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Admin

o Midterm:
e Marks posted on UBC Connect.
@ Assignment 5:

e Out soon.
o Due April 5th.

@ Remaining topics:
e More Bayesian stats, structured prediction, variational inference, deep learning.
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Last Time: Bayesian Statistics

@ For most of the course, we considered MAP estimation:
w = argmax p(w| X, y) (train)
w
§" = argmax p(g|@’, o) (test).
g
@ But w was random: | have no justification to only base decision on w.

e Ignores other reasonable values of w that could make opposite decision.
@ Last week, we considered Bayesian approach:
e Treat w as a random variable, and define probability over what we want given data:

g = argmaxp(jla’, X, y)
g

= argmaX/ p(9|2", w)p(w| X, y)dw.
g w

Directly follows from rules of probability, and no separate training/testing.
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Beta-Bernoulli Model

Consider again a coin-flipping example with a Bernoulli variable,

x ~ Ber(0).

Last time we considered that either 6 =1 or § = 0.5.
Today let's view 8 as a continuous random variable.

In particular, let's assume 6 comes from a beta distribution,

0 ~ B(a, B).

The parameters « and 3 of the prior are called hyper-parameters.
e Similar to X in regression, these are parameters of the prior.

@ The PDF for the beta distribution has the form
1
p(Ble, B) = 0 (1 —0)",
(Olo.8) = pra gy (1 0)

where the beta function is B(«, 8) = I'(a)I'(8) /T (a + B).
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Beta-Bernoulli Model
Why the beta distribution?

@ “It's a flexible distribution that includes uniform as special case”.
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@ Uniform distribution if « =1 and g = 1.

@ "It makes the integrals easy”.


https://en.wikipedia.org/wiki/Beta_distribution
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Ingredients of Bayesian Inference
© Likelihood p(x|0).

o Probability of seeing data given parameters.
@ Prior p(f|a, 5).
o Belief that parameters are correct before we've seen data.
@ Posterior p(f|z, a, B).
o Probability that parameters are correct after we've seen data.
e We won't use the MAP “point estimate”, we want the whole distribution.
© Posterior predictive p(&|z, «v, 5).
o Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.
© Marginal likelihood p(x|a, 3) (also called evidence).
e Probability of seeing data given hyper-parameters.
@ We might also have a cost g(Z|%).

e The penalty you pay for predicting & when it was really was z.
o Leads to Bayesian decision theory.
e Straightforward extension: predict to minimize expected cost.

Hierarchical Bayes
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Posterior and Marginal Likelihood
@ Our model is: = ~ Ber(6), 6~ B(a,f).

o If we observe ‘HTH' then our posterior distribution is
p(HTH|0,a, B)p(0|, B)

p(0|HTH, o, B) = p(HTH |a, B) (Baves)
2 1 1 a—1 -1
_ (9 (1 - 9) ) (B(Oaﬁ)e (1 - 0)/8 ) (hke]ihood/prior)
p(HTH |, B)
gt (1 - o)t

p(HTHlev, )
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Posterior and Marginal Likelihood

@ Our model is: = ~ Ber(6), 6~ B(a,f).
o If we observe ‘HTH' then our posterior distribution is

p(HTH|0, «, B)p(0]ev, B)
p(HTH|o, B)

0%(1 = 0)") ( gm0t (1—6)° !

_ (1 —9) )]3((;(;?’04;5)( i ) (likelihood /prior)

B(Clyﬂ)g(%a)—l(l _ 9)(1+6)—1

p(HTHlev, )

@ Denominator is marginal likelihood,

P(HTH|0475):/GB(;L’B)

p(O|HTH, ., ) = (Bayes)

0(2+a)71(1 B 9)(1+[3)71d0'
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Posterior and Marginal Likelihood
@ Our model is: = ~ Ber(6), 6~ B(a,f).
o If we observe ‘HTH' then our posterior distribution is

