hour interval, disassemble it, inspect the internal components and replace any that
have failed. Finally, the fourth alternative uses the hour to replace both com-
ponents without inspecting them first. For this manufacturing example, we wish
to know which of these control alternatives is optimal for each possible history of the
machine’s operation.

This example illustrates the characteristics of the general optimal control
problem for partially observable Markov processes. This paper formulates and
solves this general optimal control problem for a process that is to operate for only
a finite number of time periods. A later paper will examine this control problem for
a process that is to operate into the indefinite future.

EckLis!? has considered the control of partially observable Markov processes
as applied to machine replacement problems similar to the one in the preceding
example. In a second area, the partially observable Markov process has also been
applied to the human learning process (SMaLLwooD!®!); in this application, the
unobservable states of the Markov process correspond to the state of knowledge of
the student, the observable outputs represent the discrete responses by the student
to particular questions about the subject matter, and the alternative controls repre-
sent various mechanisms for presenting material to the student. MaTHEsONM
and Smallwood8 have considered the optimal control problem for simple ex-
amples of such learning models.

A third application of partially observable Markov processes has been in the
decoding of Markov sources transmitting over a noisy channel (Drakg™). In this
case, the internal state of the Markov process corresponds to the state of the Markov
source and the discrete observations represent the outputs of the noisy channel.
A fourth application area for this class of model is in medical diagnosis and decision-
making. In this case, the unobservable state of the process corresponds to the
physiological status of the patient, the discrete observations represent the results of
diagnostic tests or the patient’s response to particular therapies, and the control
alternatives correspond to different tests or therapies available to the patient.

A fifth application area is in the search for a moving object. Porrock!®! has
formulated a two-state moving-target model that can be converted very simply
into a three-state partially observable Markov process, the additional state cor-
responding to detection of the target. For the general application of partially
observable Markov processes to the search for a moving object, the unobservable
states of the internal process represent the status of the target object, the discrete
observations correspond to the outcome of some expenditure of search resources
(e.g., ‘found it’ or ‘did not find it’), and the control alternatives represent particular
feasible expenditures of the search resources (e.g., ‘look in location #’). Table I
summarizes these five application areas.

I. PROPERTIES OF THE MODEL

To BEGIN THE explicit formulation of the control problem for a partially observable
Markov process, we assume that the internal dynamics of the system under control
can be modeled by an N-state discrete-time Markov process. If there are n control
periods remaining, the problem is to select the alternative from the available set
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TABLE 1
APPLICATION AREAS
Application area State Observation Control alternative
Machine maintenance | Status of machine | Quality of product or | Examination of out-
and replacement result of internal put or internal ex-
inspection amination
Human learning and in- | Status of knowledge | Response to query Alternative presenta-
struction tions of material
Decoding of Markov | Status of source Output of noisy | (Not considered)
sources channel
Medical diagnosis and | Physiological status | Outcome of test or | Test or therapy
decision-making of patient response to therapy
Search for moving ob- | Status of target ob- | Result of search Expenditure of search
ject jeet’ resources

A (n) that will optimize the performance of the system during its remaining lifetime.
If alternative a is selected, then the conditional probability that the internal process
will make its next transition to state j if it is presently in state ¢ will be written as
p%. An observation will follow each transition, with r5s denoting the probability of
observing output 6 if the new internal state of the process is j and alternative a is
controlling the system. Figure 2 illustrates this sequence of events.

With this representation of the process, it is easy to see that, if 77 is independent
of j, then the observation of the output will yield no additional information about
the internal state of the process. This is the case of the nonobservable Markov
process. The other extreme is the more usual case that has been studied extensively
in the literature (Howarp®). If there is one output for each internal state of the
process and if for each alternative rjs=1 if and only if j=8, then the process is said
to be completely observable.

