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1 Graph Laplacians

Let G = (V,E) be a graph with non-negative weights w : E → R. Let ei ∈ Rn be the ith standard basis
vector, and e be the all ones vector.

Definition 1. Let yuv := eu − ev, yuv := yuvy
T
uv. The Laplacian matrix of G is the matrix

LG =
∑
u,v∈E

wwv · Yuv.

For the purposes of this document, we will need the following facts about Laplacians. For details,
refer to the previous year’s notes on Graph Laplacians.

Fact 2. Let G = (V,E) be a graph with non-negative weights w : E → R. Then the weighted Laplacian
LG is positive semi-definite.

Fact 3. If G is connected then im(LG) = {x |
∑
ixi = 0} which is a (n − 1) dimensional subspace. In

general, the dimension of the null space of the LG is the number of connected components.

2 Linear Algebra

Here we elaborate on last year’s “Notes on Symmetric Matrices”. Let A† denotes pseudo inverse of A. If
U and V are subspaces of Rn, then we will let U+V denote the span of U∪V , (i.e., all linear combinations
of vectors in U and V ), or equivalently their Minkowski sum.

U + V := span (U ∪ V ) = {u+ v |u ∈ U, v ∈ V }

Finally, if G is a (weighted) graph, LG denotes the graph Laplacian.

Fact 4. Let A,B,C ∈ Rn×n be symmetric matrices. Then

B � A⇒ CBC � CAC

If C is full rank, then the converse holds too.

Proof. This is a straightforward consequence of Fact 13.

Fact 5. Let A,B1, . . . , Bk be symmetric PSD matrices. Suppose for all i im(Bi) ⊆ im(A). Then for
l, u ∈ R

l ·A �
∑
i

Bi � u ·A ⇐⇒ l · Iim(A) �
∑
i

A
†/2BiA

†/2 � u · Iim(A)

Proof. Since A is symmetric, A†/2 is also symmetric. Note that

im

(∑
i

Bi

)
⊆ span

(⋃
i

imBi

)
⊆ im(A) = im(A

†/2)

=⇒ im(Iim(A)) + im
(∑

iBi
)
⊆ im(A

†/2).

So the claim follows by Fact 13 (using case (2) of the converse).
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3 A Useful Reduction

In the next few lectures, we will study spectral approximations of graphs. Roughly speaking, given a
graph G, we would like to find a subgraph H such that l ·LG � LH � u ·LG. That is, the Laplacian of H
approximates the Laplacian of G to within a factor u/l. It will be very convenient to apply a reduction to
arrive at a simpler problem: instead of trying to approximate LG, we will try to approximate the identity
matrix.

Lemma 6. Let G = (V,E) be a connected, weighted graph with n = |V | and non-negative edge-weights
x : E → R≥0. Then there exist vectors {we : e ∈ E } ⊂ Rn−1 with

∑
e∈E wew

T
e = I such that for all

non-negative weight vectors s : E → R≥0,

l · I �
∑
e∈Esewew

T
e � u · I ⇐⇒ l · LG �

∑
e∈Eseyey

T
e︸ ︷︷ ︸

LH

� u · LG,

where LH is the Laplacian of the graph H with weights s. Furthermore, we have wTe we = xe · yeL†Gye.

Often when we use this lemma, s will be a {0, 1}-vector, so H will be an unweighted subgraph of G.

Proof. We only prove equivalence of the inequalities involving u. The inequalities involving l are analo-
gous.

Note that im(LH) ⊆ im(L
†/2
G ) since G is connected. So, applying Fact 5,

LH � u · LG ⇐⇒ L
†/2
G LHL

†/2
G � u · L

†/2
G LGL

†/2
G

⇐⇒ L
†/2
G

(∑
e∈E seyey

T
e

)
L

†/2
G � u · IimLG

⇐⇒
∑
e∈E se(L

†/2
G ye)(L

†/2
G ye)

T � u · IimLG
(1)

Now we use the vectors {L†/2
G ye : e ∈ E} to derive the desired vectors {we : e ∈ E }.

