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Abstract

This paper addresses the issue of numerical computation in machine
learning domains where one needs to evaluate similarity metrics. Ex-
amples of these domains include dimensionality reduction with kernels,
spectral clustering and Gaussian processes. The paper presents a solu-
tion strategy based on Krylov subspace iteration and fast N-body learn-
ing methods. The main benefit of this strategy is that it is very general
and easy to adapt to new domains involving similarity metrics. The ex-
periments show significant gains in computation and storage on datasets
arising in image segmentation, object detection and dimensionality re-
duction. The paper also presents theoretical bounds on the stability of
these iterative methods.

1 Introduction

Machine learning techniques based on similarity metrics have gained wide acceptance over
the last few years. Spectral clustering [1] is a typical example. Here one forms a Laplacian
matrix L = D−1/2WD−1/2, where the entries of W measure the similarity between data
points xi ∈ X , i = 1, . . . , N embedded on a metric space. For example, a popular choice
is to set the entries of W to wij = e−

1
σ ‖xi−xj‖2 , where σ is a user-specified parameter. D

is a normalizing diagonal matrix with entries di =
∑

j wij . The clusters can be found by
running, say, K-means on the eigenvectors of L. K-means generates better clusters on this
nonlinear embedding of the data provided one adopts a suitable similarity metric.

The list of machine learning domains where one forms a covariance or similarity matrix
(be it W, D−1W or D − W) is vast and includes ranking on nonlinear manifolds [2],
semi-supervised and active learning [3], Gaussian processes [4], Laplacian eigen-maps [5],
stochastic neighbor embedding [6], multi-dimensional scaling, kernels on graphs [7] and
many other kernel methods for dimensionality reduction, feature extraction, regression and
classification. In these settings, one is interested in either inverting the similarity matrix
or finding some of its eigenvectors. The computational cost of both of these operations
is O(N3) while the storage requirement is O(N2). These costs are prohibitively large in



applications where one encounters massive quantities of data points or where one is inter-
ested in real-time solutions such as spectral image segmentation for mobile robots [8]. In
this paper, we present general numerical techniques for reducing the computational cost
to O(N log N), or even O(N) in specific cases, and the storage cost to O(N). These re-
ductions are achieved by combining Krylov subspace iterative solvers (such as Arnoldi,
Lanczos, GMRES and conjugate gradients) with fast N-body techniques (such as fast mul-
tipole expansions, the fast Gauss transform and dual tree recursions [9, 10, 11]). The latter
could be KD-trees, ball trees or other metric trees.

Specific Krylov methods have been applied to kernel problems. For example, [12] uses
Lanczos for spectral clustering and [4] uses conjugate gradients for Gaussian processes.
However, the use of fast N-body methods, in particular fast multipole methods, to further
accelerate these techniques has only appeared in the context of interpolation [13] and our
paper on semi-supervised learning [8]. In this paper, we aim to present a more general
exposition and several new examples, such as fast nonlinear embeddings and fast Gaussian
processes. More importantly, we attack the issue of stability of these methods for the first
time. Fast N-body techniques have guaranteed error bounds. However, if these techiques
are used inside iterative schemes based on orthogonalization of the Krylov subspace, there
is a danger that the errors might grow over iterations. In the past, good empirical behaviour
has been observed. In Section 4, we present new theoretical results that explain these em-
pirical observations and shed light on how we could improve the design of these algorithms
in the future. Before doing so, we begin with a very brief review of Krylov solvers and fast
N-body methods.

2 Krylov subspace iteration

This section is a compressed overview of Krylov subspace iteration. The main message is
that Krylov methods are very efficient algorithms for solving linear systems and eigenvalue
problems, but they require a matrix vector multiplication at each iteration. In the next
section, we replace this expensive matrix-vector multiplication with a call to fast N-body
routines. Readers happy with this message and familiar with Krylov methods, such as
conjugate gradients and Lanczos, can skip the rest of this section.

For ease of presentation, let the similarity matrix be simply A = W ∈ RN×N , with entries
aij = a(xi,xj). (One can easily handle other cases, such as A = D−1W and A = D −
W.) Typical measures of similarity include polynomial a(xi,xj) = (xixT

j +b)p, Gaussian
a(xi,xj) = e−

1
σ ‖xi−xj‖T

and sigmoid a(xi, xj) = tanh(αxixT
j −β) kernels, where xixT

j
denotes a scalar inner product. Our goal is to solve linear systems Ax = b and (possibly
generalized) eigenvalue problems Ax = λx. The former arise, for example, in semi-
supervised learning and Gaussian processes, while the latter arise in spectral clustering and
dimensionality reduction. One could attack these problems with naive iterative methods
such as the power method, Jacobi and Gauss-Seidel [14]. The problem with these strategies
is that the estimate x(t), at iteration t, only depends on the previous estimate x(t−1). Hence,
these methods do typically take too many iterations to converge. It is well accepted in the
numerical computation field that Krylov methods [14, 15], which make use of the entire
history of solutions {x(1), . . . ,x(t−1)}, converge at a faster rate.