The calculation of an optimal control policy requires a reward structure for the
process. Thus, we define wij as the immediate award accrued if, while under the
control of alternative a during one control interval, the process makes a transition
from state 7 to 7 and then produces output 8. The analysis to follow assumes that
the controller has no direct observation of the acerued rewards; that is, the con-
troller only observes the outputs of the observation part of the process. If this
assumption is violated, then it is easy to redefine the observation outputs of the
process to include the rewards that are immediately available to the controller.

| |
| |
SELECT CONTROL | STATE TRANSITION | OBSERVE OUTPUT
ALTERNATIVE : ACCORDING TO |  ACCORDING TO
aeACn) l p? l R®
| | NUMBER OF
| i REMAINING
. - CONTROL
INTERVALS

Fig. 2. The sequence of operations.
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The uncertainties in the dynamics of the internal process and in the observation
process produce uncertainty about the internal state of the system. For this
formulation of the control problem, the current state of information about the in-
ternal state of the system can be encoded as the information vector ==[my, ms, « - -,
], where 7; is the probability that the current internal state of the system is 7.
In other words, if the controller only has available to him his past observations of
the process’s outputs, then at any time the vector = is a sufficient statistic for his
past sequence of observations. Appendix A presents a proof of this rather intuitive
result.

From this result it follows that the dynamic behavior of the information vector
w is itself a discrete-time continuous-state Markov process. This dynamic behavior
of the state of information is crucial to the calculation of the optimal control. If
our prior state of information about theinternal state of the system isdenoted by ,
and if we observe the output 8 after using alternative a, then we must be able to
calculate our updated state of information. If x; is the updated probability that
the internal state of the system is j given the new information, then the application
of simple probability operations based on the sequence of events shown in Fig, 2
yields the following equation (Appendix A contains the complete derivation):

7 = miptail /[ s mapial. (1)
Equation (1) defines a transformation from the vector « to the vector #’. Since

this transformation plays an important role in the succeeding development, it is
useful to introduce the notation

7' =T (r|a, 6). 2)

Figure 3 illustrates some of the properties of this transformation for the three-
state case. In this portrayal, the space of possible = vectors is represented by an
equilateral triangle, with each point in the triangle corresponding to a possible state
of the information vector =. For each information vector =, the perpendicular dis-
tance from the point to the side opposite the zth vertex is just equal to 7;. Thus,
points closer to the ¢th vertex correspond to states of information in which the proc-
ess is believed more likely to be in state ¢. The transformation in (2) then trans-
forms a point in the space of information vectors for one time period into another
point in the space of information vectors for the succeeding time period. Further-
more, as illustrated in Fig. 3, there will be one such transformation for each possible
output of the observation process.

With this as a background, the remainder of this section will formulate and ex-
amine a dynamic-programming approach to calculating the optimal control policy
for a partially observable Markov process. To this end, we define V, () as the
maximum expected reward that the system can accrue during the lifetime of the
process if the current information vector is = and there are n control intervals re-
maining before the process terminates. Then, expanding over all possible next
transitions and observations yields the recursive equation

Valr) =maXeesn [ 2101 mi 21t phi D rioiwt ot VanlT (xla, )1}]. (3)

This equation can be simplified somewhat by defining the expected immediate re-
ward for state 7 if alternative a is used during the next control interval as

"= 20 Pi it . 4)
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Equation (3) then becomes
Va(r) =maXeeam) [21 g+ Ei.j,o TP VaulT (xla, 8)]]. (5)

Equation (5) is valid for n=1. It only remains to define the value of terminating
the process in each internal state. If ¢;° is the expected value of terminating the
process in state 7, then the expected terminal value for the process with a final in-

formation vector = is just
Vo(r) =2 img’=m-q". (6)

It is instructive to rewrite (5) in matrix form. To this end, we define pr{ 8w, a}

1
— : e
T e
2
n CONTROL INTERVALS n-1 CONTROL INTERVALS
REMAINING REMAINING

2 (r,a,1)=4

2(m,a,2)=1
Fig. 3. The information-vector transformation 7(r|a, 6) for the
three-state case.

as the probability of next observing output 6 if the current information vector is =
and the next alternative selected is a. With this definition, (5) becomes

Va (7") =IMaXaed(n) [7r . qa+ 29 pl‘{ elﬂ'» a} Vﬂ—l[T (1!"0:, 0)]]1 (5,)

valid for »21. In this form, the equation represents a dynamic-programming
problem over a continuous state space, the space of information vectors. This is
consistent with the previous comment that the information vector = is itself the
state of a discrete-time, continuous-state Markov process. Appendix A discusses
this in more detail.