Let C be a n × (n − 1) matrix whose columns form an orthonormal basis for im(LG) = span{~1}⊥.
Define

we =
√
xe · CTL

†/2
G ye (2)

Therefore ∑
e∈E xeyey

T
e = LG ⇒

∑
e∈E (

√
xeL

†/2
G ye)(

√
xeL

†/2
G ye)

T = IimLG

⇒
∑
e∈E (

√
xeC

TL
†/2
G ye)(

√
xeC

TL
†/2
G ye)

T = CT IimLG
C

⇒
∑
e∈E wew

T
e = I

Similarly, using Fact 13 part (3),∑
e∈F se(L

†/2
G ye)(L

†/2
G ye)

T � u · IimLG
⇐⇒

∑
e∈F se(C

TL
†/2
G ye)(C

TL
†/2
G ye)

T � u · CT IimLG
C

⇐⇒
∑
e∈E sewew

T
e � u · I.

Combining these equivalences with (1) proves the lemma.
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4 Theorem

Recall the “thin tree” problem. We are given a graph G = (V,E) and x ∈ P , where P is the spanning
tree polytope. We would like to find a spanning subtree T of G such that |δT (U)| ≤ O(1) · x(δ(U)) for
every U ⊆ V .

Instead, we will find a “thin forest”: a forest satisfying the same inequalities and with at least n/2
edges, where n = |V |. Similar results were first announced by Goemans (unpublished, 2012). Formally,
we prove following theorem:

Theorem 7. Let G = (V,E) be a connected graph, let n = |V | and assume |E| ≥ 3. Let P ⊆ R|E| be its
spanning tree polytope. For all x ∈ P , there exists a forest F ⊆ E with |F | ≥ n/2 such that

LF � 35 · Lx,

where Lx denotes the Laplacian of G with weights x.

By the reduction of the previous section, it suffices to prove the following theorem.

Theorem 8. Let G = (V,E) be a connected graph, let n = |V | and assume |E| ≥ 3. Let P ⊆ R|E| be its
spanning tree polytope. Fix any x ∈ P and suppose that {we : e ∈ E} ⊂ Rn−1 satisfy

∑
e xewew

T
e = I.

Then there exists a forest F ⊆ E with |F | ≥ n/2 such that

λmax

(∑
e∈F

wew
T
e

)
� 35.

This theorem is proven by analyzing the following algorithm.

1. Initialize A← 0, F ← ∅, u← 20, δ = 20
n−1 .

2. For j = 1, . . . , n/2 :

Invariants:

(a) F is acyclic. (b) λmax(A) < u. (c) Φu(A) = tr(uI −A)−1 ≤ 1/δ.

1. Looping through all edges, find an edge e for which

i. F ∪ {e} is acyclic

ii. λmax(A+ wew
T
e ) < u+ δ

iii. Φu+δ(A+ wew
T
e ) ≤ Φu(A)

2. F ← F ∪ {e}
3. A← A+ wew

T
e

4. u← u+ δ

Observe that at the beginning of the algorithm, Φu(A) = Φ20(0) = (n− 1)/20 = 1/δ. At the end of the
algorithm, we have a forest F and A =

∑
e∈F wew

T
e such that

λmax(A) < u = 20 +
nδ

2
= 20 +

20n

2(n− 1)
= 20 +

10n

n− 1
≤ 35,

assuming n ≥ 3. Thus F satisfies the conditions of the theorem.

It remains to show that the invariants hold and that an edge e will always be found in the algorithm’s
inner loop. To do so we will require a few preliminary results.

Fact 9. For δ > 0, Φu(A) > Φu+δ(A).
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Proof. Noting that Φu(A) := tr(uI −A)−1 =
∑
i(u− λi(A))−1, we have

u− λi(A) < u+ δ − λi(A) ⇒ (u− λi(A))−1 > (u+ δ − λi(A))−1

⇒
∑
i(u− λi(A))−1 >

∑
i(u+ δ − λi(A))−1.

Therefore Φ is strictly decreasing in δ.

Fact 10. Let

M := ((u+ δ)I −A)−1 and N :=
M2

Φu(A)− Φu+δ(A)
+M.

Then M2/(Φu(A)− Φu+δ(A)) is positive definite and N �M .