(O HTH, o, ) = PHTHI0. 0 B)p(0la, 5)

p(HTHla, §) (Bayes)
201 _ g\l 1 pa—1¢1 _ m\B—1
_ra 9))(’9(""5)9 S ) (likelihood /prior)
p(HTH|a, B)
B B(é,g)9(2+a)_1(1 _ 9)(1+6)—1
p(HTH|e, B)
@ Denominator is marginal likelihood,
1
HTH|a, 8) = / L peraig _gyas-igy
O (1-0)

@ Understanding Bayesian inference is much easier once you can notice that:
o The posterior is a beta distribution and the marginal likelihood integral is trivial.
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Posterior and Marginal Likelihood

@ Given HTH, we've shown that posterior is
1 0(2+a)—1(1 _ 0)(1+ﬁ)—1
B(a,B)
p(@|HTH,a,B) =
vl ) p(HTH]o. B)

o 9(2+a)*1(1 _ 9)(1+5)*1_
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@ Given HTH, we've shown that posterior is
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vl ) p(HTH]o. B)
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@ Probabilities sum to 1: these have same distribution and normalizing constant.
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Posterior and Marginal Likelihood

@ Given HTH, we've shown that posterior is
1 0(2+a)—1(1 _ 0)(1+ﬁ)—1
B(a,B)
p(@|HTH,a,B) =
vl ) p(HTH]o. B)

o 9(2+a)*1(1 _ 9)(1+5)*1_

e Consider a B(«/, 8’) distribution on 6 with o/ =2+ a and 5/ =1+ 8,

p(0la’, B') = B(O}ﬁ,)gal_l(l — )71

oc =1 (1 — gy (A1,

@ Probabilities sum to 1: these have same distribution and normalizing constant.
o Posterior is a beta distribution, p(§|HT H, «, 8) is a B(2 + «, 1 + 3) distribution.
e Marginal likelihood is ratio of posterior and prior normalizing constants,

B2+ a,1+p)
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Posterior Predictive
If we observe ‘HHH' then our different estimates are:

@ Maximum likelihood:
~ ng 3
9 = — = — = 1.
n 3

e MAP with uniform Beta(1,1) prior,
B+a)—1 3

§— _3_y
B+ra)+B8-2 3




Baysics Empirical Bayes

Posterior Predictive
If we observe ‘HHH' then our different estimates are:
@ Maximum likelihood:
G 3
n 3

e MAP with uniform Beta(1,1) prior,

b— B+a)—1 :§:1

B+a)+5—-2 3 ’

e Posterior predictive with Beta(1,1) prior,

1
p(H|HHH) = [ p(io)p(o\ )8
= /1 Ber(H|0)Beta(6|3 + «, 5)do
0

- /1 9Beta(0]3 + a, B)d6 = E[0]
0

B+ _é_
T B4+a)+8 5 =08

Hierarchical Bayes
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Beta Bernoulli Model Discussion

@ If we observe h heads and ¢ tails, the posterior will be B(h + a,t + f3).
o Posterior summarized by hyper-parameters {«, 8} and counts {h,t}.
@ Hyper-parameters « and 3 are like “pseudo-counts” in our mind before we flip:
e B(1,1) is like seeing one head and one tail before we flip.
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e For HHH, posterior predictive is 0.667.
e (100, 1) prior is like seeing 100 heads and 1 tail (biased),
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Beta Bernoulli Model Discussion

@ If we observe h heads and ¢ tails, the posterior will be B(h + a,t + f3).
o Posterior summarized by hyper-parameters {«, 8} and counts {h,t}.
@ Hyper-parameters « and 3 are like “pseudo-counts” in our mind before we flip:
e B(1,1) is like seeing one head and one tail before we flip.
e For HHH, posterior predictive is 0.800.
e B(3,3) prior is like seeing 3 heads and 3 tails (stronger uniform prior),
e For HHH, posterior predictive is 0.667.
e (100, 1) prior is like seeing 100 heads and 1 tail (biased),
o For HHH, posterior predictive is 0.990.
e B(.01,.01) biases towards having unfair coin (head or tail),

e For HHH, posterior predictive is 0.997.
e Called “improper” prior (does not integrate to 1), but posterior can be “proper”.
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@ In week 2, we argued that L2-regularized linear regression,
1 A
in— 1 Xw—ul2+ 2 2
argmin o5 | Xw = yl* + 5 [l
corresponds to MAP estimation in the model
y' ~ N(wlz',o®T), wj~N(O0,X71).