Although (5) [or equivalently (5')] appears rather formidable, its solution has a
rather simple form. In particular, we shall show that V, (r) is piecewise linear and
convex, and can thus be written as

Va(r) =maxi [ 22151 o ()] )
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for some set of vectors of(n) =[ai*(n), at*(n), -+, ax* ()], k=1,2, ---. We
shall use the term a-vector to refer to one of the vectors in (7).

The proof of this important property proceeds by induction. Equation (6)
demonstrates that V,(w) has the desired form for n=0. Now, assuming that
Va_1(w) is of the form in (7), we shall prove that this implies that V, () is of the
same form. This involves a rather straightforward substitution into (5). The
critical part of (5) is V[T (w|a, 8)]. Substituting (1) into this quantity yields

VaualT (xla, 6)] =[maxe X af (n—1) X maptatal/[ e mplalel.  (8)

As illustrated in Fig. 3, if V,_1() is piecewise linear and convex, the space of
information vectors can be divided into a finite set of convex regions separated by
linear hyperplanes such that V,_; (r) =7-a* (n—1) within a region for a single index
k. It will prove convenient for the succeeding development to define a function
l(w, a, 6) that is equal to the corresponding a-vector index for the region containing
the transformed information vector T (w|a, ). In other words, if there are n control
intervals remaining, if our current information state vector is =, and if we apply
control alternative a and observe an output 6, then the total expected accrued re-
wards V,[T (w|a, 8)] from the optimal policy during the remaining n—1 control
intervals will just be the quantity on the right side of (8) with the index & equal to
l(m, a,0):

VaalT (xla, 0)]1=[2; ;™" (n—1) X wpi e/ [ s mpial.  (9)

Figure 3 illustrates an example of {(w, a, 8) for the three-state, two-outcome situa-
tion.
With this definition, substituting (9) into (5) yields

Valw) =maXeeacn [ 2o milgi®+ 20,5 Pl e ™ % (n—1)]]. (10)

To show that the expression in (10) is of the same form as (7), let us focus on the
outer bracketed quantity in (10) for some control alternative a. If we can demon-
strate that this quantity is piecewise linear and convex in , then, since the maximum
of a set of piecewise linear convex functions is itself piecewise linear and convex,
this will prove that V, (r) is of the form in (7). To this end, notice first that, for
each a and 0, I(m, a, 6) is a finitely valued function of w. This fact, plus the as-
sumed convexity of V,_1(-) and the continuity of 7 (r|a, 6), imply that I(r, a, 0)
partitions the space of information vectors into a finite number of regions such that
I(m, a, 8) is single-valued over each region. If we hold @ constant, the function
l(m, a, 6) defines a different partition of the space of information vectors for each
output 6. Now, let us take the common refinement defined by the union of the re-
gion boundaries within each partition. This common refinement is a new partition
such that the inner summand of (10) is constant over each region of this new parti-
tion. The net result is that the bracketed quantity in (10) is piecewise linear over
the space of information vectors. The convexity of the bracketed quantity follows
easily from the maximization in the definition of I(, a, 8) [see (8) and (9)]. Thus,
the outer bracketed quantity in (10) is of the form in (7) for each control alterna-
tive a; it then follows that V,(-) is also of this form. This completes the proof of
the piecewise-linear, convex form of V,(-).

There are two important practical points to keep in mind. First, if the set of &
vectors for V,_1(-) has been calculated, then it is possible using (8) and (10) to
calculate the optimum control alternative and the corresponding a-vector for any
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specified information vector = for the n-horizon case. This property will be most
useful when we derive an algorithm for calculating the a-vectors in Section III.
Secondly, the calculation of a new a-vector using (10) yields an optimal control
alternative associated with each new a-vector. Thus, in storing the optimal control
policy, it is not necessary to store the complete description of the policy regions as
illustrated in Fig. 3; we need only store the set of a-vectors along with the appropri-
ate control alternative for each a-vector. Then, to find the optimal control alterna-
tive for some information vector =, we merely carry out the maximization in (7)
and then use the control alternative associated with the maximizing «-vector.
This represents a considerable practical saving over previous solutions to this prob-
lem.