Proof. By Fact 9, Φu(A)− Φu+δ(A) > 0, therefore M2/(Φu(A)− Φu+δ(A)) is positive definite. N � M
follows since M is positive semidefinite.

Lemma 11. Suppose λmax(A) < u. For any vector v and positive scalar t, if vTNv ≤ 1/t then

Φu+δ(A+ tvvT ) ≤ Φu(A) and λmax(A+ tvvT ) < u+ δ

This will be proven next time.
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A Facts from Linear Algebra

Fact 12. Let A and B be n× n symmetric matrices. Then A � B if and only if xTAx ≥ xTBx for all
x ∈ im(A) + im(B)

Proof. Observe that xTAx = (x+ x′)TA(x+ x′) for x′ ∈ null(A). So

xTAx ≥ xTBx ∀x ∈ im(A) + im(B)

⇐⇒ (x+ x′)TA(x+ x′) ≥ (x+ x′)TB(x+ x′) ∀x ∈ im(A) + im(B),∀x′ ∈ null(A) ∩ null(B)

⇐⇒ yTAy ≥ yTBy y = x+ x′, ∀x ∈ im(A) + im(B), ∀x′ ∈ null(A) ∩ null(B)

⇐⇒ yTAy ≥ yTBy y ∈ Rn

because (null(A) ∩ null(B))⊥ = null(A)⊥ + null(B)⊥ = im(A) + im(B), therefore [im(A) + im(B)] +
[null(A) ∩ null(B)] = Rn.

Fact 13. Let A,B ∈ Rn×n be symmetric matrices and C ∈ Rn×m, and m ≤ n. If A,B are symmetric
then

B � A =⇒ CTBC � CTAC.

The converse holds if

1. C is square and nonsingular

2. C is symmetric and im(A) + im(B) ⊆ im(C) or equivalently null(A) ∩ null(B) ⊇ null(C)

3. C has orthonormal columns and im(A) + im(B) ⊆ im(C) or equivalently null(A) ∩ null(B) ⊇
null(CT )

Proof. B � A ⇐⇒ A−B � 0. Therefore there exists a matrix V such that A−B = V V T . Then

C(A−B)CT = CV V TCT = (CV )(CV )T

which shows C(A−B)CT is positive semi definite. We now consider the three cases in the converse.

(1) Since C is non-singular, C−1 exists and

CTBC � CTAC =⇒ (C−1C)TB(CC−1) � (C−1C)TA(CC−1) =⇒ B � A.

(2) Since C is symmetric, C† is also symmetric and hence C†C = CC† = Iim(C).

CTBC � CTAC =⇒ (C†C)TB(CC†) � (C†C)TA(CC†)

=⇒ Iim(C)BIim(C) � Iim(C)AIim(C).

=⇒ xT Iim(C)BIim(C)x ≥ xT Iim(C)AIim(C)x ∀x ∈ Rn

=⇒ xTBx ≥ xTAx ∀x ∈ im(C)

=⇒ xTBx ≥ xTAx ∀x ∈ im(A) + im(B)

=⇒ B � A

The last implication comes from Fact 12.

(3) Complete C to a square, orthogonal matrix C̄ by adding n−m new columns. That is, C̄ = [C,D]
and C̄T C̄ = C̄C̄T = I. (This can be done, for example, by the Gram-Schmidt orthogonalization process.)
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Then

B � A by (1)⇐⇒ C̄TBC̄ � C̄AC̄
⇐⇒ xT C̄TB C̄x ≥ xT C̄TA C̄x ∀x ∈ Rn

⇐⇒ xT
(
CTBC CTBD
DTBC DTBD

)
x ≥ xT

(
CTAC CTAD
DTAC DTAD

)
x ∀x ∈ Rn

(a)⇐⇒ xT
(
CTBC 0

0 0

)
x ≥ xT

(
CTAC 0

0 0

)
x ∀x ∈ Rn

⇐⇒ yTCTBCy ≥ yTCTACy ∀y ∈ Rm

⇐⇒ CTBC � CTAC

In (a), we use the fact that im(D) = null(CT ) ⊆ null(A)∩null(B), Therefore AD = BD = 0. This shows
every term in the matrix becomes 0 except the entries in the top left.
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