Meshes from Point Clouds

Point cloud data

Reconstructed surface

Basic Reconstruction - Zippering

- Use range scanner properties for reconstruction
- Single scan from given direction produces regular lattice of points in X and Y with changing depth (Z)
- Register/Combine multiple scans to create complete model
- Find "optimal" registration
- Variations of this setup used by commercial scanners

Algorithm steps

- Generate separate mesh from each scan
- Use X \& Y adjacency info
- Combine
- Register positions
- Merge meshes

Single Mesh from Range Image

- Find quadruples of lattice points
- Form triangles
- Find shortest diagonal
- Form two triangles (test depth)

Single Mesh from Range Image

- Avoid connecting depth discontinuities:
- Test 3D distance between points when generating triangles
- Do not generate if depth >> S

Registration of Range Images

- Align corresponding portions of different range images
- Variation of Iterated closest-point (ICP) algorithm
- Initial alignment from camera positions (user)

Alignment (ICP)

- Find nearest position on mesh A to each vertex of mesh B
- Discard pairs of points that are too far apart
- Find rigid transformation that minimizes weighted least-squared distance
- Iterate until convergence

Point Matching

- Input: 2 matching sets of 3D points (M, D)
- Find rigid transformation (rotation+translation) which minimizes the distance between M and D
- Use Least-Squares

British Columbia

Integration: Mesh Zippering

- After registration have two overlapping meshes
- Need to combine into single connectivity
- Zippering
- Remove overlapping portion of the mesh - Use for consensus geometry

- Clip one mesh against another
- Remove triangles introduced during clipping

Some Related Algebra - Matrix Decomposition

Or how to solve for orthonormal transformation matrices...

Singular Value Decomposition

- Any m by n matrix \boldsymbol{A} may be factored such that

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

- U: m by m, orthogonal, columns are the eigenvectors of $\boldsymbol{A A}^{T}$
- V: n by n, orthogonal, columns are the eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$
- Σ : m by n, diagonal, r singular values are the square roots of the eigenvalues of both $\boldsymbol{A \boldsymbol { A } ^ { T }}$ and $\boldsymbol{A}^{T} \boldsymbol{A}$

Application: Pseudoinverse

- Given $\boldsymbol{y}=\boldsymbol{A x}, \boldsymbol{x}=\boldsymbol{A}^{+} \mathbf{y}$
- For square $\boldsymbol{A}, \boldsymbol{A}^{+}=\boldsymbol{A}^{-1}$
- For any A...

$$
\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{1} \boldsymbol{U}^{\mathrm{T}}
$$

- \boldsymbol{A}^{+}is called pseudoinverse of \boldsymbol{A}.
- $\boldsymbol{x}=\boldsymbol{A}^{+} \mathbf{y}$ - least-squares solution of $\boldsymbol{y}=\boldsymbol{A x}$

Polar Decomposition

$$
\begin{aligned}
& \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \\
& \boldsymbol{P}=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
\end{aligned}
$$

- Polar or QR Decomposition

$$
A=Q P
$$

$$
\boldsymbol{Q}=\boldsymbol{U} \boldsymbol{V}^{T}
$$

- Q is orthonormal

