Probabilistic Machine Learning Lectures
-
Lecture 1. Introduction.
PS
-
Lecture 2. PageRank - Why Math helps.
PS
- Lecture 3. Probability introduction.
PS
- Lecture 4. Probabilistic graphical models.
PS
- Lecture 5. Linear modelling: least squares, ridge and
lasso. Regression and classification.
PS
- Lecture 6. Nonlinear supervised learning.
PS
- Lecture 7. Constrained optimisation and SVMs.
PS
- Lecture 8. Unsupervised Learning. K-means, mixtures and EM.
PS
Demos:
- Lecture 9. Dynamic models.
PS
- Lecture 10.
PS