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Given n samples of v variables, the correlation between two variables measures the strength
of the linear relationship between the two variables. Given two columns of samples of length
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Abstract

The computation of covariance and correlation matrices are critical to many data
mining applications and processes. Unfortunately the classical covariance and corre-
lation matrices are very sensitive to outliers. Robust methods, such as QC and the
Maronna method, have been proposed. However, existing algorithms for QC only give
acceptable performance when the dimensionality of the matrix is in the hundreds; and
the Maronna method is rarely used in practise because of its high computational cost.

In this paper, we develop parallel algorithms for both QC and the Maronna method.
We evaluate these parallel algorithms using a real data set of the gene expression of
over 6,000 genes, giving rise to a matrix of over 18 million entries. In our experimental
evaluation, we explore scalability in dimensionality and in the number of processors,
and the trade-offs between accuracy and computational efficiency. We also compare
the parallel behaviours of the two methods. From a statistical standpoint, the Maronna
method is more robust than QC. From a computational standpoint, while QC requires
less computation, interestingly the Maronna method is much more parallelizable than
QC. After a thorough experimentation, we conclude that for many data mining ap-
plications, both QC and Maronna are viable options. Less robust, but faster, QC is
the recommended choice for small parallel platforms. On the other hand, the Maronna
method is the recommended choice when a high degree of robustness is required, or
when the parallel platform features a large number of processors (e.g., 32).

Introduction

n, the covariance between X; and Xj is:

cov(X;, X;) = Ave[(X; — i) (X — py)]

1



where y1; = Ave(x;) and p; = Ave(z;) are the means. A covariance matriz measures the
relation between all pairs of variables. The correlation of two variables is the normalized
value of the covariance of the two variables and is related to the covariance as follows:

cov(X;, Xj)

0,05

COI‘I‘(Xi, XJ) =

where 0; and o; are the standard deviations of X; and Xj.

The computation of covariance and correlation matrices are critical to many data mining
operations and processes. For example, in exploratory data analysis, it is typical to determine
which variables are highly correlated. Moreover, covariance and correlation matrices are
used as the basis for principal components analysis, for manual or automatic dimensionality
reduction, and for variable selection. They are also the basis for detecting multidimensional
outliers through computation of Mahalanobis distances.

Unfortunately the classical covariance and correlation matrices are very sensitive to the
presence of multidimensional outliers. Even a small fraction of outliers can distort the
covariance or correlation values to the extent of rendering them misleading and virtually
useless. This is a serious issue for most data mining applications, as the data cannot typically
be assumed to be clean (outliers free).

The example shown in Figure 1 illustrates the problem. Figure 1 shows all pairwise
scatter plots of the 5-dimensional data set called “Woodmod”. In Figure 1, consider the two
rectangles at V1-V2 and V4-V5. In both rectangles there is a small cluster of outliers in the
bottom right hand corners. Similar observations can be made in other rectangles as well.
Note that although these points are clearly outliers in two dimensional space they are not
univariate outliers, i.e., they do not show up as well detached outliers in any of the possible
one-dimensional projections of the data. The presence of these outliers causes differences
between the classical and robust correlations, sometimes very substantial differences, even
including changes of sign. For example, in the previous two rectangles the classical correla-
tions between V1 and V2 and between V4 and V5 are -.14 and -.24, respectively. whereas the
robust correlations are significantly different, .85 and +.65. If you were to delete the small
cluster of outliers from the data set the variables, as given by the robust correlation values,
are strongly correlated. This example illustrates the inadequacy of classical correlation and
covariance matrices in the presence of outliers and the valuable role of robust alternatives.

To improve on the robustness of covariance and correlation, many methods have been
proposed to deal with “dirty” large databases. While Section 1.1 will give a more detailed
discussion on related work, two state-of-the-art methods are Quadrant Correlation (QC) [2]
and the Maronna method [11].

Even though there is value in robust methods, the problem for QC and the Maronna
method is that they are computationally expensive, particularly when the size of the matrix
(i.e., v X v) is large. Existing algorithms for QC only give acceptable performance when
the value of v is in the hundreds. In practise, the Maronna method is rarely used because
of its high computational cost. For many data mining applications, the value of v is in the
thousands, if not higher. For example, in Section 2, we give a more detailed account of a gene
expression data set with v, the number of genes measured in a microarray chip, exceeding
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Figure 1: Robustness Results for a Small Five-dimensional Data Set.

6,000. Thus, the problem we tackle in this paper is: How to compute high dimensional robust
covariance and correlation matrices?

The approach we explore in this paper is based on parallelization. This is motivated by
the fact that multi-processor compute clusters have become inexpensive in the past decade,
to the extent that even a small organization (e.g., a medical research laboratory) can find
such a cluster affordable. For the algorithms we develop here, the target architecture is a
compute cluster consisting of commodity processors running MPI/LAM, a public domain
version of MPI. MPI (Message Passing Interface) is a standardized communication library
for distributed memory machines and makes the programs easy to port to variety of parallel
machines [5].

The parallelization of the Maronna and QC methods evolved during the course of the
work as we experimented with the software on different clusters. The experimentation on real
data sets motivated our investigation of load-balancing schemes, communication overheads



on different clusters, and the questions about how best to trade-off computation for accuracy.
This paper makes the following contributions:

1.1

First, we investigate the parallelization of QC on clusters. We find that the key compu-
tation is closely related to matrix multiplication. Dense Matrix multiply is a standard
parallel computing kernel, which makes it easy to implement using off the shelf parallel
numerical libraries such as ScaLAPACK and PLAPACK. As such, QC can be easily
implemented on a variety of machines and, as is the case for matrix multiply, can be
executed on large parallel machines.

We also investigate the parallelization of the Maronna method. In the Maronna method
the key step is for each pair to compute an iteration approximating the correlation.
Each pair can be computed independently, which we can exploit in the parallel version.
Although the Maronna method requires more computation than QC, the ability to
decompose the computation into a large number of independent tasks make it amenable
for parallel computation.

We examine scalability in dimensionality and in the number of processors, and the
trade-offs with accuracy and computational efficiency. For both methods, we provide
a componentwise analysis of their execution times to provide insight into the different
behaviours of the two methods in a parallel environment and why they behave so
differently. We develop and evaluate a predictive performance model for the Maronna
method to better understand the trade-offs with respect to scalability in processors
and problem size.