@ By some tedious Gaussian identities, the posterior has the form
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w| X,y ~N <2A_1XTy,A_1) ,  with A = —2XTX + Al
o o

o Notice that mean of posterior is the MAP estimate (not true in general).
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Bayesian Linear Regression

In week 2, we argued that L2-regularized linear regression,
.1 9 A 9
argmin gz IXw —yl” + Sl

corresponds to MAP estimation in the model

y' ~ N(wlz',o®T), wj~N(O0,X71).

By some tedious Gaussian identities, the posterior has the form

1 1
w| X,y ~N <2A_1XTy,A_1) ,  with A = —2XTX + Al
o o

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose A and choose basis.
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Learning the Prior from Data?

@ Can we use the data to set the hyper-parameters?
@ In theory: No!

e It would not be a “prior".
e It's no longer the right thing to do.

@ In practice: Yes!

e Approach 1: use a validation set or cross-validation as before.
e Approach 2: optimize the marginal likelihood,

p(ylX. ) = / (12X, w)p(w|\)duo.

w

e Also called type Il maximum likelihood or evidence maximization or empirical Bayes.
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Type Il Maximum Likelihood for Basis Parameter

e Consider polynomial basis, and treat degree M as a hyper-parameter:

40
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http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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e Marginal likelihood (evidence) is highest for M = 2.
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Type Il Maximum Likelihood for Basis Parameter

o Consider polynomial basis, and treat degree M as a hyper-parameter:

M=0
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Model Evidence

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

e Marginal likelihood (evidence) is highest for M = 2.

e "Bayesian Occam’s Razor”: prefers simpler models that fit data well.
o > p(D'lm) =1, for M =7 we have low p(D|m) since it can fit many datasets.
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Type Il Maximum Likelihood for Basis Parameter

o Consider polynomial basis, and treat degree M as a hyper-parameter:

M=0
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Model Evidence

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

e Marginal likelihood (evidence) is highest for M = 2.

e "Bayesian Occam’s Razor”: prefers simpler models that fit data well.
o > p(D'lm) =1, for M =7 we have low p(D|m) since it can fit many datasets.
o Model selection criteria like BIC are approximations to marginal likelihood as n — oco.
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w = argmax p(y|X, w).
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@ If we have a complicated model, this often overfits.
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Type Il Maximum Likelihood for Regularization Parameter
@ Maximum likelihood maximizes probability of data given parameters,
w = argmax p(y|X, w).
w

@ If we have a complicated model, this often overfits.
@ Type Il maximum likelihood maximizes probability of data given hyper-parameters,

A = argmaxp(y|X, ), where p(le,A)Z/p(le,w)p(wlA)dw,
A w

and the integral has closed-form solution because posterior is Gaussian.
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@ We are using the data to optimize the prior.
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Type Il Maximum Likelihood for Regularization Parameter

@ Maximum likelihood maximizes probability of data given parameters,

w = argmax p(y|X, w).
w

If we have a complicated model, this often overfits.

Type Il maximum likelihood maximizes probability of data given hyper-parameters,

A = argmaxp(y|X, ), where p(le,A)Z/p(le,w)p(wlA)dw,
A

w

and the integral has closed-form solution because posterior is Gaussian.

We are using the data to optimize the prior.
@ Even if we have a complicated model, much less likely to overfit:
o Complicated models need to integrate over many more alternative hypotheses.