The intuition behind Krylov subspace methods is to use the history of the solutions we have
already computed. We formulate this intuition in terms of projecting an N -dimensional
problem onto a lower dimensional subspace. Given a matrix A and a vector b, the associ-
ated Krylov matrix is: K = [b Ab A2b . . . ]. The Krylov subspaces are the spaces
spanned by the column vectors of this matrix. In order to find a new estimate of x(t) we
could project onto the Krylov subspace. However, K is a poorly conditioned matrix. (As
in the power method, Atb is converging to the eigenvector corresponding to the largest



eigenvalue of A.) We therefore need to construct a well-conditioned orthogonal matrix
Q(t) = [q(1) · · ·q(t)], with q(i) ∈ RN , that spans the Krylov space. That is, the leading t
columns of K and Q span the same space. This is easily done using the QR-decomposition
of K [14], yielding the following Arnoldi relation (augmented Schuur factorization):

AQ(t) = Q(t+1)H̃(t),

where H̃(t) is the augmented Hessenberg matrix with entries hi,j (tridiagonal in the sym-
metric case). The eigenvalues of the smaller (t + 1) × t Hessenberg matrix approximate
the eigenvalues of A as t increases. These eigenvalues can be computed efficiently by ap-
plying the Arnoldi relation recursively as shown in Figure 1. (If A is symmetric, then H̃
is tridiagonal and we obtain the Lanczos algorithm.) Notice that the matrix vector multi-
plication v = Aq is the expensive step in the Arnoldi algorithm. Most Krylov algorithms
resemble the Arnoldi algorithm in this. To solve systems of equations, we can minimize

Initialization: b = arbitrary, q(1) = b/‖b‖
FOR t = 1, 2, 3, . . .

• v = Aq(t)

• FOR j = 1, . . . , N

– hj,t = q(t)T v

– v = v − hj,tq
(j)

• ht+1,t = ‖v‖
• q(t+1) = v/ht+1,t

Initialization: q(1) = b/‖b‖
FOR t = 1, 2, 3, . . .

• Perform step t of the Arnoldi algorithm

• miny

 eH(t)y − ‖b‖i


• Set x(t) = Q(t)y(t)

Figure 1: The Arnoldi (left) and GMRES (right) algorithms. Note that the matrix A only appears
in the product Aq(t) (i.e., in the evaluation of a kernel density estimate). If we had a routine that
returned this product, we wouldn’t need to form A and, hence, reduce the storage requirements.

either the residual r(t) , b −Ax(t), leading to the GMRES and MINRES algorithms, or
the A-norm, leading to conjugate gradients (CG) [14]. GMRES, MINRES and CG apply
to general, symmetric, and spd matrices respectively. For ease of presentation, we focus on
the GMRES algorithm.

At step t of GMRES, we approximate the solution by the vector in the Krylov subspace
x(t) ∈ K(t) that minimizes the norm of the residual. Since x(t) is in the Krylov subspace,
it can be written as a linear combination of the columns of the Krylov matrix K(t). Our
problem therefore reduces to finding the vector y ∈ Rt that minimizes ‖AK(t)y − b‖.
As before, stability considerations force us to use the QR decomposition of K(t). That is,
instead of using a linear combination of the columns of K(t), we use a linear combination
of the columns of Q(t). So our least squares problem becomes y(t) = miny ‖AQ(t)y−b‖.
Since AQ(t) = Q(t+1)H̃(t), we only need to solve a problem of dimension (t + 1) × t:
y(t) = miny ‖Q(t+1)H̃(t)y − b‖. Keeping in mind that the columns of the projection
matrix Q are orthonormal, we can rewrite this least squares problem as miny ‖H̃(t)y −
Q(t+1)T b‖. We start the iterations with q(1) = b/‖b‖ and hence Q(t+1)T b = ‖b‖i,
where i is the unit vector with a 1 in the first entry. The final form of our least squares
problem at iteration t is: y(t) = miny

∥∥∥H̃(t)y − ‖b‖i
∥∥∥ , with solution x(t) = Q(t)y(t).

The algorithm is shown in Figure 1. The least squares problem of size (t + 1) × t to
compute y(t) can be solved in O(t) steps using Givens rotations [14]. Notice again that the
expensive step in each iteration is the matrix-vector product v = Aq. This is true also of
CG and other Krylov methods.