We conducted extensive empirical evaluation of the parallel algorithms with several
real data sets. We report here the results based on the gene expression levels of 6,068
genes. We describe some interesting numerical properties of the Maronna method that
arose from our ability to experiment on “real” and large data sets.

We conclude with a “recommended recipe” covering various situations. Less robust but
faster, QC is the recommended choice for small parallel platforms. On the other hand,
the Maronna method is the recommended choice when a high degree of robustness is
required, or when the parallel platform features a high number of processors. In any
event, even for matrices of size over 6,000 x 6,000, covariance and correlation matrices
can be computed in only tens of seconds of wall-clock time.

Related Work

The statistical literature contains a substantial number of papers studying the properties
of robust covariance matrix estimation. The robustness of an estimate can be measured
by its breakdown point - the maximum fraction of contamination the estimate can toler-
ate. There has been considerable emphasis on obtaining positive definite, affine equivariant
estimators with a high breakdown point, namely a breakdown point of one-half. The best



known such estimators are the Minimum Volume Ellipsoid (MVE) and Minimum Covari-
ance Determinant (MCD) estimates [17, 18]. Another important class of affine equivariant
high-breakdown point estimates are those based on projections: the Stahel-Donoho estimate
(SDE) proposed by [19] and [4], and studied by [13, 9]; and P-estimates [12]. However,
all known affine equivariant high-breakdown point estimates are solutions to a highly non-
convex optimization problem and as such do not scale up to the large data sets which are
commonplace in data mining applications.

The“Fast MCD” (FMCD) method is recently proposed that is much more effective than
naive subsampling for minimizing the objective function of the MCD [15]. But FMCD still
requires substantial running times for large v, and it no longer retains a high breakdown
point with high probability when n is large.

The main challenge is to find good initial estimates from which one searches for a nearest
optimum in hopes that it produces a global optimum. The initial estimates are invariably
obtained by using some form of repeated random sub-sampling of N rows of the original
data table, with the number of samples Ny determined in order to achieve a high-breakdown
with high probability, e.g., with probability .99 or .999 (see for example [16]). It turns out
that achieving this latter condition results in algorithms that have exponential complexity
of order 2P in terms of the dimension p of the data. This rules out the use of such es-
timates for many data mining applications where one has in excess of 20 - 30 variables.
In addition, robust covariance matrix estimates based on projections have the problem of
having quadratic computational complexity n? in the number of observations. Since many
data mining applications involve hundreds of thousands if not millions of rows, the current
projection estimators are not feasible for data mining.

Much faster estimates with high breakdown points can be computed if one is willing to
drop the requirements of affine equivariance of the resulting covariance or correlation matrix.
The simplest such methods are based on pairwise robust correlation or covariance estimates
such as : (i) classical rank based methods, such as the Spearman’s p and Kendall’s 7 (see
for example [1]); (ii) classical correlations applied after coordinate-wise outlier insensitive
transformations such as the quadrant correlation (QC) and 1-D “Huberized” data (see [7],
p. 204); and (iii) bivariate outlier resistant methods such the method proposed by [6] and
studied by [3]. The pairwise approach is appealing in that one can achieve high breakdown
point on a pairwise basis that results in a high breakdown point for the overall covariance
or correlation matrix, and at the same time reduces the computational complexity in the
data dimension p from exponential to quadratic (from 27 to p?). This greatly increases the
range of data mining problems to which robust covariance and correlation estimates can be
applied, e.g., 200-300 variables becomes quite feasible.

In recognition of this opportunity, [10] and [2] recently proposed new pairwise methods
based on a modification of approaches (iii) and (ii) respectively, that preserve positive defi-
niteness and have computational complexity O(np?). However, these pairwise methods are
not affine equivariant and may be upset by the so called two-dimensional structural outliers.
The example shown in Figure 2 illustrates the problem. If the data were perfectly clean,
the classical Pearson correlation coefficient would be 0.95. However, a small percentage of
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Figure 2: Advantage of Maronna over QC and the classical Pearson Correlation.

outliers (in this case, around 10%) was sufficient to create disaster for the classical coefficient,
as it drops to -0.22. The effect of structural outliers on the Pearson correlation causes it to
give a 0.40 correlation. The correlation based on QC drops from 0.98 when the data were
perfectly clean, to 0.64 with a small percentage of outliers. Also, QC was unable to detect
the two-dimensional structural outliers, and calculates a correlation of 0.64 in their presence
as well. The Maronna method is even more robust, as the value only changes slightly from
0.96 to 0.91, even for the data with the structural outliers.

This can be explained because the Maronna method is positive definite and affine equivari-
ant, and is thus more robust than QC. The problem, of course, is that the extra robustness
requires a lot more computational effort. Thus, a key question to be addressed in this paper
is how to develop a load-balanced parallel algorithm for the Maronna method. It will then
be interesting to see if the parallel Maronna algorithm can eventually catch up with QC.



2 An Application: Gene Expression Analysis

In this section, we show a real-life application that requires the computation of a high-
dimensional robust covariance matrix. This application arises from our strong ties with the
cardiovascular research laboratory at the St Paul’s Hospital in Vancouver (www.icapture.ubc.ca).
Rheumatic valves in the heart cause heart failures, and represent one of the most common
reasons for heart transplants. To try to understand how rheumatic valves are formed, re-
searchers at the hospital collect gene expression data (i.e., using microarray technologies)
for a number of rheumatic valves and normal valves. Specifically, for each sample/valve,
each gene is associated with a non-negative count representing the number of times the gene
has expressed itself in the valve. Based on these counts, we compute the covariance and
correlation matrices.

These matrices are useful for a variety of reasons. One usage is that for any given gene
G, we can find a ranked list of genes which are the most positively or negatively correlated
with GG. Another usage is depicted in Figure 3, where the correlation matrix is used to
form a dissimilarity function for clustering a given collection of genes. Figure 3 gives a
dendrogram for the given collection, showing clusters of correlated genes. The height is
defined as 1 — r, where r is the correlation coefficient between a pair of genes. Correlated
genes help medical researchers to identify the biological pathways that are heavily involved
in producing rheumatic valves.