II. THE MACHINE-MAINTENANCE EXAMPLE

To 1LLUsTRATE THE ideas of the preceding section, let us consider a more explicit
formulation of the machine-maintenance example outlined earlier.

The machine under consideration has two identical internal components, each of which
must operate on the product before it is finished. Since the components are identical, we can
model the internal dynamics of the machine by a three-state discrete-time Markov process
with the three states corresponding to zero, one, or two internal components that have
failed. If component breakdowns are independent of one another, and if there is a probability
of 0.1 that an operational component will break down during the manufacture of a product,
then the matrix of transition probabilities for the normal operation of the manufacturing

process is
0.81 0.18 0.01
I: 0 0.9 0.1 |.
0 0 1

We shall assume that, if a component has failed, then, in its processing of the product,
there is a fifty-fifty chance that it will cause the product to be defective. Thus, for the con-
trol alternative in which we examine the quality of the finished product, the probabilities of
observing & nondefective product are 1.0, 0.5, and 0.25 if there are zero, one, or two faulty
internal components, respectively. If there is a profit of one or zero units for producing a
nondefective or defective product, respectively, then the expected immediate production
profit for a machine that begins the production cycle with zero, one, or two internal com-
ponents that have failed is 0.9025, 0.427, and 0.25, respectively. For the sake of simplicity,
these calculations have assumed that the breakdown of an internal component during a pro-
duction cycle precedes its operation upon the product, that is, that the transitions governing
the internal dynamics of the machine precede the actual manufacture of the product during
any production cycle. This ensures correspondence with the assumed sequence of operations
illustrated in Fig. 2.

For-this maintenance problem there are four control alternatives available during each
production cycle (control interval). In the first alternativé, we simply manufacture another
item, but without examining whether or not the resulting item is defective. For the second
alternative, we proceed as in the manufacture alternative, except that we examine the finished
product at a cost of 0.25 units. There are two observable outputs for this alternative corre-
sponding to the production of a nondefective or defective product. In the third control
alternative, the manufacturing process is interrupted for one production cycle, the machine
is dismantled, and the two internal components are inspected and replaced if they have failed.
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The replacement cost for each component is one unit and there is a 0.5-unit additional cost
for inspecting the status of the internal components. The fourth and final control alterna-
tive involves the replacement of both internal components with no prior inspection. This
alternative accrues the two-unit cost for the replacements, but does not incur an inspection
cost. Table II lists the numierical values of the problem parameters for each of these four
control alternatives.

A reasonable choice for the terminal reward is the replacement cost (i.e., salvage value)
for the internal components that are still operable. Thus, we have g® =2, ¢:°=1, ¢.°=0,
where the subscripts refer to the number of faulty internal components at the termination of
the process.

Figures 4a, 4b, 4c, and 4d portray the complete optimum policy regions for the cases in
which the are 3, 4, 7, and 11 control intervals remaining. In these figures the solid lines
specify the regions over which the optimal control is constant, while the dotted lines subdi-
vide the regions into subregions over which a fixed a-vector o*(n) maximizes the bracketed
quantity in (7).

TABLE II
PARAMETER VALUES FOR THE EXAMPLE
Control alternative Pe Re q°
[C0.81 0.18 0.01 1.0 0.0 ] [ 0.9025
Manufacture 0 0.9 0.1 1.0 0.0 0.475
) 0 1.0 [ 1.0 0.0 | 0.250
[0.81 0.18 0.017 [1.0 0.0 7 0.6525 ]
Examine 0 0.9 0.1 0.5 0.5 0.225
L O 0 1.0 | _ 0.25 0.75 0.00 |
1.0 0 0 ] [ 1.0 0.0 7 [ —0.50 ]
Inspect 1.0 0 0 1.0 0.0 —1.50
[ 1.0 0 (1 L 1.0 0.0 | [ —2.50 ]
1.0 0 0 ] 1.0 0.0 ] [ —2.0 7]
Replace 1.0 0 0 1.0 0.0 -2.0
1.0 0 0o | 1.0 0.0 J | —2.0 |

There are several important characteristics of these results. First of all, there is a great
variation in the size and shape of the optimum policy regions. In particular, the optimal re-
gion for the ‘manufacture’ control alternative decreases in size as the number of remaining
control intervals increases from 3 to 7; but then it increases in size again in going from a
control horizon of 7 to 11.  If we were to portray the optimum policy regions for longer hori-
zons, the sizes and shapes of the regions for this problem eventually stabilize. However, not
all problems exhibit this property; a later paper on this infinite-horizon problem will ex-
amine this property more closely.

