The machine does not isolate us
from the great problems of life
but plunges us more deeply into them.

(Antoine de Saint-Exupéry, Pilot & Writer)

| ntroduction

This introductory chapter provides the background and motivation for study-
ing stochastic local search algorithms for combinatorial problems. We start
with an introduction to combinatorial problems and present SAT, the sat-
isfiability problem in propositional logic, and TSP, the travelling salesman
problem, as the central problems used for illustrative purposes throughout
the first part of this book. This is followed by a short introduction to the
theory of A/P-complete and NP-hard problems. Next, we discuss and
compare various fundamental search paradigms, such as the concepts of
systematic and local search, after which we formally define and discuss the
notion of stochastic local search, one of the practically most important and
successful approaches for solving hard combinatorial problems.

1.1 Combinatorial Problems

Combinatorial problems arise in many areas of computer science and other
disciplines in which computational methods are applied, such as artificial
intelligence, operations research, bioinformatics, or electronic commerce.
Prominent examples are tasks such as finding shortest/cheapest round-trips
in graphs, finding models of propositional formulae, or determining the 3D-
structure of proteins. Other well-known combinatorial problems are en-
countered in planning, scheduling, time-tabling, resource allocation, code
design, hardware design, and genome sequencing. These problems typi-
cally involve finding groupings, orderings, or assignments of a discrete set

5

of objects which satisfy certain conditions or constraints. Potential solutions
for such problems can be obtained by combining atomic assignments of val-
ues to individual objects from the set under consideration. For a scheduling
problem, the individual objects could be the events to be scheduled, and
their values could be the times at which a given event occurs. This way,
typically a huge number of candidate solutions can be obtained; for most
combinatorial optimisation problems, the space of potential solutions for a
given problem instance is exponential in the size of that instance.

Problems and Solutions

At this point, it is useful to clarify the distinction between problems and
problem instances. In this book, by ‘problem’, we mean abstract prob-
lems (sometimes also called problem classes), such as “for any given set of
points in the Euclidian plane, find the shortest round-trip connecting these
points’. In this example, an instance of the problem would be to find the
shortest round-trip for a specific set of points in the plane. The solution of
such a problem instance would be a specific shortest round-trip connecting
the given set of points. The solution of the abstract problem however, is a
method (or algorithm) which, given a problem instance, determines a solu-
tion for that instance. Generally, problems can be defined as sets of problem
instances, where each instance is a pair of input data and solution data. This
is a elegant mathematical formalisation; however, in this book we will de-
fine problems using a slightly less formal, but more intuitive (yet precise)
representation.

For instances of combinatorial problems, we draw an important distinc-
tion between candidate solutions and solutions. Candidate solutions are
potential solutions that may possibly be encountered during an attempt to
solve the given problem instance; but unlike solutions, they do not have
to satisfy all the conditions from the problem definition. For our shortest
round-trip example, typically any valid round-trip connecting the given set
of points, regardless of length, would be a candidate solution, while only
those candidate round-trips with minimal length would qualify as solutions.
It should be noted that while the definition of any combinatorial problem
states clearly what is considered a solution for an instance of this problem,
the notion of candidate solution is not always uniquely determined by the
problem definition, but can already reflect an approach for solving the prob-

1.1. COMBINATORIAL PROBLEMS 7

lem. As an example, consider the variant of the shortest round-trip prob-
lem where additionally, we are only interested in trips that visit each given
point exactly once. In this case, candidate solutions could be either arbitrary
round trips which do not necessarily respect this additional condition, or the
notion of candidate solution could be restricted to such round-trips that visit
no point more than once.

Decision Problems

Many combinatorial problems can be naturally characterised as decision
problems: for these, the solutions of a given instance are characterised by a
set of logical conditions. Given a graph and a number of colours, the prob-
lem of finding an assignment of colours to its vertices such that two vertices
connected by an edge are never assigned the same colour (the Graph Colour-
ing Problem), is an example of a combinatorial decision problem. Other
prominent combinatorial decision problems include finding satisfying truth
assignments for a given propositional formula (the Propositional Satisfiabil-
ity Problem, SAT, which we revisit in more detail later in this chapter) or
scheduling a series of events such that a given set of precedence constraints
is satisfied. For any decision problem, we distinguish two variants:

the search variant, where the goal is, given a problem instance, to find
a solution (or to determine that no solution exists);

the decision variant, in which for a given problem instance, one wants
to answer the question whether or not a solution exists.

