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Optimal Auctions

• So far we have considered efficient auctions.
• What about maximizing the seller’s revenue?

• she may be willing to risk failing to sell the good.
• she may be willing sometimes to sell to a buyer who didn’t make
the highest bid
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Optimal auctions in an independent private values
setting

• private valuations
• risk-neutral bidders
• each bidder i’s valuation independently drawn from a strictly
increasing cumulative density function Fi(v) with a pdf fi(v)
that is continuous and bounded below
• Allow Fi ̸= Fj : asymmetric auctions

• the risk neutral seller knows each Fi and has no value for the
object.

The auction that maximizes the seller’s expected revenue subject
to (ex post, interim) individual rationality and Bayesian incentive
compatibility for the buyers is an optimal auction.
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Example: An Optimal Reserve Price in a Second
Price Auction

• 2 bidders, vi uniformly distributed on [0,1]
• Set reserve price R and and then run a second price auction:

• no sale if both bids below R
• sale at price R if one bid above reserve and other below
• sale at second highest bid if both bids above reserve

• Which reserve price R maximizes expected revenue?
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Example

• still dominant strategy to bid true value, so:

• no sale if both bids below R - happens with probability R2 and
revenue=0

• sale at price R if one bid above reserve and other below - happens
with probability 2(1−R)R and revenue = R

• sale at second highest bid if both bids above reserve - happens
with probability (1−R)2 and revenue
= E[min vi|min vi ≥ R] = 1+2R

3

• Expected revenue = 2(1−R)R2 + (1−R)2 1+2R
3

• Expected revenue = 1+3R2−4R3

3

• Maximizing: 0 = 2R− 4R2, or R = 1
2
.

Game Theory Course: Jackson, Leyton-Brown & Shoham Optimal Auctions.
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Example

• Reserve price of 1/2: revenue = 5/12, Reserve price of 0:
revenue = 1/3.

• Tradeoffs:
• lose sales when both bids were below 1/2 - but low revenue then
in any case and probability 1/4 of happening.

• increase price when one bidder has low value other high: happens
with probability 1/2

• Like adding another bidder: increasing competition in the
auction.

Game Theory Course: Jackson, Leyton-Brown & Shoham Optimal Auctions.
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Designing optimal auctions

.
Definition (virtual valuation)
..

.Bidder i’s virtual valuation is ψi(vi) = vi − 1−Fi(vi)
fi(vi)

.

Let us assume this is increasing in vi (e.g., for a uniform distribution
it is 2vi − 1).

.
Definition (bidder-specific reserve price)
..

.
Bidder i’s bidder-specific reserve price r∗i is the value for which
ψi(r

∗
i ) = 0.
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Myerson’s Optimal Auctions

.
Theorem (Myerson (1981))
..

.

The optimal (single-good) auction in terms of a direct mechanism: The
good is sold to the agent i = argmaxi ψi(v̂i), as long as vi ≥ r∗i . If the
good is sold, the winning agent i is charged the smallest valuation that he
could have declared while still remaining the winner:
inf{v∗i : ψi(v

∗
i ) ≥ 0 and ∀j ̸= i, ψi(v

∗
i ) ≥ ψj(v̂j)}.
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Myerson’s Optimal Auctions

.
Corollary (Myerson (1981))
..

.

In a symmetric setting, the optimal (single-good) auction is a second price
auction with a reserve price of r∗ that solves r∗ − 1−F (r∗)

f(r∗)
= 0.
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Analyzing optimal auctions
.
Optimal Auction:
..

.

• winning agent: i = argmaxi ψi(v̂i), as long as vi ≥ r∗i .
• i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v

∗
i ) ≥ 0 and ∀j ̸= i, ψi(v

∗
i ) ≥ ψj(v̂j)}.

• Is this VCG?

• No, it’s not efficient.
• How should bidders bid?

• it’s a second-price auction with a reserve price, held in virtual
valuation space.

• neither the reserve prices nor the virtual valuation transformation
depends on the agent’s declaration

• thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.

Game Theory Course: Jackson, Leyton-Brown & Shoham Optimal Auctions.
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