
Reid Holmes
Architectural Style Intro

Material and some slide content from:
- Emerson Murphy-Hill

- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

NomNom!
TripJournal
Let’s Do This
Recipal
Yippee!
DSD
Locl
HeHeDelivery
Quick Byte
iLoc

BOLD == 2% PROJECT BONUS

Tether
PEPPA
Food Oracle
Spoon Feed Me
Wutudu
Kontribute
Swap ‘Em
DigiLib
Hoot
Alarm Plus

Tuneline
Where’d I Park
LyfeCraft
EventHub
Run To Click
Reflect
Picture This!
Grouplus
Tracktr
Trading Fever

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Activity Review
‣ Reflect on the activities:

‣ What was the point of each one?

‣ What should I have learned?

‣ What kinds of questions should I be able to

answer based on what we did in class?

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural Analogy
‣ Kitchen design activity.

‣ What are the architectural components?

‣ How are they related to each other?

‣ What connectors exist?

‣ Why did you choose they components /

connectors / topology you did?

‣ How do the connectors bind the components?

‣ Why is software arch. like traditional arch.?

‣ Why is software arch. not like traditional arch.?

1/4

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural Decomposition
‣ Generate an architecture for an automated

shopping cart.

‣ Identify the key components and connectors.

‣ Derive a system topology.

‣ Justify your decomposition.

‣ Why these components?

‣ Does the architecture adequately capture the

broad system goals?

‣ What are the strengths and weaknesses of the

proposed architecture?

2/4

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural Tradeoffs
‣ Generate an architecture for a context-aware

notification system.
‣ Identify NFPs for a given stakeholder.

‣ Justify why those NFPs matter.

‣ Determine how those NFPs influence the
architecture of the system.

‣ Compare the architectures derived when
different stakeholders care about divergent
NFPs.

‣ Understand how NFPs can be in tension with
each other.

3/4

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Completeness & Consistency
‣ The Spec is Right.

‣ For a given system description, can we identify:

‣ Aspects that are inconsistent

‣ Aspects that are incomplete

‣ How can we build a description that all
stakeholders can understand and reason about?

‣ What is the right level of abstraction for an
architectural document?

‣ What tools and techniques can help us generate
complete and consistent system descriptions?

4/4

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOFTWARE
DESIGN

SOFTWARE
ARCHITECTURE

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural styles
‣ Some design choices are better than others

‣ Experience can guide us towards beneficial sets

of choices (patterns) that have positive
properties

‣ An architectural style is a named collection of
architectural design decisions that:

‣ Are applicable to a given context

‣ Constrain design decisions

‣ Elicit beneficial qualities in resulting systems

[TAILOR ET AL.]

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural styles
‣ A set of architectural design decisions that are

applicable to a recurring design problem, and
parameterized to account for different software
development contexts in which that problem
appears.

‣ e.g., Three-tier architectural pattern:

[TAILOR ET AL.]

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural styles
[CZARNECKI]

‣ Defines a family of architectures that are
constrained by:

‣ Component/connector vocabulary

‣ Topology

‣ Semantic constraints

‣ When describing styles diagrammatically:

‣ Nodes == components (e.g., procedures, modules, processes, databases, …)

‣ Edges == connectors (e.g., procedure calls, events, db queries, pipes, …)

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Understanding a style
[CZARNECKI]

‣ What is the structural pattern?

‣ What is the underlying computational model?

‣ What are the essential invariants of the style?

‣ What are some common usage examples?

‣ What are the style’s advantages and disadvantages?

‣ What are some common specializations?

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Structure and Dependencies
‣ All styles minimize coupling in a specific way

‣ Excessive dependencies are not a good idea.

‣ Key issue:

‣ Identifying likely change points.

‣ Reduce direct dependencies

on these points.

C1

Third
Party

Diagram Key

Component

Dependency

C1 C2 C3 C4

C

Third Party
Componen

AL

Four components are directly
dependent on a third party

component. If the third party
component is replaced with a

new component with a different
interface, changes to each

component are likely.

Only the AL (abstraction layer)
component is directly dependent on the
third party component. If the third party
component is replaced, changes are
restricted to the AL component only

C2 C4C3

[GORTON]

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Good properties of an
architecture

‣ Result in a consistent set of principled techniques

‣ Resilient in the face of (inevitable) changes

‣ Source of guidance through product lifetime

‣ Reuse of established engineering knowledge

[CZARNECKI]

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

“Pure” architectural styles
‣ Pure architectural styles are rarely used in practice

‣ Systems in practice:

‣ Regularly deviate from pure styles.

‣ Typically feature many architectural styles.

‣ Architects must understand the “pure” styles to
understand the strength and weaknesses of the
style as well as the consequences of deviating
from the style.

[CZARNECKI]

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Role of context
‣ Neitzsche believed that all judgements were

heavily dependent on individual perspective and
that truth was the subject to interpretation

‣ The role of context is fundamental to the decisions
surrounding your architecture

‣ Two very similar applications may require

fundamentally different architectures for
seemingly trivial reasons

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM
TAILOR ET AL.]

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Language-based
‣ Influenced by the languages that implement them

‣ Lower-level, very flexible

‣ Often combined with other styles for scalability

Examples:

Main & subroutine
Object-oriented

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Dataflow
‣ A data flow system is one in which:

‣ The availability of data controls computation.

‣ The structure of the design is determined by the

orderly motion of data between components.

‣ The pattern of data flow is explicit.

‣ Variations:

‣ Push vs. pull.

‣ Degree of concurrency.

‣ Topology.

[CZARNECKI]

Examples:

Batch-sequential
Pipe-and-filter

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Shared state
‣ Characterized by:

‣ Central store that represents system state

‣ Components that communicate through shared

data store

‣ Central store is explicitly designed and structured

Examples:

Blackboard
Rule-based

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Layered
‣ Layered systems are hierarchically

organized providing services to
upper layers and acting as clients
for lower layers

‣ Lower levels provide more general
functionality to more specific
upper layers

‣ In strict layered systems, layers
can only communicate with
adjacent layers

[CZARNECKI]

Examples:

Virtual machine
Client-server

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Interpreter
‣ Commands interpreted dynamically

‣ Programs parse commands and act accordingly,

often on some central data store

Examples:

Interpreter

Mobile code

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

Implicit invocation
‣ In contrast to other patterns, the flow of control is

“reversed”

‣ Commonly integrate tools in shared environments

‣ Components tend to be loosely coupled

‣ Often used in:

‣ UI applications (e.g., MVC)

‣ Enterprise systems

‣ (e.g., WebSphere)

Examples:

Publish-subscribe

Event-based

