CPSC 550: Machine Learning 11 2008/9 Term 2
Lecture 6 — Jan 29, 2009

Lecturer: Nando de Freitas Scribe: Nimalan Mahendran

This lecture introduces parametric inference, including the Method of Mo-
ments estimator (MOME) and the Maximum Likelihood Estimator (MLE).
The topics presented in these notes are discussed in more detail in chapter
9 of “All of Statistics” (Wasserman, 2004), freely available for authenticated
users of the UBC network at http://www.myilibrary.com/?id=18966.

Parametric models are of the form

F={f(x]0):0 0O}
Parametric inference is the problem of estimating the parameter 6 from
the observed samples 1, xo, ..., T,. [Was04]

Data Distribution Assumption

It is assumed that the data is distributed according to a distribution in the
parametric model: z ~ f(z|6.).

6.1 Method of Moments Estimator (MOME)

Suppose that the parametric model has k parameters 6§ = (61,05, ..., 60k).

6.1.1 Moments and Sample Moments

The j** moment is defined as

0;(6) = Ep(X7) = / 29 P(dx]0)

where P(dz), P(x)dx and dP(z) are equivalent.
The j** sample moment is defined as

n
. 1 j
0‘]':_2 T
n“
=1

where each x; is a sample point.
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6.1.2 Definition of Methods of Moments Estimator
The MOME estimator én of 6 is the one that satisfies

aq (én) = 1

Oék(én) = O

Each moment of the parametric model with the MOME estimator 0,, will
match the corresponding sample moment calculated from the sample points.

Example: MOME for the Normal Distribution

Let 1., ~ N (p, 0?).
The parameters of the model are 6 = (11, 0?).
The MOME estimator 6,, = (f1,5%) matches the first and second moments.

Matching the First Moment

Therefore, the MOME 6,, = (j1, 62) satisfies fi = Z,.
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Matching the Second Moment An expression is needed that relates
6% to By (X?). Note that 6 = [(z — p)’p(x)dz, where p(z) is written as

shorthand for p(x|6,,).

.'./pr(x)dx =

I
— e — — —

(2 = 2zp + p*)p(x)de

o*p(x)dr — 2u/xp(a:)da: + 1 /p(x)dx
*p(x)dr — 2p* + p?
2*p(x)da — pi?

(x — p)?p(x)de + p?

E@n(X2) = o? +,u2

Now 62 is derived:

. 1 X
=1y e
n <

i=1

1 n
A2 N2
— ~ (i — f1)

i=1

n = \2

Therefore, the MOME 6, = (ji, 52) estimates 0® by 62 = 1 37 (2;—7,,)%.
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Theorem 6.1. (Theorem 9.6 in [Was04])
Let 6,, be the MOME.

1. én 2 0., where 0, is the true parameter.

2. (B, — 0.) ~ N(0,%), or equivalently, (6, — 0.) ~ N(0,Z) where

X d 1
a Q)T
do7'(0)  dap\(0 X? i {
5= O‘iw( ) O"Zw() E, o [XX?.L XY :
ok iflgl(e)T
X db
da;'(0)
daj'(0) _ |
df da;.l(e)
4o,

6.2 Maximum Likelihood

The likelihood function is given by
L,(0) =] f(x:l0)
i=1
e L,(0):0 — [0,00) for continuous domains
e L,(0):0 —[0,1] for discrete domains
The maximum likelihood estimate (MLE) 0, is the 0 that aximizes £, (0).
Equivalently, The MLE 6,, can also be found by maximizing the log likelihood.

6.2.1 Log Likelihood
The log likelihood function is given by

n(0) = log £,(60) = > log f(x;l0)
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6.2.2 Kullback-Leibler (KL) Divergence

KL(f,g) =log ggg dF (z)

()

g(z)

f(z)dz

o KL(f,f)=0
e KL(f,9)>0

Kullback-Leibler (KL) divergence gives the distance between two proba-
bility distributions, although it is not a proper measure of distance because
it is not symmetric (it could be the case that K L(f, g) # KL(g, f)).

KL divergence is used in the proof of MLE convergence in the next lecture.

6.2.3 Identifiability Assumption

Model F is identifiable if 6 # ¢ implies K L( fy, f,,) > 0. If different parame-
ter values 6 and v correspond to different distributions fy and f,, in F, then
F is identifiable.

It is assumed that F is identifiable in the proof of MLE convergence.

Example of Unidentifiablilty

P(z]0) = MN (1, 1) + AN (p2, 1), 0 = {A1, Ao, i1, 2.
Let the true parameters for the Gaussian mixture model be \j = 0.2,
Ay =08, py =1, uy = 10.
The following two models correspond to the same distribution:
AMA e ‘
02 0.8 1 10 |=02N(1,1)+0.8N(10,1)
0.8 0.2 10 1 |=0.8N(10,1)+0.2N(1,1)
Therefore, the Gaussian mixture model is not identifiable.
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