These variants are closely related, as clearly, algorithms solving the search
variant can always be used to solve the decision variant. Interestingly, for
many combinatorial decision problems, the converse also holds: algorithms
for solving the decision variant of a problem can be used for finding actual
solutions.

Optimisation Problems

Many practically relevant combinatorial problems are optimisation prob-
lems rather than decision problems. Optimisation problems can be seen as

generalisations of decision problems, where the solutions are additionally
evaluated by an objective function and the goal is to find solutions with
optimal objective function values. For the Graph Colouring Problem men-
tioned above, a natural optimisation variant exists, where a variable number
of colours is used and the goal is, given a graph, to find a colouring of its
vertices as described above, using only a minimal (rather than a fixed) num-
ber of colours. Any combinatorial optimisation problem can be stated as
a maximisation or as a minimisation problem, where often one of the two
formulations is more natural. Algorithmically, maximisation and minimisa-
tion problems are treated equivalently. For each combinatorial optimisation
problem, we distinguish two variants:

the search variant: given a problem instance, find a candidate solution
with minimal (or maximal, respectively) objective function value;

the evaluation variant: given a problem instance, find the optimal ob-
jective function value, i.e. the objective function value for an optimal
candidate solution.

Clearly, the search variant is the more general of these as with the knowl-
edge of an optimal solution, the evaluation variant can be solved trivially.
Additionally, for each optimisation problem, we can define

associated decision problems: given a problem instance and a fixed
value b of the objective function, find a candidate solution whose ob-
jective function value is smaller than or equal to b (for minimisation
problems, greater than or equal to for maximisation problems).

Many combinatorial optimisation problems are defined based on an ob-
jective function as well as on logical conditions in such a way that candidate
solutions satisfying the logical conditions are called valid or feasible solu-
tions, and among those, based on the objective function, optimal solutions
can be distinguished. While this is often a rather natural formalisation, it
should be noted that in these cases the logical conditions can always be
integrated into the objective function in such a way that feasible solutions
correspond to solutions of an associated decision problem (i.e., to candidate
solutions exceeding a specific objective function value).

1.2. TWO PROTOTYPICAL COMBINATORIAL PROBLEMS 9

As we will see throughout this book, many algorithms for decision prob-
lems can be extended to related optimisation problems in a rather natural
way. However, such simple extensions of algorithms which work well on
certain decision problems do not always achieve reasonable performance for
finding optimal or near-optimal solutions of the related optimisation prob-
lem, such that different algorithmic techniques need to be considered for
this task.

1.2 Two Prototypical Combinatorial Problems

In the following, we introduce two well-known combinatorial problems
which will be used throughout the first part of this book for illustrating al-
gorithmic techniques and approaches. These are the Propositional Satisfi-
ability Problem (SAT), a prominent combinatorial decision problem which
plays a central role in several areas of computer science, and the Travelling
Salesman Problem (TSP), one of the most extensively studied combinato-
rial optimisation problems. Besides their prominence and well established
role in algorithm development, both problems have the advantage of being
conceptually simple, which facilitates the development, analysis, and pre-
sentation of algorithms and algorithmic ideas. Both will be discussed in
more detail in Part 2 of this book (see Chapters 6 and 8).

The Propositional Satisfiability Problem (SAT)

Roughly speaking, the Propositional Satisfiability Problem is, given a for-
mula in propositional logic, to decide whether there is an assignment of truth
values to the propositional variables appearing in this formula, under which
the formula evaluates to ‘true’. In the following, we first present a formal
definition of SAT, and then discuss briefly its computational hardness.

Propositional logic is based on a formal language over an alphabet com-
prising propositional variables, truth values and logical operators. Using
logical operators, propositional variables and truth values are combined into
propositional formulae which represent propositional statements. Formally,
the syntax of propositional logic can be defined in the following way:

Definition 1.1 (Syntax of Propositional Logic)

10

S=VuUCuOU{(,)} is the alphabet of propositional logic,
with V' = {z; | i« € N} denoting the countable infinite set of
propositional variables, C' = {T, L} the set of truth values (or
propositional constants) and O = {—, A, vV} the set of proposi-
tional operators.