One important property of the Arnoldi relation is that the residuals are orthogonal to the



space spanned by the columns of V = Q(t+1)H̃(t). That is,

VT r(t) = H̃(t)T Q(t+1)T (b−Q(t+1)H̃(t)y(t)) = H̃(t)T ‖b‖i− H̃(t)T H̃(t)y(t) = 0

In the following section, we introduce methods to speed up the matrix-vector product v =
Aq. These methods will incur, at most, a pre-specified (tolerance) error e(t) at iteration
t. Later, we present theoretical bounds on how these errors affect the residuals and the
orthogonality of the Krylov subspace.

3 Fast N-body methods

The expensive step in Krylov methods is the operation v = Aq(t). This step requires that
we solve two O(N2) kernel estimates:

vi =
N∑

j=1

q
(t)
j a(xi,xj) i = 1, 2, . . . , N.

It is possible to reduce the storage and computational cost to O(N) at the expense of a small
pre-specified error tolerance ε, say 10−6, using the fast Gauss transform (FGT) algorithm
[16, 17]. This algorithm is an instance of more general fast multipole methods for solving
N -body interactions [9]. The FGT only applies when the kernel is Gaussian and when the
problem is low dimensional, say xk ∈ R3. However, to attack dimensions of up to 10D
one can adopt clustering-based partitions as in the improved fast Gauss transform (IFGT)
[10].

Fast multipole methods tend to work only in low dimensions and are hard to engineer for
each specific choice of kernel. Dual tree recursions based on KD-trees and ball trees [11,
18] overcome some of these difficulties, but on average cost O(N log N). These methods
are applicable to any kernels that behave monotonically with distance. They also work well
in high dimensions, as it will be shown in a regression problem in 128D in the experiments.
Another important property is that these methods guarantee an approximation error that is
less than the pre-specified error tolerance. It is, therefore, possible to have control over the
quality of the approximation.

Due to space constraints, we can only mention these fast techniques here, but refer the
reader to [18] for a thorough comparison. [18] also provides an analysis of when these
methods work or don’t work well in practice. In summary and in vague terms, it could be
said that as long as there is structure in the data, these methods will work well. This is the
interesting case as it corresponds to the situation where can learn or extract information
from the data.

4 Stability results

The problem with replacing the matrix-vector multiplication at each iteration of the Krylov
methods is that we do not know how the errors accumulate over successive iterations. In
this section, we will derive bounds that describe what factors influence these errors. In
particular, the bounds will state what properties of the similarity metric and measurable
quantities affect the residuals and the orthogonality of the Krylov subspaces.

Several papers have addressed the issue of Krylov subspace stability [19, 20, 21]. Our
approach follows from [21]. For presentation purposes, we focus on the GMRES algorithm.

Let e(t) denote the errors introduced in the approximate matrix-vector multiplication at
each iteration of Arnoldi. For the purposes of upper-bounding, this is the tolerance of the



fast N-body methods. Then, the fast N-body methods change the Arnoldi relation to:

AQ(t) + E(t) =
[
Aq(1) + e(1), . . . ,Aq(t) + e(t)

]
= Q(t+1)H̃(t),

where E(t) =
[
e(1), . . . , e(t)

]
. The new true residuals are therefore:

r(t) = b−Ax(t) = b−AQ(t)y(t) = b−Q(t+1)H̃(t)y(t) + E(t)y(t)

and r̃(t) = b−Q(t+1)H̃(t)y(t) are the measured residuals.

We need to ensure two bounds when using fast N-body methods in Krylov iterations. First,
the measured residuals r̃(t) should not deviate too far from the true residuals r(t). Second,
deviations from orthogonality should be upper-bounded. Let us address the first question.
The deviation in residuals is given by: ‖r̃(t)−r(t)‖ = ‖E(t)y(t)‖. Let y(t) = [y1, . . . , yt]T .
Then, this deviation satisfies:

‖r̃(t) − r(t)‖ =

∥∥∥∥∥
t∑

k=1

yke(k)

∥∥∥∥∥ ≤
t∑

k=1

|yk|‖e(k)‖. (1)

The deviation from orthogonality can be upper-bounded in a similar fashion:

‖VT r(t)‖ = ‖H̃(t)T Q(t+1)T (r̃(t)+E(t)y(t))‖ =
∥∥∥H̃(t)T E(t)y(t)

∥∥∥ ≤ ‖H̃(t)‖
t∑

k=1

|yk|‖e(k)‖
(2)

The following lemma provides a relation between the yk and the measured residuals r̃(k−1).
Lemma 1. [21, Lemma 5.1] Assume that t iterations of the inexact Arnoldi method have
been carried out. Then, for any k = 1, . . . , t,

|yk| ≤ 1

σt(H̃(t))
‖r̃(k−1)‖ (3)

where σt(H̃(t)) denotes the t-th singular value of H̃(t).