There are, however, a number of problems in computing the covariance matrix. First,
even though microarray technologies have improved dramatically in recent years, gene ex-
pression data are noisy (i.e., contain many outliers). Thus, robust methods for computing
the covariance matrix are valuable. Second, as usually the case for many biomedical appli-
cations, n, the number of samples, may not be large. In our case each sample corresponds to
a heart valve, and it takes a long time to collect even 10 rheumatic values from heart trans-
plant patients. Minimizing the negative impact of noise is all the more important because
of the small number of samples. Last but not least, the dimensionality of the matrix is very
high.

The main data set used in our experiments was the rheumatic heart valve data consisting
of 20 samples where each sample contained the gene expression counts for 6068 genes. There
were 10 control samples and 10 rheumatic heart samples. Our experiments found the presense
of outliers in the data and the need to minimize the impact of this noise on the final results.
We also experimented with variations of our data set where we added random samples or
new samples based on weighted combinations of other samples.

The 6068 gene data set corresponds to a 6068 x 6068 correlation or covariance matrix,
with over 18 million entries. This magnitude far exceeds the capability of state-of-the-art
algorithms for computing robust covariance matrix. In fact, we recently received a new
version of the data set with over 12,000 expressed genes. Thus, there is an urgent need
to develop algorithms for computing high dimensional robust covariance and correlation
matrices.
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Figure 3: Dendrogram of the Most Correlated Genes

3 Parallel Correlation and Covariance Methods

The Maronna and Quadrant Correlation (QC) methods take as input a n x v matrix X with
v variables and n cases, and compute as output a v X v matrix, which is either the covariance
or correlation matrix. In general, both algorithms perform the following steps:

1. Calculate the median/MAD for each variable in X, where MAD stands for the Median
Absolute Deviation the data from its median (cf: Section 3.3).

2. Compute the pairwise covariance/correlation for X.
3. Restore the positive definiteness of the matrix, if required.

Our main focus for this paper is step two, the covariance/correlations computation. The
Maronna method is discussed in Section 3.1, while QC is discussed in Section 3.2. Step one



is covered briefly in Section 3.3. Step three, restoring the positive definiteness of the covari-
ance and correlation matrices, may or may not be necessary depending on the applications.
The general restoration process is to determine the negative eigenvalues of the matrix and
calculate replacement eigenvalues to recreate a positive definite matrix. In some cases, when
the matrix has only a few nonzero eigenvalues, it can be quicker to solve for only the positive
eigenvalues, then use these to rebuild the positive definite matrix. In any event, whether
this optional step is required does not depend on whether QC or the Maronna method is
chosen. Since this part of the calculation is optional, we omit any details here on step three.

3.1 The Maronna Method

A description of the parallel version of Maronna is shown in Figure 4. The algorithm begins
with the calculation of median and MAD for each variable, which is discussed in more detail
in Section 3.3. Each of the O(v?) pairwise calculations can be computed independently.
Each independent computation for a given v; and v; is iterative and converges at different
rates. The inner sequential part of each computation, beginning on step 6 in Figure 4, does
the following.

First, the values involved in the iteration are initialized in step 7 and 8. p is a vector of
length two, and is initialized with the median of the data variables involved in this correlation
calculation. ¢ is a 2 x 2 matrix that will hold the estimate values for the correlation upon
convergence. It is initialized as a diagonal matrix holding the MAD of the correlation
variables in the diagonal. After initialization, the algorithm repeats the following process.
The Mahalanobis distance is used to measure the distance between the samples of the pair of
variables in step 14. The Mahalanobis distance measures the distance between a data point
and the centroid of all the data points. A weight function is then applied to the distance
values in step 16 to decrease the influence of outliers in the data. Our weight function uses
Huber’s score function as the robust M-estimate to score the influence of the sample points
to the median and variance.

[y lyl < ¢
HSF(y) = {c-sign(y> ly| > c

is used to define

weight(y) = {HSF(y)/y y#0 +

1 y=0
1 ly] <c

— 1
{c/|y| yl > c (1)

The weight function gives weights between zero and one that are applied to the data.
The weight function will weigh normal data variables near one and down-weigh the outlier
values with weights closer to zero.

The weighted data is used to calculate new values for © and o for the next iteration in
steps 18 and 19. The loop continues until the change in covariance from one step to another



Input: n by v matrix X with v variables and n cases
Output:v by v matrix cor, the correlation matrix
1. In parallel For each column Xj;
2. Calculate the median and MAD.
3. Let median[i] be the median of column .
4. Let MADJi] be the MAD calculation of column i.
5. In parallel For each pair of variables 7, j
6. Initially
7. p® = [median[i], median[j]}
3. 50 _ l (MAD[i])* 0 ‘ ]
0 (MAD[j])*
9. Let x, be the vector [X;[q], Xj|q]].
10. ITERATE
11. Given p® and o)
12. Forg=1ton
13. // Calculate the Mahalanobis distance.
14. mah(g] = [xg — p®] - [oW] - [x, — u®)"
15. // Down weight the outliers.
16. W q] = weight(mah[g])
17. Calculate
Z Wlg] - %,

18. p) ==L

> Wl

q=1

" T
19. gk+1) — % . Z(W[Q])2 [xq _ M(kﬂ)} . {Xq _ M(kﬂ)}
q=1

20. // Check for convergence.
21. UNTIL (determinant |((c®)~1(c®+1)) — 1| < ¢)
22. Let 0* denote the converged value for columns X; and Xj;.
23. corli][j] = o [0][1]/ /(e [0][0] - o [1][1])

Figure 4: Parallel Maronna Method

is within the desired tolerance. The algorithm is known to converge, but the rate can vary
depending on the input.

The sequential version of Maronna uses a single processor to perform all of the pairwise
computations. The independence of these O(v?) pairwise computations makes Maronna an
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excellent candidate for parallelization. The parallel version divides the pairwise computations
into p groups, one for each processor. The challenge in computing the covariances efficiently
is to ensure that the work is distributed and equally shared among the processors. As we
will show in Section 4 the number of iterations varies significantly and can potentially slow
down the computation while some processors wait for others to finish. As well, care must be
taken in the distribution and gathering of the results since, for large problem sizes, there are
a large number of pairs to be distributed. The experiments in Section 4 show that Maronna
can achieve significant speed-up on large problem sizes and can effectively use a large number
of processors.