Secondly, the location of the optimum policy regions in Figs. 4a—4d is intuitively ap-
pealing. That is, the ‘manufacture’ alternative is optimal if we are reasonably sure that both
internal components are working, the ‘replace’ alternative is optimal when we feel that both
components have failed, the ‘inspect and replace’ alternative is optimal when we believe that
exactly one internal component has failed, and the ‘examine output’ alternative is optimal if
we are uncertain whether the number of broken-down components is zero or two.

Finally, it is important to notice that, while the region for a particular a-vector is con-
vex, the complete region for a control alternative is not necessarily convex. In fact, as il-
lustrated in Fig. 4d, the separate regions for a single control alternative can even be disjoint.
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MFG

REP
1 2
Fig. 4a. The optimal-policy and a-vector regions for the control horizon with
n=3. (MFG =manufacture; REP =replace only.)

MANUFACTURE

"

"

EXAMINE PRODUCT
= INSPECT AND REPLACE

REPLACE ONLY

2

Fig. 4b. The optimal-policy and a-vector regions for the control horizon
with n=4.
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INSP

REP

Fig. 4c. The optimal-policy and a-vector regions for the control
horizon with n=7.

0
»
- ©
INSP
1 2

Fig. 4d. The optimal-policy and a-vector regions for the control
horizon with n=11.
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Although diagrams such as the ones in Figs. 4a—4d are convenient for problems that con-
tain only two or three internal states, such diagrams are impractical for more complex prob-
lems. In this case, the numerical values of the a-vectors and their associated mapping onto
the control alternatives are the most convenient way to portray the complete optimal con-
trol policy. However, for the cases in which we desire the optimal control policy for only a
single information-state vector and control horizon, a very simple decision-tree format can be
used to protray the optimal policy. In fact, a single decision tree will be valid for a complete
region of information vectors. Thus, as an example, Fig. 5 illustrates the complete optimal
control policy for three regions of the information vector space with eleven control intervals
remaining; the three regions are labeled A, B, and C in Fig. 4d. Region A includes the case
in which both internal components are known to be working; in this case the optimal policy is
to manufacture five items with no examination, inspect and replace any internal components
that have failed, and then manufacture five more items without examination. This policy
is rather simple; however, the optimal policy for regions B and C, as portrayed in Figs. 5(b)
and 5(c), are more complex, with succeeding actions dependent upon the quality of examined
products. Such representations can be very useful in translating the complete specification
of the optimal control policy into a practical format for implementation.

III. AN ALGORITHM FOR COMPUTING V,(r)

HAvVING DISCOVERED THE relatively simple form of the solution to the optimal con-
trol problem, it only remains to construct an orderly practical procedure for calcu-
lating this control policy. In other words, we require an algorithm for computing
the a-vectors and the corresponding mapping of these vectors onto the set of alterna-
tive controls. In the succeeding discussion, we shall assume that the a-vectors
a*(n—1) for the case of n—1 control intervals have been calculated. The problem
then is to find an algorithm for calculating the vectors o*(n) from this information.

One scheme for accomplishing this would lay out a grid of information vectors
and then use (10) to calculate o (n) and the corresponding optimal control alterna-
tive for each of these information vectors. Unfortunately, this procedure does not
guarantee the detection of all the a-vectors. This section describes an algorithm
that uses this idea of calculating the appropriate a-vector at a number of distinct
points in the space of information vectors. However, in choosing the grid, the
algorithm is guaranteed to find all of the vectors o (n) ; and furthermore, the num-
ber of points chosen equals only the number of a-vectors.