The set of propositional formulae is characterised by the fol-
lowing inductive definition:

e the truth values T and L are propositional formulae;

e each propositional variable z; € V' is a propositional for-
mula;

e if Fis a propositional formula, then = F is also a proposi-
tional formula;

e if F} and F, are propositional formulae, then (F} A F5)
and (F; Vv Fy) are also propositional formulae. O

Remark: The truth values T and _L represent logical con-
stants true and false, and the operators —, A, V represent logical
negation, conjunction, and disjunction, respectively. Often, ad-
ditional binary operators, such as ‘<’ (implication) and ‘<’
(equivalence), are used in propositional formulae. These can be
defined based on the operators from Definition 1.1; hence, in-
cluding them into our propositional language does not increase
its expressiveness.

Assignments are mappings from propositional variables to truth values. Us-
ing the standard interpretations of the logical operators on truth values, as-
signments can be used to evaluate propositional formulae. Hence, the se-
mantics of propositional logic can be defined as follows:

Definition 1.2 (Semantics of Propositional Logic)

The variable set Var(F') of formula F' is defined as the set of all
the variables appearing in F.

1.2. TWO PROTOTYPICAL COMBINATORIAL PROBLEMS 11

A variable assignment of formula F' is a mapping a : Var(F')
{T, L} of the variable set of F' to the truth values. The set of
all possible variable assignments of F' is denoted by Assign(F").

The value Val,(F') of formula F' under assignment « is defined
inductively based on the syntactic structure of F:

Val,(T)
Val, (L) =

a
o Val,(z;) = (i)
o Val,(—F) = —Val,(F})
(
la

L] Ia F1 VAN FQ) Va I (Fl) /\Vala(Fg)
e Val, Fl V FQ) Va I (Fl) \/Vala(Fg)

The truth values T and _L are also known as true and false, resp.;
the operators — (negation), A (conjunction), and V (disjunction)
are defined by the following truth tables:

L

- |-

AT V| T
T T T T
L] L LT

|

4L 4L
il 4L

Because the variable set of a propositional formula is always finite, the com-
plete set of assignments for a given formula is also finite. More precisely,
for a formula containing n variables there are exactly 2™ different variable
assignments.

Considering the values of a formula under all possible assignments, the
fundamental notion of satisfiability can be defined in the following way:

Definition 1.3 (Satisfiability)

A variable assignment a is a model of formula F' if and only if
Val,(F') = T, in this case we say that a satisfies F'.

A formula F' is called satisfiable if there exists at least one
model of . O

12

Based on the notion of satisfiability, we can formally define the SAT prob-
lem.

Definition 1.4 (The Propositional Satisfiability Problem)

Given a propositional formula F', the Satisfiability Problem (SAT)
is to decide whether or not I is satisfiable. O

Obviously, SAT can be seen as a combinatorial decision problem, where
variable assignments represent candidate solutions and models represent so-
lutions. As for any combinatorial decision problem, we can distinguish a
decision variant and a search variant: in the former, only a yes/no decision
regarding the satisfiability of the given formula is required; in the latter, also
called the model-finding variant, in case the given formula is satisfiable, a
model has to be found.

Often, logical problems like SAT are studied for syntactically restricted
classes of formulae. Imposing syntactical restrictions usually facilitates the-
oretical studies and can also be very useful for simplifying the design and
analysis of algorithms. Normal forms are syntactically restricted formulae
such that for an arbitrary formula F' there is always at least one semantically
equivalent formula F”’ in normal form. Thus, each normal form induces a
subclass of propositional formulae which is as expressively powerful as full
propositional logic. Some of the most commonly used normal forms are
introduced in the following definition.

Definition 1.5 (Normal forms)

A literal is a propositional variable (called a positive literal) or
its negation (called a negative literal). Formulae of the syntactic
forme; A ey AL .. A ¢, are called conjunctions, while formulae
of the form d, v d, Vv ...V d, are called disjunctions.

A propositional formula Fis in conjunctive normal form (CNF),
if it is a conjunction over disjunctions of literals. The disjunc-
tions are called clauses. A CNF formula F' is in k-CNF, if all
clauses of F' contain exactly £ literals.