3.2 Quadrant Correlation

Figure 5 describes the parallel version of QC. Again, QC also begins with a calculation of the
median and MAD values for the variables. Although there are several vector operations, the
major computation in QC is a large matrix multiplication. In the algorithm, we represent
the matrices in column-major order, where the columns are variables. Thus X[i] refers to
the ith column (variable). After calculating the median and MAD for all the variables, the
algorithm creates a temporary matrix to hold the normalized values:

X[i][j] — median(X|4])

Xlll) = MAD(XTi])

The X matrix is then used to create a matrix Y of all 1’s, -1’s, and near zero values by
applying a function, v, that is similar to the sign function, to all the elements in X.

| sign(x) if |z| > ¢
Ylz,c) = { z otherwise

c

Our sign function cuts off the values within ¢ of zero and assigns them to the value Z.

Our choice for ¢ in the code was 0.00001. In actuality, by our ¢ function, we are using a
Huberized estimator, which in the limiting case is Quadrant Correlation [2]. The limiting
case here would be to use the sign function in the place of 1.
In the next step, the algorithm calculates the following equation to fill in each entry of
the correlation matrix:
R 5 DX [][K]) - (W(Xi][KD))
cor(i,j) = (2)
VG SR (XGIR))? - £ (X[ [R])?)

The computationally expensive part of the calculation is the part where the numerator is
calculated using a matrix multiplication between Y and its transpose in steps 8 and 10
of Figure 5. The operations involved are approximately O(v?). The denominator is the
geometric mean of the average number of nonzero elements for a pair of columns ¢ and j.
This part of the calculation takes O(v?) time and is set up in step 13. The equation finishes
in step 16 where the denominator divides the numerator. Again, this division occurs for
every element in the matrix. Thus, step 16 requires O(v?) time.

11



Input: n by v matrix X for v variables and n cases
Output:v by v matrix cor, the correlation matrix
1. In parallel For each column X;
2. Calculate the median and MAD
3. Let median[i] be the median of column .
4. Let MAD[i] be the MAD calculation of column 4.
5. // Find “sign” (¢) of normalized values.
6. Construct Y where Y[i][j] = ¥ (X[i][j] — median[i])/MAD[:], C);
7. // Parallel matrix multiply.
8. In parallel compute matrix cor =Y - Y7;
9. // Scale the matrix in parallel.
10. In parallel Y =1 .YV (element-wise)
11. For all 4, 7, set Y[i][j] = (Y[i][1])%
12. Construct vector D
- 1 :
13. Dli| = Jaawm
14. // Parallel operations on the distributed matrix object.
15. In parallel For all i, j set
16. cor|i][j] = cor x D[i] x D[j]
17. cor[d][j] = sin(F - cor[i][4]);

Figure 5: Parallel Algorithm for Quadrant Correlation.

The parallelization of QC is complicated by the number of different types of vector
operations that it performs. These operations and a matrix multiply need to be performed
on matrices and vectors that are distributed across the p processors. Rather than create
our own vector and matrix library we implemented QC using the PLAPACK library [20].
PLAPACK is a well-known parallel numerical library from the University of Texas at Austin
that provides a variety of vector and matrix operations. The library is used to construct a
processor mesh and partition the linear algebra objects, vectors and matrices, into blocks
that are distributed to the processors. Once the objects are distributed the operations can
be done in parallel with each processor working on their pieces of the distributed objects.
There is some communication between the processors during this computation when the
values residing on other processors are needed, so the processors do not work independently.

The difficulty in implementing QC using PLAPACK was to determine the block size and
distribution patterns to avoid undue communication between the processors necessary to
perform the various vector, matrix operations. It is possible to reduce the communication
by replicating the matrix in each processor. However, this is impossible for larger problem
sizes. Memory size was an issue on the problem sizes that we experimented with in this

paper.
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3.3 Median and MAD Calculation

Maronna and QC use the median and MAD values for each variable (i.e., column). MAD,
which stands for the median absolute deviation, measures the deviation of the data from the
median and is a more robust measure than the standard deviation. The MAD value of a
variable can be directly calculated from the median using the formula below.

median(|X[i][j] — median(XTi])|)
0.6745

The constant .6745 appearing in the formula is the inverse of the third quartile of the
normal distribution. The numerator alone tends to underestimate the standard deviation
and dividing by .6745 leads to a better estimate [14]. It is possible, with slight modifications
to the median finding algorithm, to directly calculate the MAD values for use by Maronna
and QC.

The choice of whether or not to do the MAD calculations in parallel depends on v and n.
For large v, since each variable can be computed independently, we can distribute the work
in a similar fashion as we did in the Maronna method. It does differ from the correlations
calculations in that there are far fewer independent calculations. For small v and large n, it
becomes necessary to do the median-finding computation in parallel. Parallel median find-
ing algorithms are well-known [8]. We choose not to implement a parallel median finding
algorithm partly because our focus is high dimensional data where the former case is more im-
portant, and partly because median-finding time is dominated by the correlation/covariance
calculations.

MAD(X[i]) =

4 Experimental Results

4.1 Experimental Setup

We evaluated the parallel Maronna and QC methods in two different cluster environments:

e a small platform: a collection of eight 500MHz Pentium-3 processors running Linux
using MPI-LAM on a 100Mbps LAN; and

e a grid platform: WestGRID [21], a recently installed compute cluster consisting of 504
dual processor 3 GHz Xeon processors running Linux with 2 GB of RAM on Gigabit
Ethernet (www.westgrid.ca).

The majority of our experiments were performed on the Pentium-3 system which provided a
dedicated and controlled environment to evaluate and test different versions of the program.
The WestGRID facility was used to evaluate the scalability of the two methods for large
number of processors and increasing problem sizes.

We experimented with several real data sets. The results reported below are based on
the gene expression levels of 6,068 genes on rheumatic and normal heart valves, as described
in Section 2. We repeated each experiment ten times and report the best results because
these more closely represent what performance would be in an ideal setting.