To begin the algorithm, we pick an information vector, say =°, and then calcu-
late using (10) the optimum control alternative and corresponding e-vector if there
are n control intervals remaining in the process. We shall denote these two quan-
tities by a* and " (n), respectively. Now the algorithm proceeds by identifying
the region of the information-vector space over which o*(n) is the appropriate
a-vector. With reference to Fig. 3, we can imagine moving an information vector
= away from 7° and calculating [from (10)], for every , V., (r), and the correspond-
ing a-vector «. We keep moving = until aa*(n). Since the quantity multiply-
ing m; in (10) is just a;(n) 3 it is clear that there are only two ways for « to change.
Either the quantity I(r, a*, 8) will change from I(z°, a*, ) for some output 6 or
else the optimum control alternatlve will change.

The first case occurs when we move 7 away from «° until one of the correspond-
ing points T (r|a”, 1), T'(x|a”, 2), - -+ in the space of information vectors at time
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MFG 5 INSPECT & MFG 5
it
PRODUCTS REPLACE PRODUCTS
(a) REGION A
oK
EXAMINE MFG 3 | | INSPECT & | | MFG 6
OUTPUT DEF | prODUCTS REPLACE PRODUCTS
MFG 9
REPLACE | >
PRODUCTS
(b) REGION B
oK oK DEF
EXAMINE EXAMINE MFG 1 EXAMINE
B i
OUTPUT DEF OUTPUT DEF PRODUCT OUTPUT OK
REPLACE REPLACE INSPECT &
REPLACE
¥ 1 ¥
MFG 9 MFG 8 MFG 7 MFG 6
PRODUCTS PRODUCTS PRODUCTS PRODUCTS
(c) REGION C

Fig. 5. The complete optimal policy for regions A, B, and C

n—1 eventually crosses the boundary of a region.

in Fig. 4d with n=11.

If we focus for a minute on one

value of 6, then the condition for the point 7' («|a”, ) to remain in the same region
specified by 1(x°, a*, 6) is

T (r|a*, 6)-o'(n—1) =T (x|a”, 6) -o* (n—1) forall K,

(11)
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where I(z°, a*, 6) has been abbreviated I. Substituting (1) into (11) yields the
following linear form for these inequalities

Simpintlaf(n—1)—af(n—1)]120 forall k 12)

There will be a set of these inequalities for each possible output 6. Actually, the
situation is not quite as severe as stated in (12). In fact, the inequality in (12)
can be limited to only the values of & for which the region of of(n—1) forms a
boundary with the region for o' (n—1). This simplification represents a consider-
able computational saving and is easily incorporated into the algorithm by storing,
along with the a-vectors, the indices of the hyperplanes that define the region for the
vector.

The second condition for the region of o*(n) is that the control alternative a*
must be optimal. In calculating the optimal control alternative at =°, we must
calculate the expression multiplying =’ in (10) for each alternative a. If a,(n)
denotes the a-vector calculated for alternative a at the point 7°, then the condition
for @ to remain the optimal control alternative is

ma"(n)Zw-a.(n) forall aed(n), (13)
or
Dimfe*(n) —aai(n)]1Z0 forall aed (n). (14)

If we add to the sets of inequalities in (12) and (14) the conditions
w20 for 1<i<N and D ot m=1, (15)

then (12), (14), and (15) together specify the region in the space of information
vectors over which the a-vector o*(n) defines the optimal payoff function V, (r).
In addition, of course, the control alternative a” is optimal in this region.

Generally, only some subset of these linear constraints will be necessary to de-
fine the region; that is, some of the hyperplanes in (12), (14), and (15) will not be
boundaries of the region. Appendix B describes a linear-programming algorithm
for identifying the constraints that are the defining ones for the region. The appli-
cation of this procedure to the linear inequalities in (12), (14), and (15) yields a
minimum subset of inequalities that define the region.

Each defining inequality of the form in (12) will identify a new a-vector whose
value can be calculated by substituting the index & from (12) for I(x°, a*, 6) in (10).
This new a-vector must be added to a list of a-vectors whose defining regions will
be calculated later; the control alternative for this new a-vector is still a*. The
defining inequalities of the type in (14) will produce both a new a-vector as(n)
and a new optimal control alternative a. This new a-vector must also be added to
the list for later examination. In this way, the algorithm calculates the appropriate
regions for each a-vector and, in the process, discovers additional a-vectors whose
defining regions must be identified later. When the list of new a-vectors is ex-
hausted, the specification of the optimal control policy is complete.