A propositional formula F is in disjunctive normal form (DNF),
if it is a disjunction over conjunctions of literals. In this case,

1.2. TWO PROTOTYPICAL COMBINATORIAL PROBLEMS 13

the conjunctions are called clauses. A DNF formula F' is in k-
DNF, if all clauses of F' contain exactly £ literals. O

Example 1.1: A Simple SAT Instance

Let us consider the following propositional formula in CNF:

F = (_L??l \% 372)
A (_'1'2 V l‘l)
N (_'1'1 V Ty V _|l‘3)

For this formula, we obtain the variable set Var(F') = {x1, zo, 23, 24, T5};
consequently, there are 25 = 32 different variable assignments. Exactly one
of these, (z; = 29 = T,23 = 24 = x5 = L), is a model, rendering F’
satisfiable.

The Traveling Salesperson Problem (TSP)

The motivation behind the Traveling Salesperson Problem is the problem
faced by a salesperson who needs to visit a number of customers located in
different cities and tries to find the shortest round-trip accomplishing this
task. In a more general and abstract formulation, the TSP is, given a di-
rected, edge-weighted graph, to find a shortest cyclic path which visits every
node in this graph exactly once. In order to define this problem formally,
we first introduce the notion of a Hamiltonian cycle:

Definition 1.6 (Path, Hamiltonian cycle)

Let G = (V, E,w) be an edge-weighted, directed graph where
V = {vy,vq,...,v,} is the set of n = |V| vertices, E C V' x
V' the set of (directed) edges, and w : E — R* a function
assigning each edge e € E a weight w(e).

14

A path in G is a list (uq, ug, ..., ux) of vertices u; € V (i =
1,..., k), for which for any pair (u;, u;11) i =1,...,k—1)is
an edge in G. A cyclic path in G is a path for which the first
and the last vertex coincide, i.e., u; = uy, in the above notation.

A Hamiltonian cycle in G is a cyclic path p in G which visits
every vertex of GG (except for its starting point) exactly once,
i.e., p = (uy,us, ..., u,,uy) is a Hamiltonian cycle in G if and
only if n = |V|,and {uy, us,...,u,} = V. O

The weight of a path p can then be calculated by adding up the weights of
edges in p:

Definition 1.7 (Path weight)

For a given edge-weighted, directed graph and a path p = (u1, . . ., u)
in G, the path weight w(p) is defined as w(p) = Zf:_f w((ug, wig1)).

O

Now, the TSP can be formally defined in the following way:

Definition 1.8 (The Travelling Salesperson Problem)

Given an edge-weighted, directed graph G, the Traveling Sales-
person Problem (TSP) is to find a Hamiltonian cycle with min-
imal path weight in G. O

Often, the TSP is defined in such a way that the underlying graphs are al-
ways complete graphs, i.e., any pair of vertices is connected by an edge,
because for any TSP instance with an underlying graph G which is not com-
plete, one can always construct a complete graph G’ such that the TSP for
G’ has exactly the same solutions as the one for G. (This is done by making
the edge-weights for edges missing in GG high enough that these edges can
never occur in an optimal solution.) In the remainder of this book we will
always assume that TSP instances are specified as complete graphs. Under
this assumption, the Hamiltonian cycles in a given graph correspond exactly
to the cyclic permutations of the underlying vertex set.

1.3. COMPUTATIONAL COMPLEXITY 15

Interesting subclasses of the TSP arise when the edge-weighting func-
tion w has specific properties. The following definition covers some com-
monly used cases:

Definition 1.9 (Asymmetric, symmetric, and Euclidean TSP
instances)

A TSP instance is called symmetric, if the weight function w of
the underlying graph is symmetric, i.e., if for all v,v" € V :
w((v,v")) = w((v',v)); if w is not symmetric, the instance
is called asymmetric. The Traveling Salesperson Problem for
asymmetric instances is also called Asymmetric TSP (ATSP).

A TSP instance is called Euclidean, if the vertices correspond
to the points in a Euclidean space and if the weight function w
is a Euclidean distance metric. Finally, TSP instances for which
the vertices are points on a sphere, and the weight function w
represents geographical (Great Circle) distance, are called geo-
graphic. O

Example 1.2: A Sample (geometric) TSP Instance

Figure 1.1 shows a geometricTSP instance with 22 vertices. The vertices
of the underlying graph correspond to 22 locations Ulysses is reported to
have visited on his odyssey, and the edge-weights represent the geographic
distances between these locations. The figure also shows the optimal solu-
tion, i.e., the shortest round-trip (length 7013). This instance can be found
as ‘ulysses.22.tsp’ in the TSPLIB Benchmark Library and is attributed to
Grotschel and Padberg.