13
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Figure 6: Maronna Performance for large problem size (6000 variables)

4.2 Parallel Maronna Method

The Maronna method was parallelized using a task farm organization where a manager
process distributes the pairs to be correlated to worker processes. The input n X v matrix
was distributed to all the workers so that each could independently work on different portions
of the correlation matrix.

Figure 6 shows the total time (wall clock time) taken for the Maronna method using the
small platform. As expected, the total time decreased as the number of processors increased.
On 8 processors the wall clock time was about 400 seconds, representing a speed-up of 4.5 out
of 8. The results for Figure 6 used a static load-balancing scheme. The relatively poor speed-
up lead us to investigate the affect of load-balancing on the computation and to implement
the dynamic load-balancing scheme discussed in Section 4.3.

The total execution time can decomposed into several different time components: (a)
correlation calculation, (b) median/MAD calculation, (¢) communication overhead, (d) I/O
time, and (e) miscellaneous overheads. In Figure 6 each bar is divided into the major time
components that make up the total time. The two most dominant components in Figure 6
are the correlation component and the I/O and communication component. The other
components are so small they do not appear on the chart.

Given the different time components we attempted to model the performance of the
Maronna method by measuring, where possible, the time for individual components and to
use this data along with knowledge of the algorithms to find an expression for the total
execution time. The model attempts to predict the execution time based on v, the number
of variables, n, the number of cases, p, the number of processors.

Time(n, v,p) = O(v’n/p) + O(vn/p) + O(v?p + v* + p) + O(v?) + O(1) (3)

The first two terms in Time(n, v, p) are calculation times for correlation and the me-
dian/MAD. The next terms are the communication, I/O and miscellaneous overheads, re-
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spectively. In the following we describe each of the components in more detail and provide
experimental evidence to validate the performance model given by Equation 3.

Figure 7 shows the main computational part of the method, calculating the correlation.
In the method the correlations are all independent and once they have been distributed to
the worker processors, the processors can compute until the results are returned.
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Figure 7: The Correlation Component

A linear least-squares approximation was calculated for the correlation component. We
were concerned because our model did not accurately predict the experimental results. The
(9(”27”) term in our model assumes that all the work for computing the correlation is equally
distributed among the processors. In Table 1, we test this hypothesis by showing how close
the actual speed-ups for Maronna’s correlation component are to linear.

Linear Static Static | Dynamic | Dynamic

v | p| Speed-up | Speed-up | Error | Speed-up Error
2000 | 2 2.00 1.87 7.13% 1.99 0.31%
2000 | 4 4.00 3.66 9.38% 3.96 1.06%
2000 | 8 8.00 6.99 14.40% 7.95 0.62%
4000 | 2 2.00 1.81 10.58% 2.00 0.03%
4000 | 4 4.00 3.33 20.20% 3.91 2.24%
4000 | 8 8.00 6.31 26.80% 7.98 0.30%
6000 | 2 2.00 1.69 18.40% 2.05 2.45%
6000 | 4 4.00 2.99 33.72% 4.06 1.46%
6000 | 8 8.00 5.54 44.36% 8.21 2.53%

Table 1: Static Maronna Correlation Speed-up vs Linear Speed-up and Dynamic Speed-up
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The static Maronna’s correlation speed-up values are reasonable, but there is significant
error between them and perfectly linear speed-up. This makes it difficult to create a linear
predictive model for the correlation component. When we compare the error terms for static
Maronna to the dynamic load balanced version we discuss in Section 4.3, we see there is a
great difference. The error for the dynamic Maronna is small, so the speed-up is very near
linear. This lends support to our prediction of a C’)(”Tf) term for the correlation component
because the dynamic version of Maronna eliminates the unbalanced work load, and thus
shows us a better view of the correlation components behaviour.

The speed-up for the Dynamic Maronna on 6000 variables in Table 1 seems to be super
linear. There are two reasons for this. First, for our experiments, there is a small amount
of variation in running time, and the running times for two, four, or eight could have varied
on the fast side or the single processor runs could have been slow. Another reason for this
performance is that the 6000 variable correlation matrix is large enough to put a strain on
memory resources, especially if the computation is limited to a single processor as in the
sequential case. This causes more page faults to happen, resulting in a slower sequential
time, which inflates the speedup figures for two or more processors. We believe that the
speedup figures are really linear, not super linear, and the small error terms for the dynamic
version support our position.

As one might expect, a key factor that affected the speed-up was the communication
time as shown in Figure 8. The communication component included the time needed to

=
/
T

2

Time (seconds)

Figure 8: The Communication Component
distribute the pairwise correlations to the processors and the time to gather the results back

to the manager processor. It increased with both problem size and number of processors,
and resulted in slightly lower speed-up with regard to the total time.
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We did not model the scatter portion of the communication. The scatter time was a
couple of orders of magnitude smaller than the gather time. Because each worker processor
has a copy of the initial data set the amount of data to distribute tasks to processors is
extremely small. In reality, there are probably one or more n terms in the equation, but the
applications we are interested in had n so small that it was easily lost in the constants of
the modelling equation. The predicated communication time for the gather phase is given
by the expression O(v?p + v* + p), which depends on the number of processors and the size
of the output. This expression for communication arose from fitting the experimental result
to the data. A linear least-square approximation of the experimental data for each problem
size was done to obtain the lines for p = 2,4,8. These expressions were then used to find
linear expressions for the co-efficients with increasing number of p. The final expression we
obtained was:

0.019v%p + 0.201v> + 0.0045p — 0.0038

where v? is the problem size given as {1,4,9,16,25}.

As shown in Table 2 our predictive model for the gather time is within 20% of the exper-
imental data. The value for the p = 4 is consistently too large. There are not enough data
points to determine whether this indicated a problem with the model. Another interesting
trend is that the error appears to be decreasing as the problem size and number of processors
increases.