Baysics Empirical Bayes Hierarchical Bayes

Learning Principles
@ Maximum likelihood:

w = argmax p(y| X, w) g' = argmax p(g|@, o).
w (]



Baysics Empirical Bayes Hierarchical Bayes

Learning Principles

@ Maximum likelihood:

w = argmax p(y| X, w) g' = argmax p(g|@, o).
w (]
o MAP:
w = argmax p(w| X, y, \) §' = argmaxp(g|at, ).
w 9

@ Optimizing A in this setting does not work: sets A = 0.
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Learning Principles

@ Maximum likelihood:
w = argmax p(y|X, w) g' = argmax p(g|@, o).
w (]
o MAP:
w = argmax p(w| X, y, \) §' = argmaxp(g|at, ).
w 9
@ Optimizing A in this setting does not work: sets A = 0.
o Bayesian:

j' = arg(naX/ p(912", w)p(w] X, y, A)dw.
g w

Type Il maximum likelihood:

~

A = argmaxp(y|, X, \) g = argmaX/ p(§]2", w)p(w| X, y, \)dw.
A Y w



Baysics Empirical Bayes Hierarchical Bayes

Type Il Maximum Likelihood for Individual Regularization Parameter

o Consider having a hyper-parameter \; for each w,

y' ~ N (w2t o), ij./\/‘(O,)\jfl).
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Type Il Maximum Likelihood for Individual Regularization Parameter

o Consider having a hyper-parameter A; for each wj,
y' ~ N (w2t o), ijN(O,)\jfl).

@ Too expensive for cross-validation, but type |l maximum likelihood works.
e You can do gradient descent to optimize the ;.
@ Weird fact: yields sparse solutions (automatic relevance determination).

o Can send A\; — oo, concentrating posterior for w; at 0.
o This is L2-regularization, but empirical Bayes naturally encouages sparsity.

@ Non-convex and theory not well understood, but recent work shows:
o Never performs worse than L1-regularization, and exists cases where it does better.



Empirical Bayes

Bonus Slide: Overivew of Bayesian Variable Selection

@ If we fix A and use L1-regularization (Bayesian lasso), posterior is not sparse.
e Probability that a variable is exactly 0 is zero.

o L1-regularization only lead to sparsity because the MAP point estimate is sparse.
@ Type Il maximum likelihood leads to sparsity in the posterior because variance
goes to zero.
@ We can encourage sparsity in Bayesian models using a spike and slab prior:

e Mixture of Dirac delta function 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.

e Posterior is still non-sparse, but answers the question “what is the probability that
variable is non-zero"?
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Hierarchical Bayesian Models

@ Type Il maximum likelihood is not really Bayesian:

o We're dealing with w using the rules of probability.
e But we're using a “point estimate” of A.


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

Baysics Empirical Bayes Hierarchical Bayes

Hierarchical Bayesian Models

@ Type Il maximum likelihood is not really Bayesian:

o We're dealing with w using the rules of probability.
e But we're using a “point estimate” of A.

@ Hierarchical Bayesian models introduce a hyper-prior p(A|7y).
e This is a “very Bayesian" model.


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

Baysics Empirical Bayes Hierarchical Bayes

Hierarchical Bayesian Models

@ Type Il maximum likelihood is not really Bayesian:

o We're dealing with w using the rules of probability.
e But we're using a “point estimate” of A.

@ Hierarchical Bayesian models introduce a hyper-prior p(A|7y).
e This is a “very Bayesian" model.
@ For dealing with hyper-parameters like A, we can now do Bayesian inference:

o Work with posterior over A, p(A| X, y, 7).
o Computing p(M]X,y,7)/p(A2| X, y,7) is called Bayes factor.