1.3 Computational Complexity

A natural way for solving most combinatorial decision and optimisation
problems is, given a problem instance, to search for solutions in the space
of its candidate solutions. For that reason, these problems are sometimes

16

Figure 1.1: A graphic representation of the geographic TSP instance
‘ulysses22’ and its solution; see Example 1.2 for details. [hh/ts: should
add names of locations / replace figure .]

also characterised as search problems. However, for a given instance of a
combinatorial problem, the set of candidate solutions is very large, typically
exponential in the size of that instance. For instance, given a SAT instance
with 100 variables, typically all 2! different truth assignments are consid-
ered candidate solutions. This raises the following question: “Is it possible
to search such vast spaces efficiently?” More precisely, we are interested in
the time required for solving an instance of a combinatorial problem as a
function of the size of this instance.

Questions like this lie at the core of computational complexity theory,
a well-established field of computer science with considerable impact on
other areas. In the context of this book, complexity theory plays a role, be-
cause the primary field of application of stochastic local search algorithms
is a class of computationally very hard combinatorial problems, for which
no efficient, i.e., polynomial time, algorithms are known. Moreover, to date
a majority of the experts in complexity theory believe that for fundamental

1.3. COMPUTATIONAL COMPLEXITY 17

reasons the existence of efficient algorithms for these problems is impossi-
ble.

Complexity of Algorithms and Problems

The complexity of an algorithm is defined on the basis of formal machine
models. Usually, these are idealised, yet universal models, designed in a
way which facilitates formal reasoning about their behaviour. One of the
first, and still maybe the most prominent of these models is the Turing
machine. For Turing machines and other formal machine or programming
models, computational complexity is defined in terms of the space and time
requirements of computations.

Complexity theory usually deals with whole problem classes (generally
countable sets of problem instances) instead of single instances. For a given
algorithm or machine model, the complexity of a computation is charac-
terised by the functional dependency between the size of an instance and the
time and space required to solve this instance. Here, instance size is defined
as the length of a reasonably concise description; hence, for a SAT instance,
its size corresponds to the length of the propositional formula (written in
linear form), while the size of a TSP instance is typically proportional to the
size of the underlying graph.

For reasons of analytical tractability, many problems are formulated as
decision problems, and time and space complexity are analyzed in terms of
the worst-case asymptotic behaviour. Given a suitable definition of the com-
putational complexity of an algorithm for a specific problem, the complexity
of the problem itself can be defined as the complexity of the best algorithm
for this problem. Because generally time complexity is the more restrictive
factor, problems are often categorised into complexity classes with respect
to their asymptotic worst-case time complexity.

NP-hard and N'P-complete Problems

Two particularly interesting complexity classes are P, the class of problems
that can be solved by a deterministic machine in polynomial time, and NP,
the class of problems which can be solved by a nondeterministic machine in

18

polynomial time.* Of course, every problem in P is also contained in NP,
basically because deterministic calculations can be emulated on a nondeter-
ministic machine. However, the question whether also NP C P, and con-
sequently P = NP, is one of the most prominent open problems in com-
puter science. Since many extremely application-relevant problems are in
NP, but possibly not in P (i.e., no polynomial time deterministic algorithm
is known), this so-called P = N/P-problem is not only of theoretical inter-
est. For these computationally hard problems, the best algorithms known so
far have exponential time complexity. Therefore, for growing problem size,
the problem instances become quickly intractable, and even the tremendous
advances in hardware design have little effect on the size of the problem
instances solvable with state-of-the-art technology in reasonable time.

Many of these hard problems from A/P are closely related to each other
and can be translated into each other in polynomial deterministic time (these
translations are also called polynomial reductions). A problem, which is at
least as hard as any other problem in A/P (in the sense that each problem
in AP can be polynomially reduced to it) is called NP-hard. Thus, N'P-
hard problems in a certain sense can be regarded as at least as hard as every
problem in A/P. But they do not necessarily have to belong to the class
NP themselves, as their complexity might be actually higher. N “P-hard
problems which are contained in AP are called A/P-complete; in a certain
sense, these problems are the hardest problems in A/ P.

The SAT problem, introduced in Section 1.2, is the prototypical NP-
complete problem. Historically, it was the first problem for which N'P-
completeness was established [19]. N/P-completeness of SAT can directly
be proven by encoding the calculations of a Turing machine A/ for an NP
problem into a propositional formula the models of which correspond to
the accepting computations of M. Furthermore, it is quite easy to show
that SAT remains N P-complete when restricted to CNF or even 3-CNF
formulae [121]. On the other hand, SAT is decidable in linear time for DNF,
for 2-CNF [19], and for Horn formulae [30].