Experimental | Predicted | Percent

v P Time Time Error
2000 | 2 0.926 0.9612 3.66%
4 1.336 1.1222 19.04%

8 1.517 1.4442 5.04%
4000 | 2 3.624 3.8292 5.35%
4 5.106 4.4462 14.83%

8 5.804 5.6802 2.17%
6000 | 2 8.115 8.6092 5.74%
4 11.350 9.9862 13.66%

8 12.875 12.7402 1.06%

Table 2: Maronna Communication Time versus Predicted Values

The most significant term in the above expression is the 0.201v2?, which relates to band-
width. There is a v?p term that was necessary to accurately model the data. Although
it is relatively small in comparison to the v? term, it begins to dominate the equation as
p increases. We were surprised that the gather time did not behave linearly in v? and p
(i.e., O(v* + p)). One possible explanation is network congestion. We did investigate the
gather time more closely by monitoring the network traffic (using SNMP from a router).
This confirmed the fact that the large burst of communication at the end of the Maronna
method was the likely culprit. Later implementations of the software attempted to alleviate

17



this problem by returning intermediate results back to the manager processor thus avoiding
overloading the network.

Apart from the correlation and the communication components, the remaining compo-
nents included the median/MAD calculation, matrix fill time, I/O time and miscellaneous
other operations to initialize and manage memory. Section 4.7 will discuss the median/MAD
time.

The matrix fill time was the time required to copy the results from the message buffers
into the final result matrix. We could have eliminated much of this time by gathering the
result directly into the matrix. In general, the time was small and constant. It did increase
the time substantially when memory constraints resulted in page faults. This explains the
relatively large time on one and two processors, 41 seconds and 22 seconds respectively.
These page faults did slightly inflate the apparent speed-up in Figure 6. The I/O time
remained relatively constant for a fixed program size. The time to write the v x v matrix to
disk was the major portion of the I/O time.

We combine our analysis of the I/O and matrix fill portion of the model because they
both rely on the output matrix size, v2. A least-squares fit of the experimental data resulted
in a linear equation with v? terms that had constants of .1842 for the matrix fill part and
1.75 as the constant for the I/O time. As expected, disk I/O is an order of magnitude larger
than memory copy time. The predicted times using the above equation was always within
6% of the actual measured time and the accuracy improved with increasing problem size.

4.3 Load Balancing Maronna

Initially, we statically divided the set of pairs into p tasks, distributed one task to each of the
p processors, and gathered the results at the end. If the number of iterations for each pair was
constant or randomly distributed the processors all finished at the same time. However, this
was not the case for the gene data set. While 99.9% of pairs converged within 200 iterations,
the remaining pairs took up to 2400 iterations. The variation in convergence rates resulted in
load imbalance when tasks were statically allocated. As a result we implemented a dynamic
scheme.

Our dynamic load-balancing implementation used a demand-driven task allocation scheme.
We divided the work into tasks where each task was a block of pairs to be correlated. We
experimentally determined the optimal task size to ensure that there were enough tasks to
equally distribute the load and the tasks were large enough to amortize the overhead of dis-
tributing and gathering the tasks and results. When a processor finished a task it requested
a new task from the manager. A double buffering scheme was used to overlap the execution
of a task with the request for a new one.

We actually have two different versions of the load balanced Maronna. The two versions
differ in how they gather the results into the correlation matrix. One version follows a
similar approach to static Maronna and has the processors store their results until they all
finish calculating, then they all perform a giant gather operation to combine all the results.
This version still has the benefit of balancing the calculations between the processors as can
be seen where its values were used in Table 1. However, the giant collective gather at the
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Figure 9: Maronna Communications Profile

end could saturate the root processor and cause the gathering time to be long. Our second
version deals with both the load balancing and alleviating the large gather at the end by
having each processor send back its results after calculating each block. This evens out the
gather time so that it is not one massive operation so that the root processor can more easily
handle the load.

We further explore the communication portion of the different Maronna versions in the
following graphs. We were able to create rough communications profiles for the algorithms
using a setup with several machines connected to a Juniper M5 router where each machine
was configured to be on its own network. Then, by SNMP, we used the management port
to query for the total TCP traffic. This setup allowed us to independently monitor the
traffic without perturbing the execution. Using this, we created a communication profile by
repeatedly querying the router for the traffic through the connections to monitor the activity
as time passed. The communications traffic is measured in bytes over the queries we made.
We could query the router at approximately 37 times per second. We grouped the results
of 1000 of these queries together and report the sum of the traffic that the router reported
for this period. The x-axis in the graphs represents a rough estimation of time, where we
report total router traffic about every twenty-seven second interval. The reported traffic is
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measured in kilobytes.
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Figure 10: Load Balanced Maronna with Block Gather Communications Profile

Figure 9 shows the Maronna algorithm’s profile. Maronna also has the heaviest traffic
during the gather stage. There are two large communication points on the graph because
one of our machines was slower than the rest. When the faster machines completed earlier,
they had to wait for the slowest one to finish and meanwhile sat idly. This is one reason why
load balancing is an improvement.

We have profiled two versions of the load balanced Maronna. The first has the processors
returning their results after they calculate a block of correlations, and is shown in Figure 10.
The height of all the communications here and their thickness in the graph are all related to
the block size of the algorithm. Small blocks make the messages smaller and more frequent,
while larger blocks make for larger messages that are not as frequent. Thus, the total traffic
the network can handle is something to consider when choosing the block size.

The profile for the second load balanced Maronna is in Figure 11. It is similar to the
original Maronna in that all the correlations are saved up until the end for one massive
gather. The processors still send messages throughout the algorithm, but they are small and
only serve as requests for more work.

Figure 12 shows the effect of static versus dynamic load balancing on the overall compu-
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Figure 11: Load Balanced Maronna with End Gather Communications Profile

tation time. For this graph we used the block gather version of dynamic Maronna. The dy-
namic load balancing scheme and the spread-out gather operation combined for a 30% — 40%
improvement in the overall runtime of the Maronna method. Thus, balancing the workload

and spreading the gather operation are effective optimizations for the parallel Maronna al-
gorithm.

4.4 Parallel QC Method

Next we turn our attention to the parallel QC algorithm. QC calculated its correlation
using several vector operations and matrix multiplication. The performance of QC for a
large problem is shown in Figure 13.

