
Reid Holmes

Architectural Decomposition 
& Representations



REID HOLMES - CPSC 410: Advanced Software Engineering

What is SW architecture?
‣ Definition:


‣ Blueprint for construction and evolution.

‣ Encompasses:

‣ Structure

‣ Behaviour

‣ Non-functional properties

“The set of principal 
design decisions about 

the system”



REID HOLMES - CPSC 410: Advanced Software Engineering

Components
‣ Elements that encapsulate processing and data at 

an architectural level.

‣ Definition:

‣ Architectural entity that:

‣ encapsulates a subset of functionality.

‣ restricts access via explicit interface.

‣ has explicit environmental dependencies.



REID HOLMES - CPSC 410: Advanced Software Engineering

Connectors
‣ Definition:

‣ An architectural entity tasked with effecting and 

regulating interactions between components.

‣ Connectors are often more challenging than 

components in large heterogenous systems.

‣ Often consists of method calls, but be much more.

‣ Frequently provide application-independent 

interaction mechanisms.



REID HOLMES - CPSC 410: Advanced Software Engineering

Configurations
‣ Bind components and connectors together in a 

specific way.

‣ Definition:

‣ An architectural configuration, or topology, is a set 

of specific associations between the components 
and the connectors of the system’s architecture.


‣ Differentiates a bag of components and connectors 
from an implementable system.



REID HOLMES - CPSC 410: Advanced Software Engineering

Topological Goals
‣ Minimize coupling between components

‣ The less components know about each other, the 

better (also known as information hiding).

‣ Maximize cohesion within each component

‣ Components should be responsible for a logical 

service; extraneous functionality should not be 
present.

1

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 4:
Showing the architecture

 Coupling and Cohesion
 UML Package Diagrams
 Software Architectural Styles:

 Layered Architectures
 Pipe-and-filter
 Object Oriented Architecture
 Implicit Invocation
 Repositories

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Coupling and Cohesion
Architectural Building blocks:

A good architecture:
Minimizes coupling between modules:

Goal: modules donʼt need to know much about one another to interact
Low coupling makes future change easier

Maximizes the cohesion of each module
Goal: the contents of each module are strongly inter-related
High cohesion means the subcomponents really do belong together

module module
connector

X 

1

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 4:
Showing the architecture

 Coupling and Cohesion
 UML Package Diagrams
 Software Architectural Styles:

 Layered Architectures
 Pipe-and-filter
 Object Oriented Architecture
 Implicit Invocation
 Repositories

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Coupling and Cohesion
Architectural Building blocks:

A good architecture:
Minimizes coupling between modules:

Goal: modules donʼt need to know much about one another to interact
Low coupling makes future change easier

Maximizes the cohesion of each module
Goal: the contents of each module are strongly inter-related
High cohesion means the subcomponents really do belong together

module module
connector

X 
[Steve Easterbrook: http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf]

http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf


REID HOLMES - CPSC 410: Advanced Software Engineering

Coupling

WORSE BETTER

Content No 
interaction

Message

Data (params)

Global

Control

Useful definitions: 
- https://en.wikipedia.org/wiki/Coupling_(computer_programming)

https://en.wikipedia.org/wiki/Coupling_(computer_programming)


REID HOLMES - CPSC 410: Advanced Software Engineering

Cohesion

WORSE BETTER

Coincidental

Sequential

Communication

Logical

Temporal

Functional

Useful definitions: 
- http://en.wikipedia.org/wiki/Cohesion_(computer_science)

http://en.wikipedia.org/wiki/Cohesion_(computer_science)


REID HOLMES - CPSC 410: Advanced Software Engineering

Abstraction
‣ Complex problems can be approached by 

abstracting away unnecessary detail

‣ Focus on the key issues while eliding extraneous 

detail (some of these details will be pertinent during 
more detailed design activities)


‣ In software two classes of abstraction dominate:

‣ Control abstraction 

‣ (e.g., structured programming)


‣ Data abstraction

‣ (e.g., abstract data types)



REID HOLMES - CPSC 410: Advanced Software Engineering

Decomposition
‣ Top-down abstraction is also called decomposition

‣ Break problem into independent components

‣ Describe each component


‣ Criteria for decomposition can include:

‣ Implementing teams

‣ Application domains (aka obvious partitions)

‣ Parallelization


‣ Make typical cases simple, and exceptional cases 
possible



REID HOLMES - CPSC 410: Advanced Software Engineering

Conway’s Law

“The structure of a 
software system 

reflects the structure 
of the organization 

that built it”



REID HOLMES - CPSC 410: Advanced Software Engineering

Conway’s Law

3

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

People

Socio-Technical Congruence

C

G

B

E
F

D

A

L

JH

IK

Modules

3 7
2

5 6

4

1

12

10
8

9

11

See: Valetto, et al., 2007.

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Software Architecture
A software architecture defines:

The components of the software system
How the components use each otherʼs functionality and data
How control is managed between the components

An example: client-server
Servers provide some kind of service; clients request and use services
Reduced coupling: servers donʼt need to know what clients are out there

clientclient

client

method
invocation

method
invocation method

invocation

Server

[Steve Easterbrook: http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf]

http://www.cs.toronto.edu/~sme/CSC302/notes/04-package-diagrams.pdf%5D


REID HOLMES - CPSC 410: Advanced Software Engineering

Architectural representations
‣ Software architecture is fundamentally about 

facilitating technical communication between 
project stakeholders


‣ An opaque architecture has no value as it will not be 
adequately understood


‣ Properties of representations:

‣ Ambiguity: Open to more than one interpretation?

‣ Accuracy: Correct within tolerances

‣ Precision: Consistent but not necessarily correct



REID HOLMES - CPSC 410: Advanced Software Engineering

Architectural views
‣ Architectural models can be overwhelming

‣ Different views focus on specific subsets of 

elements or subsets of relationships

‣ Views often focus on specific concerns or 

scenarios within a system

‣ Views overlap; maintaining consistency between 

views is challenging



REID HOLMES - CPSC 410: Advanced Software Engineering

Component diagram
‣ Captures components and relationships.


‣ Required and provided APIs explicitly recorded.



REID HOLMES - CPSC 410: Advanced Software Engineering

Sequence diagram
‣ Focus on inter-component collaboration.

‣ Capture behaviour for specific runtime scenarios.



REID HOLMES - CPSC 410: Advanced Software Engineering

Deployment diagram
‣ Provide mapping between physical devices

VP [http://www.visual-paradigm.com/VPGallery/diagrams/Deployment.html]

http://www.visual-paradigm.com/VPGallery/diagrams/Deployment.html


REID HOLMES - CPSC 410: Advanced Software Engineering

Statechart diagram
‣ More formal description of system behaviour.

‣ Poor mapping between states and components.



REID HOLMES - CPSC 410: Advanced Software Engineering

Prescriptive vs descriptive
‣ Prescriptive architecture dictates how the system 

will be built a priori.

‣ (as-conceived)


‣ Descriptive architecture captures how the system 
was actually built after the fact.

‣ (as-implemented)



REID HOLMES - CPSC 410: Advanced Software Engineering

Architectural degradation
‣ Drift

‣ Introduction of changes that are not captured in 

the current architecture but do not violate it.

‣ Erosion

‣ Introduction of changes that violate the current 

architecture.



REID HOLMES - CPSC 410: Advanced Software Engineering

Architectural recovery
‣ [ICSE 1999: Bowman, Holt, and Brewster]

‣ Conceptual architecture

‣ How developers think about the system.

‣ Focuses on meaningful relationships.


‣ Concrete architecture

‣ How the system was actually built.

‣ Necessary: the devil is in the details.


