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1 Graph Laplacians

Let G = (V, E) be a graph with non-negative weights w : E — R. Let e; € R™ be the i*" standard basis
vector, and e be the all ones vector.

Definition 1. Let yyy := €y — €y, Yuo := YuvlL,. The Laplacian matrix of G is the matrix

LG = E Wy * Yuv-
u,velR

For the purposes of this document, we will need the following facts about Laplacians. For details,
refer to the previous year’s notes on Graph Laplacians|

Fact 2. Let G = (V, E) be a graph with non-negative weights w : E — R. Then the weighted Laplacian
L is positive semi-definite.

Fact 3. If G is connected then im(Lg) = {x|Y_,x; = 0} which is a (n — 1) dimensional subspace. In
general, the dimension of the null space of the Lg is the number of connected components.

2 Linear Algebra

Here we elaborate on last year’s “Notes on Symmetric Matrices”. Let AT denotes pseudo inverse of A. If
U and V are subspaces of R”, then we will let U+V denote the span of UUV, (i.e., all linear combinations
of vectors in U and V'), or equivalently their Minkowski sum.

U+V = span(UUV)={u+v|uecUwveV}
Finally, if G is a (weighted) graph, Lg denotes the graph Laplacian.
Fact 4. Let A, B,C € R™™" be symmetric matrices. Then
B» A= CBC = CAC
If C is full rank, then the converse holds too.

Proof. This is a straightforward consequence of Fact O

Fact 5. Let A, By,..., By be symmetric PSD matrices. Suppose for all i im(B;) C im(A). Then for
lLbueR

A <> B 2 u-A — D Tiay = Y AT BAT < we Ly

Proof. Since A is symmetric, A”? is also symmetric. Note that

im (Z Bi> C span (U imBi) C im(A) = im(A"?)

— im (T ay) + im( 32, B;) € im(A"?).
So the claim follows by Fact [13] (using case (2) of the converse). O


http://www.cs.ubc.ca/~nickhar/W12/Lecture14Notes.pdf
http://www.cs.ubc.ca/~nickhar/W12/NotesMatrices.pdf

3 A Useful Reduction

In the next few lectures, we will study spectral approximations of graphs. Roughly speaking, given a
graph G, we would like to find a subgraph H such that [- Lg < Ly = u-Lg. That is, the Laplacian of H
approximates the Laplacian of G to within a factor u/I. It will be very convenient to apply a reduction to
arrive at a simpler problem: instead of trying to approximate Lq, we will try to approximate the identity
matrix.

Lemma 6. Let G = (V,E) be a connected, weighted graph with n = |V| and non-negative edge-weights
x: E — Rxq. Then there exist vectors {w. : e € E} C R"™ ' with Y . pwewl = I such that for all
non-negative weight vectors s : £ — R,

T T
-1 2 ) cpSewew, = u-I = l-La = ) .cpSe¥eye = u-Lg,
—_——
Ly

where Ly is the Laplacian of the graph H with weights s. Furthermore, we have w! w. = x. -yeLgye,

Often when we use this lemma, s will be a {0, 1}-vector, so H will be an unweighted subgraph of G.

Proof. We only prove equivalence of the inequalities involving u. The inequalities involving [ are analo-
gous.

Note that im(Lg) C im(ng) since G is connected. So, applying Fact

Ly <u-Lg <= LYLyLL <u-LELoLY
T t
— L(éQ (ZeeE SeyeyeT)Lcéz 2w Ty,

t/2 t/2
= Yeep e(L&ye) (L ye)” 2w Ty, (1)

Now we use the vectors {ngye : e € E} to derive the desired vectors {w, : e € E'}.

Let C be a n x (n — 1) matrix whose columns form an orthonormal basis for im(L¢) = span{1}*.
Define

We = /T - CTLg2ye (2)
Therefore
T T
Seep Tyl =La = Xen (VELE ) VT L y)T = Ly,

T T
s (VECT LE ye) (Va 0T L ye)T = CT Ly, C
= ZeGE weweT =1

4

Similarly, using Fact 13| part (3),

1 1 1 1
ZeEF Se(Lcézye)(LCézyE)T 2u- IimLG — ZeeF Se(CTLcézyE)(CTLézye)T =u- CTIimLGC
— ZeeEseweiju'I.

Combining these equivalences with proves the lemma. O



4 Theorem

Recall the “thin tree” problem. We are given a graph G = (V, E) and = € P, where P is the spanning
tree polytope. We would like to find a spanning subtree T of G such that |60 (U)| < O(1) - 2(6(U)) for
every U C V.

Instead, we will find a “thin forest”: a forest satisfying the same inequalities and with at least n/2
edges, where n = |V|. Similar results were first announced by Goemans (unpublished, 2012). Formally,
we prove following theorem:

Theorem 7. Let G = (V, E) be a connected graph, let n = |V| and assume |E| > 3. Let P C RIF! be its
spanning tree polytope. For all x € P, there exists a forest F C E with |F| > n/2 such that

Ly =< 35-L,,
where L, denotes the Laplacian of G with weights x.

By the reduction of the previous section, it suffices to prove the following theorem.