On 8 processors the wall clock time was 105 seconds, which was a speed-up of only 1.6
out of 8. Notice that QC executed faster than the Maronna method on the same problem.
Again, the bars in Figure 6 show the major time components that made up the total time. A
clear observation is that QC was not able to use the processors as effectively as the Maronna
method, and at 8 processors there was little to be gained by adding more processors. It is
evident from the figure that the correlation calculation was dominated by the communication
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time and I/O time. At 8 processors the correlation time was only taking 5 seconds, a fraction
of the overall execution time of 105 seconds. Figure 14 shows in greater details the correlation
component of the calculation of a variety of problems sizes and machine sizes.

Except for the small problems sizes the speed-up was better than expected, in some
cases super linear. The reason for the super linear speed-up related to how the PLAPACK
library distributed matrix blocks to processors. It assumed a mesh formation and in these
experiments attempted, as best possible, to arrange the processors in a square mesh. This
distribution affected the performance, making it more difficult to determine exact speed-up
numbers.

The distribution of blocks to processors also affected communication as well. The com-
munication component for QC is shown in Figure 15. The gather portion of QC used a
PLAPACK primitive call to assemble the distributed matrix into a continuous buffer on one
processor. On one processor, the time shown for communication was actually a memory-to-
memory copy. The large times for the copy was due to page faults and was not present when
executed on a cluster with more memory.

It is difficult to find a model that accurately predicts the time performance of QC. Some
components are the same as Maronna, such as the I/O routines and the Median and MAD
calculations. Others are a bit more tricky because we do not really know what is happening
inside the PLAPACK library. The distribution of data pieces between the processors can
effect the performance, such as the communication and correlation computation components.
Also, the correlation calculation, more specifically the matrix multiply, likely contains some
hidden communication calls that are not apparent from the outside. Without knowing
exactly how the matrix and vector objects are specifically distributed between the processors
and the types of communications going on in the computation components, it is not likely
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we can find an accurate model for QC.

4.5 Trading Accuracy for Time

The iterative nature of the Maronna method also lended itself to an alternative approach to
speeding up the computation.

1. Tterate only a constant number of times.
2. Change the tolerance (¢€) so that it terminates sooner.

These techniques are discussed in Sections 4.5.1 and 4.5.2.

4.5.1 Fixing the Number of Iterations

In experimenting on random data we noticed that all pairs converged in less than 5 iterations.
The absence of slow converging pairs in the random data led us to hypothesize that it
may be the highly correlated pairs that were converging slowly. However, this proved not
to be the case. Further experiments showed that the rates of convergence were normally
distributed between -1 and 1 and matched the distribution of the correlation values. Instead,
by analyzing the slow converging pairs, we discovered that it was the outliers in the data
that were taking longer to compute.

The outliers in the data are the values that have a large Mahalanobis distance and these
distances were reduced according to the weight function given by Equation 1. The value of
c used in this equation was Huber’s constant (9.21) and this constant controlled the rate
of convergence. The slow converging corrections had very large distances in comparison to
the distances that converged quickly. We also experimented with a stricter weight function,
where we down-weighted the outliers immediately to zero, and one that used 2 - ¢ rather
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than c¢. The strict weight function converged quickly but did not produce accurate values
for the outliers. The 2 - ¢ decreased the iteration time and obtained good results but it may

not hold in general.

Time (seconds)

Processors

Figure 14: QC Correlation Component

Iterations | Correlations | Percent of
Total Corrs
0-200 18396529 99.9416%
201-400 8665 0.04707%
401-600 1362 0.00740%
601-800 379 0.00206%
801-1000 | 127 0.00069%
1001-1200 | 78 0.00042%
1201-1400 | 53 0.00029%
1401-1600 | 28 0.00015%
1601-1800 | 22 0.00012%
1801-2000 | 9 0.00005%
2001-2200 | 7 0.00004%
2201-2400 | 4 0.00002%
>2400 19 0.00010%

Table 3: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = 1077

In conclusion, the good news from these experiments is that Maronna in only a few
iterations computed the vast majority of the correlations. The bad news is that the small
fraction of remaining pairs corresponded to outliers and cannot easily be truncated if accurate
correlated values are required for these entries.
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4.5.2 Changing the Tolerance

The Maronna algorithm contained a tolerance argument (€) as a stopping condition that
determined how close the iterated correlation estimate was to the real correlation value. By
increasing the value of epsilon, the correlation values, including the slow converging ones,
converged faster at the cost of accuracy.

We experimented with varying e from 0.1 to 10713, At the most accurate setting, as ex-
pected, more correlations took more time to converge. At e = 0.1 the majority of correlations
converged within 5 iterations and all converged within 30 iterations.

We defined the accuracy to be the absolute difference between a correlation estimate and
the correlation’s real value. We defined the accuracy of a correlation matrix estimate to be
the largest of the accuracy values for the matrix’s individual correlation entries compared
to the corresponding entries in the real correlation matrix. To calculate the accuracy in
practise, we used the correlation matrix estimate with the smallest € for the machine, 10713
for the gene data.

Figure 16 displays the trade off between changing epsilon and the convergence and ac-
curacy for Maronna on the full gene data set with 6068 variables using 8 processors. By
convergence, we mean how much does the resulting matrix differ from the matrix calculated
with € = 10713, We considered entries in the computed matrix to be converged if they were
within 1077 of the corresponding entry in the e = 107!3 matrix. Starting at the “gold stan-
dard” of e = 1073, the convergence holds steady as epsilon increases, but then hits a point
and drops dramatically. The time improvement seems to increase linearly with epsilon. The
data in this graph helped us determine what value of epsilon to choose for our experiments
with Maronna. We chose ¢ = 1077 because at this point, the near 30% time improvement
comes at the cost of little accuracy since the matrix is 99.9% convergent with this epsilon.
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Compared to the ¢ = 107 matrix, the matrix computed by QC had 0.0168% of its
entries within our convergence range. QC did have good time improvement at 40.3%, which
is comparable to Maronna using € = 1072,
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Figure 16: Accuracy versus Time Improvement and Convergence to € = 107! Matrix

Figure 17 shows a graph showing how the different values of ¢ and truncated iterations
affected the running time. The differences in time for the various e show that we gained
some improvement with a careful choice of epsilon. This improvement helps in both cases
of slow converging correlations, whether a single slow converging correlation at the end of a
processor’s batch, or an unbalanced load to a processor since all the correlation calculations
benefited with faster convergence for a smaller epsilon.