The following four steps summarize the complete algorithm for calculating the
optimal control policy for the n-horizon case if the a-vectors for the (»—1)-horizon
case are known:

1. Pick an initial state vector and calculate the optimal control alternative a* and cor-
responding a-vector a*(n).
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2. Construct the complete list of inequalities for the region using (10), (12), (14), and
(15).

3. Use the linear-programming procedure of Appendix B to calculate the minimum set
of inequalities that define the region for a*(n). From each boundary of the region, construct,
using (10), a new a-vector and store the following in a list for each: the vector, its correspond-
ing optimal control alternative, and one information vector for which it is the a-vector
(easily obtained from the linear program).

4. Store the indices of the a-vectors that are neighbors to the region under consideration
to limit the number of inequalities of the type in (12) during the (n+1)-horizon calculations.
If there are any a-veetors on the list whose region has not been calculated, pick a new a-
vector and return to Step 2. Otherwise, the complete specification of the optimal control
policy has been calculated.

This simple, four-step procedure can be used successively to calculate the opti-
mal control policy and payoff function for any finite number of control intervals.

IV. CONCLUSIONS AND DISCUSSION

As STATED EARLIER, previous authors have attacked the calculation of the optimal
control policy for partially observable Markov processes by quantizing the space
of information vectors. This technique éssentially converts the continuous-state
Markov process (see Appendix A) to a finite-state Markov process, and the problem
can then be handled by traditional techniques, as developed by Howard.®! How-
ever, the number of states in this approximate finite-state Markov process-becomes
prohibitively large for any but the smallest problems. For example, if a quantiza-
tion interval of 0.05 is used, then a five-state internal process will require 6.2 million
states in the quantized process. This is, of course, a completely impractical problem
from a computational point of view. Since the technique in this paper does not
require this quantization, it provides a significant increase in the size of the problem
for which an optimal control policy can be calculated.

In working with the algorithm of Section III, we have found that most of the
computation time is spent on using the linear programming technique to find the
defining hyperplanes for the optimal policy regions. Therefore, the computation
time for the algorithm is dependent, not only upon the number of states, but also
upon the number of policy regions, i.e., the number of distinct a-vectors. In an
attempt to circumvent this dependence on the number of policy regions, we have
developed a second algorithm that does not require this linear-programming step
and which appears superior to the algorithm above for small numbers of states, i.e.,
less than four (this algorithm is described in more detail by Sonpik.[®1) As a specific
illustration, the first algorithm, when applied to the machine-maintenance example
required approximately 50 seconds to calculate the optimal policy regions for 8
time periods, while the second algorithm required 50 seconds to calculate the opti-
mal policy for 13 time periods. [The calculations were done on the Stanford Com-
putation Center 360/67 using WATFIV in the batch partition.]

Although the formulation of the control problem in (5) has not assumed any
discounting, it is a trivial matter to multiply the second term in (5) by a discount
factor. The remainder of the development, the results, and the algorithm then
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follow as before. The results of the preceding sections are also applicable, with
minor algebraic changes, when the sequence of operation in Fig. 2 is changed from
(control, transition, output) to (control, output, transition). In this case, 77
must be changed to 7, in (1) through (10), but the form of the solution in (7) and
the algorithm in Section IIT remain unchanged.

In summary, this paper has formulated the optimal control problem for par-
tially observable Markov processes, has shown that the optimal payoff function is
piecewise linear and convex, and has presented an algorithm that uses this property
to -calculate the optimal control policy for the finite-horizon case. Finding the
optimal stationary control policy over an infinite horizon is more complicated; a
later paper will extend these results to that case.

