
CPSC-532c: Advanced Machine Learning 89

Lecture 7 - RL Algorithms

OBJECTIVE: In this lecture, we introduce some of the

most popular model free RL algorithms, including the cele-

brated Q-learning and TD-lambda algorithms.

� TD(0)

The first algorithm we consider is TD(0). This algorithm is

obtained by approximating the fixed point:

V (i) =

n∑
j=1

p(j|i, d(i)) [r(i, d(i), j) + γV (j)]

with a standard SA:

V (i) = V (i) + α (r(i, d(i), j�) + γV (j�) − V (i))

where j� is a sample from p(j|i, d(i)) in model based RL.

In model free RL, there is no need to know the transition

model as we are simply learning from experience (trials).

CPSC-532c: Advanced Machine Learning 90

The pseudo-code for this algorithm is as follows:

1. Initialize V (·) arbitrarily and let π be the input policy.

2. Repeat for each simulation trial:

(a) Choose initial state i.

(b) Repeat for each step in the simulation:

i. a = action given by π(i).

ii. Take action a and observe the new state j

iii. Observe reward r(i, a, j)

iv. V (i) = V (i) + α (r(i, a, j) + γV (j) − V (i))

v. i = j

There is freedom in the above algorithm on how to choose

(and improve) the policy π. We could, for example, choose

to be greedy.

Before discussing this issue further, it is convenient to intro-

duce Q-functions.



CPSC-532c: Advanced Machine Learning 91

� Q-FUNCTIONS

Recall that to make optimal decisions, we need to solve

V �(i) = max
a

∑
j

p(j|i, a) [r(i, a, j) + γV �(j)]

Alternatively, let us introduce the Q-function (matrix in the

discrete setting):

Q�(i, a) �
∑

j

p(j|i, a) [r(i, a, j) + γV �(j)]

Then we can choose optimal decisions by finding:

V �(i) = max
a

Q�(i, a) = Q(i, a�)

Substituting, we get our Q-fixed point:

Q�(i, a) =
∑

j

p(j|i, a)

[
r(i, a, j) + γ max

a′
Q�(i, a′)

]

CPSC-532c: Advanced Machine Learning 92

Or, equivalently in operator notation:

Q� = FQ�

Again, we can use our knowledge of stochastic approximation

to quickly derive an update rule for the Q-function:

�



CPSC-532c: Advanced Machine Learning 93

� Q-LEARNING

With our SA update and an ε-greedy policy (i.e. a policy

that chooses the best action with probability ε and any other

action randomly with probability 1 − ε), we can easily pro-

duce an algorithm:

1. Initialize Q(·, ·) arbitrarily.

2. Repeat for each simulation trial:

(a) Choose initial state i.

(b) Repeat for each step in the simulation:

i. Choose a in state i using policy derived from Q(i, ·)
ii. Take action a and observe the new state j

iii. Observe reward r = r(i, a, j)

iv. Q(i, a) = Q(i, a)+α [r + γ maxa′ Q(j, a′) − Q(i, a)]

v. i = j

CPSC-532c: Advanced Machine Learning 94

� SARSA

Sarsa is an on-policy variant of Q-learning. The algorithm

is as follows:

1. Initialize Q(·, ·) arbitrarily.

2. Repeat for each simulation trial:

(a) Choose initial state i.

(b) Choose a in state i using Q(i, ·)
(c) Repeat for each step in the simulation:

i. Take action a and observe the new state j

ii. Observe reward r = r(i, a, j)

iii. Choose a′ in state j using Q(j, ·)
iv. Q(i, a) = Q(i, a) + α [r + γQ(j′, a′) − Q(i, a)]

v. i = j and a = a′

Q-learning tends to be more ”risk taking” than sarsa as il-

lustrated by the cliff walking example in Sutton and Barto’s

book.



CPSC-532c: Advanced Machine Learning 95

� ACTOR-CRITIC METHODS

Actor-critic methods are temporal difference (TD) methods,

where an actor chooses a policy and a critic applies stochastic

approximation on the value function to criticize the policy.

The criticism is usually the following scalar:

δ = r(i, a, j) + γV (j) − V (i)

That is, the actor chooses a in state i and the critic computes

δ to provide feedback to the author.

The author’s policy can be the following softmax parame-

trization:

π(a|i) =
ef(a,i)∑
b ef(b,i)

where f(·, ·) is a preference function.

CPSC-532c: Advanced Machine Learning 96

Then, given a scalar parameter β, the preference function

can be updated as follows:

f(a, i) = f (a, i) + βδt

Hence, if δ is positive the preference for taking the action in

that state also increases.

� TD(λ)

In TD(λ) one considers algorithms that use several steps

ahead of the reward recursion. So far, we have used

R
(1)
t = r(xt, at, at+1) + γVt(xt+1)

But we could also use:

R
(2)
t = r(xt, at,xt+1) + γr(xt+1, at+1,xt+2) + γ2Vt(xt+2)

or higher order expansions. We could even use combinations



CPSC-532c: Advanced Machine Learning 97

such as the average of the two-step and four-step returns:

Rt =
1

2
R

(2)
t +

1

2
R

(4)
t

In general, TD(λ) uses

Rλ
t = (1 − λ)

∑
k

λk−1R
(k)
t

where λ ∈ [0, 1].

The TD(λ) algorithm is presented in great detail in the book

of Sutton and Barto.

CPSC-532c: Advanced Machine Learning 98

� RL WITH FUNCTION APPROXIMATION

When the value and Q-functions can be continuous and pa-

rameterized. For example we could use neural nets, ridge

regression or gaussian processes to represent these functions.

The SA updates are standard:

θt+1 = θt + αt[rt+1 + γV (xt+1, θt) − V (xt, θt)]
∂V (xt, θ)

∂θ

θt+1 = θt+αt[rt+1+γ max
a′

Q(xt+1, a
′, θt)−Q(xt, a, θt)]

∂Q(xt, a, θ)

∂θ

It remains to show some examples of this function approx-

imation and present POMDPS, direct policy methods and

hierarchical RL.