Our second example problem, the TSP, is well known to be N “P-hard
[37]. The same holds for many special cases, such as Euclidean TSPs and

! Note that nondeterministic machines are not equivalent to machines which make ran-
dom choices; they are hypothetical machines which can be thought of having the ability to
make correct guesses for certain decisions.

1.3. COMPUTATIONAL COMPLEXITY 19

even TSPs in which all edge weights are either one or two.

Besides SAT and TSP, many other well-known combinatorial problems
are NP-hard or N"P-complete, including the Graph Colouring Problem, the
Knapsack Problem, as well as many scheduling and timetabling problems,
to name just a few [37]. It should be noted that for A/P-complete com-
binatorial decision problems, the search and decision variants are equally
hard in the sense that if one could be solved deterministically in polyno-
mial time, the same would apply to the other. This is the case because
any algorithm for the search variant also solves the decision variant; and
furthermore, given a decision algorithm and a specific problem instance, a
solution (if existent) can be constructed by iteratively fixing solution com-
ponents and deciding solubility of the resulting, modified instance (which
requires only a polynomial number of calls to the decision algorithm). In
the same sense, for A/P-hard optimisation problems, the search and evalua-
tion variants are equally hard. Furthermore, if either of these variants could
be solved efficiently (i.e., in polynomial time on a deterministic machine),
all decision variants could be solved efficiently as well; and if all decision
variants could be solved efficiently, the same would hold for the search and
evaluation variant.

One fundamental result of complexity theory states that it suffices to
find a polynomial time deterministic algorithm for one single A/P-complete
problem to prove that NP = P. This is a consequence of the fact, that all
NP-complete problems can be encoded into each other in polynomial time.
Today, most computer scientists believe that P # NP; however, so far all
efforts of finding a proof for this inequality have been unsuccessful and there
is some indication that today’s mathematical methods might be too weak to
solve this fundamental problem.

Not All Combinatorial Problems are Hard

Although many combinatorial problems are N"P-hard, it should be noted
that not every computational task which can be formulated as a combina-
torial problem is inherently difficult. A well-known example for a prob-
lem that, at the first glance, might require searching an exponentially large
space of candidate solutions, is the Shortest Path Problem: given an edge-
weighted graph G' (where all edge-weights are positive) and two vertices
u,v In G, find the shortest route from w to v, i.e. the path with minimal

20

total edge weight. Fortunately, this shortest path problem can be solved effi-
ciently; in particular, a simple recursive scheme for calculating all pairwise
distances between « and any other vertex in the given graph, known as Dijk-
stra’s algorithm [23], can find shortest paths in quadratic time with respect
to the number of vertices in the given graph. In general, there are many
other combinatorial problems which can be solved by polynomial-time al-
gorithms. In many cases, these efficient algorithms are based on a general
method called dynamic programming [9].

Practically Solving Hard Combinatorial Problems

Nevertheless, many practically revelant combinatorial problems, such as
scheduling and planning problems, are AP-complete and therefore gener-
ally not efficiently solvable to date (and maybe, if NP # P, not efficiently
solvable at all). However, being A/P-complete or A/P-hard does not mean
that it is impossible for a problem to be solved efficiently. Practically, there
are at least three ways of dealing with these problems:

e Find an application relevant subclass of the problem which can be
solved efficiently.

e Use efficient approximation algorithms.

e Use stochastic approaches.

Regarding the first strategy, we have to keep in mind that A/P-hardness
is a property of a whole problem class P, whereas in practice, often only
instances from a certain subclass P’ C P occur. And of course, P’ does
not have to be A/P-hard in general, i.e., while for P an efficient algorithm
might not exist, it might still be possible to find an efficient algorithm for the
subclass P’; as an example consider the SAT problem for 2—CNF formulae,
which is polynomially solvable.

Furthermore, A/P-hardness of a problem is a worst-case complexity re-
sult, and typical problem instances might be much easier to solve. Formally,
this can be captured in the notion of average case complexity; and although
average-case complexity results are typically significantly harder to prove
and hence much rarer than worst-case results, empiricial studies suggest
that for many \/P-hard problems, typical or average case instances can be

1.3. COMPUTATIONAL COMPLEXITY 21

solved reasonably efficiently. The same applies to the time complexity of
concrete algorithms for combinatorial problems; a well-known example is
the simplex algorithm for linear optimisation, which has worst-case expo-
nential time complexity, but has been empirically shown to achieve polyno-
mial run-times (w.r.t. problem size) in the average case [150].