APPENDIX A

IN THIS APPENDIX we show that a sufficient statistic for the past history of observations of a
partially observable Markov process is just the current information-state vector w. In
demonstrating this property, we derive the rule for updating the information-state vector
from one control interval to the next. To make this explicit, we define e(t) as the total
available information about the process at the end of control interval ¢. Notice that in this
appendix the time variable ¢ increases with increasing time, whereas in the main body of the
paper the time variable n, which is equal to the number of remaining control intervals, de-
creased with increasing time. For the process as defined in this paper, the only information
that we obtain during a control interval is the fact that the application of a particular con-
trol alternative produced the observed output. If a(f) and z(t) denote the control alternative
and corresponding output, respectively, during control interval ¢, then we can write

e()=[2(t), a(t), e(t—1)] (A1)
That is, €(f) represents our state of information prior to control interval ¢ plus the additional
information that a particular control alternative and output were recorded.

By the definition of the information state vector,
mi(t)=pr{s(t)=jle(®)}, (A2)

where s(f) is a discrete-valued random variable equal to the internal state of the process at
the conclusion of control interval ¢. The substitution of (A1) into (A2) plus the application
of Bayes’ rule yields

mi(t)=pris(t)=j, 2(t)=6la(t), e(t—1)}/pr{z()=0la(t), e(t—1)}, (A3)

where, to make things explicit, we have assumed that the output during control interval ¢
was observation 8. The expansion of the numerator in (A3) over all possible internal states
of the process at the end of {—1 plus the expansion of the joint probability as a product of
conditional probabilities produces

mi(1)= 2 pris(t—1)=dla(t), e(t—=1)}pr{s(t)=jls(t—1) =1, a(t), e(t—1)}
priz(t)=6ls(t)=J, s(t—1) =%, a(t), e(t—1)}/pri{z(t)=6la(t), e(t—1)}.

The first probability in the numerator of (A4) will be independent of a(t), since the control
alternative is completely under our control and thus does not provide any information about
the previous state of the process. The remaining two probabilities in the numerator of (A4)
are just transition probabilities and response probabilities for the process, while the denomi-
nator in the equation is just the numerator summed over all values of j. Thus, we have

(A4)
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mi() =i mi(t—1pF 5501/ [ X mi (t—1)pi 150, (A5)
which is (1) of the main body of the paper.

The important feature of (A5) is that the calculation of the information-state vector after
control interval ¢ requires only 7 (t—1), the information-state vector after control interval
t—1; thus, 7(t—1) summarizes all the information gained prior to control interval ¢ and
represents a sufficient statistic for the complete past history of the process e(t—1).

In fact, (A5) describes the possible transitions for a continuous-state Markov process in
which the state of the process is the information state vector w(f). For this process, the
denominator of (A5) is the transition probability of the transition 7 (t—1)—T[x (t—1)|a(t), 6].
This is rather a special case of a continuous-state Markov process, since the state is continu-
ous but the state transition probabilities are discrete.

APPENDIX B

EquaTtions (12), (14), anp (15) define a region in the space of information vectors, and we
require a technique for determining which of these constraints are the defining ones for the
region. That is, which inequalities form actual boundaries for the region and which ones
can be discarded? We can represent the set of linear inequalities as

bm20, (m=1,2,3,---) (Bl)

where the index m ranges over the set of constraints defined by (12) and (14). The solution
to the linear program

min, - b¥,
subject to
" 20, (m=1,2,3, )
m 20, (z=12,---,N) (B2)
2imi=l,

will yield a solution that has the slack variable for the kth inequality equal to zero if and
only if this inequality forms a part of the boundary of the region. Thus, by solving a linear
program of the form in (B2) for each of the constraints, we can identify the constraints that
define the region and the ones that can be discarded.

The procedure can be made more efficient if, for each iteration of the linear programming
problem with the kth inequality as the objective function, all other constraints are tested as
objective functions to see if they are optimized at the current feasible solution. If a con-
straint is optimized at any point, then either this constraint forms a boundary of the region
(a zero slack variable) or is a superfluous constraint (a nonzero slack variable). Once a
constraint has been optimized, it need not be used as the objective function. We have found
that this procedure typically decreases the number of linear programming iterations by
approximately 50 percent.

In Section ITI, Step 3 of the algorithm requires that we have an information vector on
each boundary of the region for later use when the a-vector for the bordering region is in-
vestigated. This information vector can be obtained easily from the linear programming
problem, since 7 will lie precisely on the appropriate boundary.
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