The proof of the lemma follows from the QR decomposition of H̃(t), see [15, 21]. This
lemma, in conjunction with equations (1) and (2), allows us to establish the main theoretical
result of this section:
Proposition 1. Let ε > 0. If for every k ≤ t we have

‖e(k)‖ <
σt(H̃(t))

t

1
‖r̃(k−1)‖ ε,

then ‖r̃(t) − r(t)‖ < ε. Moreover, if

‖e(k)‖ <
σt(H̃(t))

t‖H̃(t)‖
1

‖r̃(k−1)‖ ε,

then ‖VT r(t)‖ < ε.

Proof: First, we have

‖r̃(t) − r(t)‖ ≤
t∑

k=1

|yk|‖e(k)‖ <

t∑

k=1

σt(H̃(t))
t

1
‖r̃(k−1)‖ ε

1

σt(H̃(t))
‖r̃(k−1)‖ = ε.

and similarly, ‖VT r(t)‖ ≤ ‖H̃(t)‖∑t
k=1 |yk|‖e(k)‖ < ε ¤

Proposition 1 tells us that in order to keep the residuals bounded while ensuring bounded
deviations from orthogonality at iteration k, we need to monitor the eigenvalues of H̃(t) and
the measured residuals r̃(k−1). Of course, we have no access to H̃(t). However, monitoring
the residuals is of practical value. If the residuals decrease, we can increase the tolerance
of the fast N-body algorithms and viceversa. The bounds do lead to a natural way of
constructing adaptive algorithms for setting the tolerance of the fast N-body algorithms.
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Figure 2: Figure (a) shows a test image from the PASCAL database. Figure (b) shows the SIFT
features extracted from the image. Figure (c) shows the positive feature predictions for the label
”car”. Figure (d) shows the centroid of the positive features as a black dot. The plot on the right
shows the computational gains obtained by using fast Krylov methods.

5 Experimental results

The results of this section demonstrate that significant computational gains may be obtained
by combining fast N-body methods with Krylov iterations. We present results in three
domains: spectral clustering and image segmentation [1, 12], Gaussian process regression
[4] and stochastic neighbor embedding [6].

(i) Gaussian processes with large dimensional features: In this experiment we use
Gaussian processes to predict the labels of 128-dimensional SIFT features [22] for the
purposes of object detection and localization as shown in Figure 2. There are typically
thousands of features per image, so it is of paramount importance to generate fast predic-
tions. The hard computational task here involves inverting the covariance matrix of the
Gaussian process. The figure shows that it is possible to do this efficiently, under the same
ROC error, by combining conjugate gradients [4] with dual trees.

(ii) Spectral clustering and image segmentation: We applied spectral clustering to color
image segmentation; a generalized eigenvalue problem. The types of segmentations ob-
tained are shown in Figure 3. There are no perceptible differences between them. We
observed that fast Krylov methods run approximately twice as fast as the Nystrom method.
One should note that the result of Nystrom depends on the quality of sampling, while fast
N-body methods enable us to work directly with the full matrix, so the solution is less sen-
sitive. Once again, fast N-body methods lead to significant computational improvements
over Krylov algorithms (Lanczos in this case).

(iii) Stochastic neighbor embedding: Our final example is again a generalized eigenvalue
problem arising in dimensionality reduction. We use the stochastic neighbor embedding
algorithm of [6] to project two 3-D structures to 2-D, as shown in Figure 4. Again, we
observe significant computational improvements.

6 Conclusions

We presented a general approach for combining Krylov solvers and fast N-body methods
to accelerate machine learning techniques based on similarity metrics. We demonstrated
some of the methods on several datasets and presented results that shed light on the stabil-



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

N

R
un

ni
ng

 ti
m

e(
se

co
nd

s)

Lanczos

IFGT

Dual Tree

Figure 3: (left) Segmentation results (order: original image, IFGT, dual trees and Nystrom) and
(right) computational improvements obtained in spectral clustering.

ity and convergence properties of these methods. These methods work better when there is
structure in the data. There is no computational gain if there is not statistical information
in the data. This is a fascinating relation between computation and statistical information,
which we believe deserves further research and understanding. One question is how can we
design pre-conditioners in order to improve the convergence behavior of these algorithms.
Another important avenue for further research is the application of the bounds presented in
this paper in the design of adaptive algorithms. Finally, we hope to compare these meth-
ods to existing greedy subset selection methods, such as the information vector machine
for Gaussian processes. We do, however, emphasize that the proposed approach has the
advantage that it is broadly applicable, easy to adapt, and enables us to have control over
the approximation error.
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