Theorem 8. Let G = (V, E) be a connected graph, let n = |V| and assume |E| > 3. Let P C RIF| be its
spanning tree polytope. Fiz any v € P and suppose that {w. : e € E} C R satisfy e rewew!l = 1.
Then there exists a forest F C E with |F| > n/2 such that

/\max(ZweweT) < 35.

ecF

This theorem is proven by analyzing the following algorithm.

1. Initialize A < 0, F + 0, u « 20, § = -2%.

2. Forj=1,...,n/2:

INVARIANTS:
(a) F is acyclic. (b) Apax(A) <u. (c) ®*(A) =tr(ul — A)~ <1/6.
. Looping through all edges, find an edge e for which

—_

i. FU{e} is acyclic
i Apax (A +wew?l) <u+4d
iii. @A+ wew?l) < d4(A)
. F+ Fu{e}
A A+ waw?!
4. u+—u+6

W N

Observe that at the beginning of the algorithm, ®*(A) = ®2°(0) = (n —1)/20 = 1/§. At the end of the
algorithm, we have a forest F and A =", wew! such that

no 20n 10n
max (A = 2 — = 2 — =2
Amax(A4) < u 0+2 O+2(n—1) O-I—n_l

assuming n > 3. Thus F satisfies the conditions of the theorem.

It remains to show that the invariants hold and that an edge e will always be found in the algorithm’s
inner loop. To do so we will require a few preliminary results.

Fact 9. For § > 0, ®(A) > duFI(A).



Proof. Noting that ®%(A) := tr(ul — A)~' =", (u— Xi(A))~!, we have
u—XN(A) < ut+d—NA) = (u—XNA)T > (ut+d—N(A)?
= Lilu—=Xi(A)7TH > Fi(u+ 68— Ni(A) 7
Therefore ® is strictly decreasing in §.
Fact 10. Let

M = ((u+86)I—A)~" and N = Pu(A) iwq)ujLé(A) + M.

Then M?/(®%(A) — ®uF9(A)) is positive definite and N = M.

Proof. By Fact @ PU(A) — ®U“FI(A) > 0, therefore M?/(®%(A) — ®“+9(A)) is positive definite. N = M
follows since M is positive semidefinite. O

Lemma 11. Suppose Aax(A) < u. For any vector v and positive scalar t, if v Nv < 1/t then

PUHI(A 4+ towT) < DU(A) and Amax(A +tov?) < u+4

This will be proven next time.



A Facts from Linear Algebra

Fact 12. Let A and B be n x n symmetric matrices. Then A = B if and only if 27 Ax > 7 Bx for all
x € im(A) + im(B)

Proof. Observe that 27 Az = (x + 2')T A(z + 2') for 2’ € null(A). So

T Az > 27 Bz Vo € im(A) + im(B)

= (z+2)TA(x+2") > (x+2) Bz +2) Vz € im(A) + im(B),Vz’ € null(4) N null(B)
— yTAy > y"' By y=x+a', Vo € im(A) +im(B), V2’ € null(A) N null(B)

— y"Ay>y" By y € R"

because (null(A) N null(B))+ = null(4)* + null(B)t = im(A) + im(B), therefore [im(A) + im(B)] +
[null(A) Nnull(B)] = R™. O

Fact 13. Let A, B € R™"*" be symmetric matrices and C € R™™ and m < n. If A, B are symmetric
then
B=A = C"BC=C"AC.

The converse holds if
1. C is square and nonsingular
2. C is symmetric and im(A) + im(B) C im(C) or equivalently null(A) N null(B) 2 null(C)

3. C has orthonormal columns and im(A) + im(B) C im(C) or equivalently null(A) N null(B) D
null(CT)

Proof. B> A <= A — B > 0. Therefore there exists a matrix V such that A — B = VV7”. Then
C(A-B)cT =cvvTceT = (cv)(ev)T

which shows C(A — B)C7T is positive semi definite. We now consider the three cases in the converse.

(1) Since C is non-singular, C~1 exists and
CTBC »cTAC = (c'O)Y'B(cc™) = (Cc'e)yTA(cc™') = B= A
(2) Since C' is symmetric, CT is also symmetric and hence CTC = CCt = im(C)-

CTBC - cTAC = (CTe)TB(cct) = (cTe)T A(CcCT)

= LimyBlim(c) = Limc)ALim(c)-

— 2TBz > 2T Az Vo € im(C)

= 2'Bx > 2" Ax Vo € im(A) + im(B)
= B> A

The last implication comes from Fact

(3) Complete C to a square, orthogonal matrix C by adding n —m new columns. That is, C' = [C, D]
and CTC = CCT = I. (This can be done, for example, by the Gram-Schmidt orthogonalization process.)



Then

on
—~
—
—

Br-A & CTBC = CAC
«— 2TCTBCx > 2T"CTACx
— xT< CcTBC CTBD )x S xT( CTAC CTAD
DTBC DTBD - DTAC DTAD
& zT< CTOBC 8)xeT<CT640 g)x
— yT'CcTBCy > yTCT ACy
— CTBC > CcTAC

)e

Vo e R"

Vr e R"

Vo € R

Vy € R™

In (a), we use the fact that im(D) = null(CT) C null(A) Nnull(B), Therefore AD = BD = 0. This shows

every term in the matrix becomes 0 except the entries in the top left.

O
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