4.6 Scalability on a Grid Platform

From the previous figures, it is clear that the Maronna method was more amenable to
parallelization than QC. The question to be answered is when the speed-up will stop for the
Maronna method. To answer this question, we ran the parallel Maronna and QC on the
WestGrid cluster using up to 128 processors on the gene data set. There was some variation
in the experiments. Most of the variation came in the category of 1/O time, and times varied
by as much as 170 seconds for Maronna and 30 seconds for QC. Each experiment was run
ten times and used the smallest repeatable value. Although the processors were not shared,
the network and file system were shared, resulted in varying times. The smallest value best
reflected what would be possible on a dedicated machine.

Figure 18 shows the speedup for QC and Maronna on up to 128 processors. It also has
the data points labelled with the total runtimes for Maronna and the runtimes for QC on
eight or more processors. As an example, the Maronna method using 128 processors has a
speedup of 24.1 and a total runtime of 15.5 seconds. For the Maronna method in Figure 18,
the total runtime continued to decrease as we add processors. The time decreases from 374.7

26



40.00%

35.00%

30.00% -

Percent Improvement
N
o
o
2
N
|

1001
10™4
1007 &
10103
10013 &

10
Iter _ 100 100!
ation Limjg none

Figure 17: Time versus Number of Iterations versus Tolerance

30

—e— Maronna
25 4 —=—QC

19.7’
20
28.7 /
15
37%//
10

Speedup

Processors

Figure 18: Speed-up on WestGRID

27



seconds on a single machine to 15.5 seconds with 128 processors. We were surprised at how
well Maronna performed on a large cluster. One may expect to have saturated the manager
processor since it is the only one allocating and distributing tasks. The fact that this did
not occur, even when the total execution time was 15.5 seconds, suggests that the Maronna
method will continue to scale well to larger problems and processor sizes. For a problem size
of 6068, at 128 processors, there is little to be gained by adding more processors.

As expected from previous discussions, the speed-up curve for QC in Figure 18 shows
that QC quickly reached the point that it can not effectively use more processors. The time
did continue to decrease with up to 16 processors but at that time communication overheads
began to dominate and the time began to increase. The good news is that QC executed
quickly on large problems and was able to exploit a small degree of parallelism. We see
that the total times for QC are much smaller than Maronna up to the point where QC is
overcome by too much overhead. One may be able to use more processors to solve larger
problems using QC. However, the communication overheads in QC were more significant
than in Maronna.

4.7 Median/MAD Calculation

Time (seconds)

04 4000

2
Processors 4 N

Figure 19: The Median/Mad Component

The Median/MAD component is shown in Figure 19. It did not achieve the same speed-
up as the correlation calculation. However, note that even on the largest problem size,
the Median/MAD calculation took less than one second, which is insignificant compared to
the correlation calculation. Given the amount of computation required, the time overhead
of communicating between processors outweighed the advantages of attempting to do the
calculation in parallel. The latter may be more useful for very large data sets.

28



We performed experiments where the variables were fixed at 6000 and the cases in the
data set were varied by generating cases based on a weighted sum of other rows of data chosen
at random. This allows us to suggest a model for the Median/MAD component, though it
is difficult because the Median/MAD contains both calculation and communication mixed
together. The Median/MAD times for our experiments and the predicted and error values
are listed in Table 4.

Experimental | Predicted | Percent

v P Time Time Error
100 |1 2.056 2.414 14.82%
2 0.949 1.143 16.96%

4 0.706 0.596 18.45%

8 0.579 0.500 15.92%

1000 | 1 26.197 26.894 2.59%
2 12.504 14.193 11.90%

4 8.558 8.741 2.09%

8 6.641 7.812 15.00%

Table 4: Dynamic Load-balanced Maronna Communication Time versus Predicted Values

This model is based on the equation O(*?)+O(np)+O(p). The O(7*) term relates to the
actual Median finding work. The other terms are mixtures of overhead and communication,
as the processors must share the Median and MAD values after they are calculated, and
must divide up the data matrix to find them. Again, the error values show this equation is
not perfectly accurate, but it suffices to show that the Median/MAD calculation contains
several different terms.

5 Conclusion

This paper has shown that robust methods for calculating high dimensional correlation and
covariance matrices are feasible when implemented in parallel. These methods now make it
possible to not only solve for large correlation and covariance matrices in a timely fashion,
but also compute them with a more robust approach.

Our experiments were performed on a real data set with 6068 variables representing the
expression levels of genes in 20 patients. The results show that QC scales well for up to 8
processors. Maronna is able to scale up much further beyond since the computation portion
requires no communication between processors. This helps Maronna to achieve speed-up
on more than 8 processors, up to 128 as can be seen from the WestGRID results. QC is
still faster, but Maronna is more robust and scalable to more processors. We examined
Maronna closely and found that some correlations, namely the ones involving outlier data
values, converge at a slower rate. In response, we developed a load balanced version of
Maronna which provided a vast improvement in running time and also gives us a more
efficient algorithm for heterogeneous clusters of machines.

29



Dimension

High Low

Robustness @

Very Robust Robust

Output

Destination Cluster Size

Input to Other

Visualization Operations

Small

Figure 20: Recipe for Choosing a Parallel Robust Correlation/Covariance Algorithm

Large

We also analyzed the algorithms’ component-wise performance in order to generate an
equation describing their behaviour. This showed us the reasons why QC and Maronna gave
different results as parallel algorithms.

The QC and Maronna algorithms are good for solving different types of problems. We
have created a recipe in Figure 20 to suggest which algorithm to use based on the given
resources and needs. With low dimensional data, the Maronna method gives robust results
and is not overloaded in large amounts of computation. With high dimensional data however,
the choice depends on the application’s need for robustness. If only a moderate degree of
robustness is necessary, and resources are limited to small clusters, then QC works best. If
a large cluster is available, either QC or Maronna works well. On the other hand, for very
robust applications, the purpose of the calculation may be considered. If the covariance
matrix is needed for other calculations, it is best to use the Maronna method because of
its higher quality results. If the output is intended only for preliminary exploration or
visualization, then QC may be chosen for its performance.
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