
CPSC 550: Machine Learning II 2008/9 Term 2

Lecture 6 — Jan 29, 2009

Lecturer: Nando de Freitas Scribe: Nimalan Mahendran

This lecture introduces parametric inference, including the Method of Mo-
ments estimator (MOME) and the Maximum Likelihood Estimator (MLE).
The topics presented in these notes are discussed in more detail in chapter
9 of “All of Statistics” (Wasserman, 2004), freely available for authenticated
users of the UBC network at http://www.myilibrary.com/?id=18966.

Parametric models are of the form

F = {f(x|θ) : θ ∈ Θ}
Parametric inference is the problem of estimating the parameter θ from

the observed samples x1, x2, ..., xn. [Was04]

Data Distribution Assumption

It is assumed that the data is distributed according to a distribution in the
parametric model: x ∼ f(x|θ∗).

6.1 Method of Moments Estimator (MOME)

Suppose that the parametric model has k parameters θ = (θ1, θ2, . . . , θk).

6.1.1 Moments and Sample Moments

The jth moment is defined as

αj(θ) = Eθ(X
j) =

∫
xjP (dx|θ)

where P (dx), P (x)dx and dP (x) are equivalent.
The jth sample moment is defined as

α̂j =
1

n

n∑
i=1

xji

where each xi is a sample point.
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6.1.2 Definition of Methods of Moments Estimator

The MOME estimator θ̂n of θ is the one that satisfies

α1(θ̂n) = α̂1

...

αk(θ̂n) = α̂k

Each moment of the parametric model with the MOME estimator θ̂n will
match the corresponding sample moment calculated from the sample points.

Example: MOME for the Normal Distribution

Let x1:n ∼ N (µ, σ2).
The parameters of the model are θ = (µ, σ2).
The MOME estimator θ̂n = (µ̂, σ̂2) matches the first and second moments.

Matching the First Moment

α1(θ̂n) = α̂1

⇐⇒ Eθ̂n
(X) =

1

n

n∑
i=1

xi

⇐⇒ µ̂ = x̄n

Therefore, the MOME θ̂n = (µ̂, σ̂2) satisfies µ̂ = x̄n.

6-2



CPSC 550 Lecture 6 — Jan 29, 2009 2008/9 Term 2

Matching the Second Moment An expression is needed that relates
σ̂2 to Eθ̂n

(X2). Note that σ̂2 =
∫

(x − µ)2p(x)dx, where p(x) is written as

shorthand for p(x|θ̂n).

∫
(x− µ)2p(x)dx =

∫
(x2 − 2xµ+ µ2)p(x)dx

=

∫
x2p(x)dx− 2µ

∫
xp(x)dx+ µ2

∫
p(x)dx

=

∫
x2p(x)dx− 2µ2 + µ2

=

∫
x2p(x)dx− µ2

∴
∫
x2p(x)dx =

∫
(x− µ)2p(x)dx+ µ2

∴ Eθn(X2) = σ2 + µ2

Now σ̂2 is derived:

α2(θ̂n) = α̂2

⇐⇒ Eθ̂n
(X2) =

1

n

n∑
i=1

x2
i

⇐⇒ σ̂2 + µ̂2 =
1

n

n∑
i=1

x2
i

⇐⇒ σ̂2 =
1

n

n∑
i=1

x2
i − µ̂2

⇐⇒ σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2

⇐⇒ σ̂2 =
1

n

n∑
i=1

(xi − x̄n)
2

Therefore, the MOME θ̂n = (µ̂, σ̂2) estimates σ2 by σ̂2 = 1
n

∑n
i=1(xi−x̄n)2.
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Theorem 6.1. (Theorem 9.6 in [Was04])
Let θ̂n be the MOME.

1. θ̂n
p→ θ∗, where θ∗ is the true parameter.

2.
√
n(θ̂n − θ∗) N (0,Σ), or equivalently, (θ̂n − θ∗) N (0, Σ

n
) where

Σ =

[
dα−1

1 (θ)

dθ
. . .

dα−1
k (θ)

dθ

]
Eθ




X
X2

...
Xk

 [XX2 . . . Xk]




d
dθ
α−1

1 (θ)T

...
d
dθ
α−1
k (θ)T



dα−1
i (θ)

dθ
=


dα−1

i (θ)

dθ1
...

dα−1
i (θ)

dθk


6.2 Maximum Likelihood

The likelihood function is given by

Ln(θ) =
n∏
i=1

f(xi|θ)

• Ln(θ) : Θ → [0,∞) for continuous domains

• Ln(θ) : Θ → [0, 1] for discrete domains

The maximum likelihood estimate (MLE) θ̂n is the θ that aximizes Ln(θ).
Equivalently, The MLE θ̂n can also be found by maximizing the log likelihood.

6.2.1 Log Likelihood

The log likelihood function is given by

ln(θ) = logLn(θ) =
n∑
i=1

log f(xi|θ)
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6.2.2 Kullback-Leibler (KL) Divergence

KL(f, g) = log
f(x)

g(x)
dF (x)

= log
f(x)

g(x)
f(x)dx

• KL(f, f) = 0

• KL(f, g) ≥ 0

Kullback-Leibler (KL) divergence gives the distance between two proba-
bility distributions, although it is not a proper measure of distance because
it is not symmetric (it could be the case that KL(f, g) 6= KL(g, f)).

KL divergence is used in the proof of MLE convergence in the next lecture.

6.2.3 Identifiability Assumption

Model F is identifiable if θ 6= ψ implies KL(fθ, fψ) > 0. If different parame-
ter values θ and ψ correspond to different distributions fθ and fψ in F , then
F is identifiable.

It is assumed that F is identifiable in the proof of MLE convergence.

Example of Unidentifiablilty

P (x|θ) = λ1N (µ1, 1) + λ2N (µ2, 1), θ = {λ1, λ2, µ1, µ2).
Let the true parameters for the Gaussian mixture model be λ∗1 = 0.2,

λ∗2 = 0.8, µ∗1 = 1, µ∗2 = 10.
The following two models correspond to the same distribution:
λ1 λ2 µ1 µ2

0.2 0.8 1 10 = 0.2N (1, 1) + 0.8N (10, 1)
0.8 0.2 10 1 = 0.8N (10, 1) + 0.2N (1, 1)

Therefore, the Gaussian mixture model is not identifiable.
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