
SOLID Design Principles
Reid Holmes

Some content from Elisa Baniassad

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING
15

Design
Principles

!
!
!
!
!
!

Pragmatic Programmer:
Eliminate Effects Between Unrelated Things –

design components that are:
self-contained,
independent,

and have a single, well-defined purpose

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLIDreview

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Single Responsibility)

Classes should do one
thing and do it well.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Single Responsibility)

Or check:

A description that

describes a class in terms
of alternatives is not one

class, but a set of classes.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Single Responsibility)

“A ClassRoom is la
location where students
attend tutorials or labs.”

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Single Responsibility)

Things we can do to Yaks:

(from the midterm)

Compose

View

Peek

Vote

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

YakPeek

GPSCreateYak

YakList

Event
Bus

<ListOfYaks>
<GetLoc>

<Location><Post>

ClientMarshaller

<Get, GetLoc, Post,
 Vote, Location>

<Vote, Get>

<ListOfYaks>
Client

(Implicit invocation
arch style (event bus))

UI

Server

<GetYakList, PeekYakList,
ComposeYak, VoteYak><YakList>

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Single Responsibility)

‣ Strategy (small, targeted, algorithms)

‣ Command (invokers should be oblivious to actions)

‣ Visitor (accomplish specific tasks)

‣ State (centralize 3rd party complexity)

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Open/Close)

Classes should be open to

extension and closed

to modification.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Open/Close)

patterns support the
open/close principle?

(These patterns are a subset of those patterns that
help with encapsulating what varies. E.g., the
‘extension’ part is often expected to change.)

Which design

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

‣ Observer (extend set of observers)

‣ w/o changing subject behaviour

‣ Strategy (extend algorithm suite)

‣ w/o changing context or other algorithms

‣ State (specialize runtime behaviour)

‣ w/o changing context or other behaviours

‣ Command (extend command suite)

‣ w/o changing invoker

‣ Visitor (extend model analysis)

‣ w/o changing data structure, traversal code, other visitors

‣ Decorator (extend object through composition)

‣ w/o changing base classes

‣ Composite (extend component)

‣ w/o changing clients / composites using any component

SOLID (Open/Close)

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

‣ How does the LLVM architecture in the midterm
support Open/Close?

SOLID (Open/Close)

OptimizerIR IR

X86
machine
code

PowerPC
machine
code

ARM
machine
code

C
front
end

Fortran
front
end

Haskell
front
end

PowerPC
back
end

ARM
back
end

X86
back
end

C
source
code

Haskell
source
code

Fortran
source
code

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

‣ Whenever your code is making behavioural
changes based on internal flags or instanceof you
are likely violating Open/Close. E.g.,

SOLID (Open/Close)

public interface IBillingService {

 Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {

if (creditCard instanceof VisaCard) {
…

} else if (creditCard instanceof MasterCard) {
…

}
}

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Liskov substitution)

patterns break down

if LSP is violated.

(Most design patterns are enabled through a layer
of abstraction, typically provided through
inheritance. When subtypes violate LSP
inconsistencies can occur at runtime.)

Most design

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Interface segregation)

interfaces

they do not use.

(Depending on irrelevant interfaces causes
needless coupling. This causes classes to change
even when interfaces they do not care about are
modified.)

depend on
Clients should not be forced to

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

FastFoodApp sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodInterface

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodImpl

«use»

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

RestaurantApp sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodInterface

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodImpl

«use some»

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

RestaurantApp sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodInterface

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

RestaurantImpl

«use some»

sellBurger()
sellFries()
sellNuggets()
sellCoffee()
sellTea()

FastFoodImpl

FastFoodApp
«use»

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

RestaurantApp

sellCoffee()
sellTea()

HotDrinkInterface

sellCoffee()
sellTea()

HotDrinkImpl

«use»

sellBurger()
sellFries()
sellNuggets()

FastFoodImpl

FastFoodApp

«use»

sellBurger()
sellFries()
sellNuggets()

FastFoodInterface

«use»

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Interface segregation)

The Decorator Pattern enables thin
high-level interfaces that can be
augmented through composition of
concrete Decorators.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Dependency inversion)

abstractions not

(High-level modules should not depend on low-
level modules; instead, they should depend on
abstractions.)

Depend on

implementations.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Dependency inversion)
‣ From this:

To this:

In the original version, reusing
ObjectA requires reusing ObjectB. In
the second, reusing A only requires an
implementation of InterfaceA.

Instantiating instances of InterfaceA
still ‘leaks’ details about concrete
implementations; this is what
Dependency Injection aims to solve.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

SOLID (Dependency inversion)

Many design patterns look just like
this (from the client’s perspective).

For example, in this strategy example,
Car only depends on IBrakeBehavior.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

GPSController
«use»

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

GPSReactNativeView

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

setView()

GPSController setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

IGPSView

«use»

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

GPSReactNativeView

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

setView()

GPSController setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

IGPSView

«use»

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

GPSReactNativeView

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

GPSTestView

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

setView()
createWaypoint()
startTracking()

GPSController setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()
createWaypoint()
startTracking()

IGPSView

«use»

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

GPSReactNativeView

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()

GPSTestView
Concrete classes
should implement
full interface and
may contain more
methods than are

shown.

REID HOLMES - CPSC 410: ADVANCED SOFTWARE ENGINEERING

createWaypoint()
startTracking()
setView()

GPSController

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()
createWaypoint()
startTracking()
setController()

IGPSView

«use»

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()
setController()

GPSReactNativeView

setDetails()
showWaypoint()
showMapPoint()
showProfilePoint()
setController()

GPSTestView

createWaypoint()
startTracking()
setView()

IGPSController

«use»

Concrete classes
should implement
full interface and
may contain more
methods than are

shown.

This now gives you more flexibility for testing:

IGPSController c = new GPSController();
IGPSView v = new GPSTestView();
c.setView(v);
v.setController(c);

Since you have full control of which view
or controller is used.

You could also reuse the view w/o the
controller, just reusing its interface
definition and providing your own
controller implementation.