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

Baysics Empirical Bayes Hierarchical Bayes

Hierarchical Bayesian Models

Type Il maximum likelihood is not really Bayesian:
o We're dealing with w using the rules of probability.
e But we're using a “point estimate” of A.
Hierarchical Bayesian models introduce a hyper-prior p(A]7).
e This is a “very Bayesian" model.
For dealing with hyper-parameters like A, we can now do Bayesian inference:
o Work with posterior over A, p(A| X, y, 7).
o Computing p(M]X,y,7)/p(A2| X, y,7) is called Bayes factor.
Bayes factors provide an alternative to classic statistical tests:
e E.g., we can compute posterior of “fair coin” vs. coin from beta prior.
o Natural test, but not easy with classic methods.

e No need for null hypothesis, p-values etc.
e This month from American Statistical Assocation:
@ “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
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Hierarchical Bayesian Models

Type Il maximum likelihood is not really Bayesian:
o We're dealing with w using the rules of probability.
e But we're using a “point estimate” of A.
Hierarchical Bayesian models introduce a hyper-prior p(A]7).
e This is a “very Bayesian" model.
For dealing with hyper-parameters like A, we can now do Bayesian inference:
o Work with posterior over A, p(A| X, y, 7).
o Computing p(M]X,y,7)/p(A2| X, y,7) is called Bayes factor.
Bayes factors provide an alternative to classic statistical tests:
e E.g., we can compute posterior of “fair coin” vs. coin from beta prior.
o Natural test, but not easy with classic methods.

e No need for null hypothesis, p-values etc.
e This month from American Statistical Assocation:
@ “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

e But can only tell you which model is more likely, not whether any model is correct.


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

Baysics Empirical Bayes Hierarchical Bayes

Bayesian Model Selection and Averaging
@ Bayesian model selection (“type Il MAP"): maximize hyper-parameter posterior,

~

A = argmaxp(A| X, y,7)
A
= arg;naxp(y\X, Mp(A1Y),

which further takes us away from overfitting (thus allowing more complex models).
@ We could do the same thing to choose order of polynomial basis, o in RBFs, etc.



Hierarchical Bayes

Bayesian Model Selection and Averaging

@ Bayesian model selection (“type Il MAP"): maximize hyper-parameter posterior,

~

A = argmax p(A| X, y,7)
A
= arg;naxp(y\X, Np(Ay),

which further takes us away from overfitting (thus allowing more complex models).
@ We could do the same thing to choose order of polynomial basis, o in RBFs, etc.
@ Bayesian model averaging considers posterior over hyper-parameters,

7' =argma><//p(@!ﬁ?’}w)p(w,k\X, Y 7)dw.
Y AJw
@ We could also maximize marginal likelihood of ~, (“type Il ML"),

4 = argmaxp(y|X,v) = argmaX/A/ p(y| X, w)p(w|A)p(Aly)dwdA.
v 8l w
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Discussion of Hierarchical Bayes

@ "Super Bayesian” approach:

e Go up the hierarchy until all your assumptions about the world are in the model.
e Some people try to do this, and have argued that this may be how humans reason.
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Discussion of Hierarchical Bayes

@ "Super Bayesian” approach:
e Go up the hierarchy until all your assumptions about the world are in the model.
e Some people try to do this, and have argued that this may be how humans reason.
o Key advantage:
o Mathematically simple to know what to do as you go up the hierarchy:
@ Same math for w, A, v, and so on.
o Key disadvantages:

e It can be hard to exactly encode your prior beliefs.
o The integrals get ugly very quickly.
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Summary

@ Posterior predictive lets us directly model what we want given hyper-parameters.
o Marginal likelihood is probability seeing data given hyper-parameters.

@ Empirical Bayes optimizes this to set hyper-parameters:

o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.



Hierarchical Bayes

Summary

Posterior predictive lets us directly model what we want given hyper-parameters.
Marginal likelihood is probability seeing data given hyper-parameters.

Empirical Bayes optimizes this to set hyper-parameters:

o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.
o Leads to Bayesian model selection and Bayesian model averaging.

Next time: can we actually compute these integrals?



	Baysics
	Empirical Bayes
	Hierarchical Bayes