If, however, the problem at hand is an optimisation problem which can-
not be narrowed down to an efficiently solvable subclass, another option is
to accept suboptimal candidate solutions instead of trying to compute op-
timal solutions. This way, in many cases the computational complexity of
the problem can be sufficiently reduced to make the problem practically
solvable. In some cases, allowing a comparatively small margin from the
optimal solution makes the problem deterministically solvable in polyno-
mial time. In other cases, the approximation problem remains A/P-hard,
while for practically occurring problem instances, suboptimal solutions of
acceptable quality can be found in reasonable time.

For example, it is well known that general TSP instances with arbitrary
edge weights are not approximable to a constant factor (approximation ra-
tio) larger than one, i.e., there is no deterministic algorithm which is guar-
anteed to find solutions within a constant factor of the optimal solution of
any given problem instance in polynomial time. Yet, for instances satisfying
the triangle inequality, Christofides” polynomial construction algorithm [16]
guarantees to return a solution which is at most a factor of 1.5 worse than
the optimal solution. Furthermore, in the case of Euclidean TSP instances,
a polynomial time approximation scheme exists, i.e., there are algorithms
which find solutions for abitrary approximation ratios larger than one in
polynomial time w.r.t. instance size [5].

Sometimes, however, even reasonably efficient approximation methods
cannot be devised or the problem is a decision problem, to which the no-
tion of approximation cannot be applied at all. In these cases, one further
option is to focus on probabilistic rather than deterministic algorithms. At
first glance, this idea seems to be appealing: After all, according to the def-
inition of the complexity class NP, at least A/P-complete problems can be
efficiently solved by (hypothetical) nondeterministic machines. But this, of
course, is of little practical use, since it is unlikely that such idealised ma-
chines can be built; and for an actual probabilistic algorithm there is merely
a chance that it can solve the given problem in polynomial time. In practice,
the success probability of such an algorithm can be arbitrarily small. Nev-

22

ertheless, in numerous occasions, probabilistic algorithms have been found
to be considerably more efficient on A“P-complete or N"P-hard problems
than the best deterministic methods available. In other cases, probabilis-
tic methods and deterministic methods complement each other in the sense
that for certain types of problem instances one or the other have been found
to be superior. SAT and TSP, the two combinatorial problems introduced
above, are amongst the most fundamental and best known problems in this
category.

Finally, it should be noted that even truly exponential scaling of run-time
with instance size does not necessarily rule out solving practically relevant
problem instances. For theoretical purposes, complexity analysis typically
focusses on asymptotic behaviour, and for exponential scaling, constants
(such as the base of the exponential) are mostly not considered. In prac-
tice, however, these constants are obviously extremely important, especially,
when the size of problem instances that need to be solved has reasonable up-
per bounds. Consider, for example, an algorithm A with time complexity
of 10=° - 1.1" (where n is the problem size), and another algorithm B with
time complexity 3 - 10° - 2%, Of course, for big problem instances, here
about » > 510, A becomes quickly dramatically more costly than B. How-
ever, for n < 500, A is much more efficient than B (for n = 100, the
performance ratio is larger than 10'5 in favour of the exponential time algo-
rithm). It is important to keep in mind that exponential complexity should
be avoided whenever possible, and does eventually, as instance size grows,
make the application of an algorithm infeasible. However, for many prob-
lems where exponential time complexity is unavoidable (unless P = N'P),
some algorithms, though exponential in time complexity, or even incom-
plete, can still be dramatically more efficient than others and hence make it
feasible to solve the problem for practically interesting instance sizes. This
is where heuristic guidance, combined with randomisation and probabilis-
tic decisions (both of which are central issues of this book), can make the
difference.

1.4 Search Paradigms

Basically all computational approaches for solving hard combinatorial prob-
lems can be characterised as search algorithms. The fundamental idea be-

1.4. SEARCH PARADIGMS 23

hind the search approach is to iteratively generate and evaluate candidate
solutions; in the case of combinatorial decision problems, evaluating a can-
didate solution means to decide whether it is an actual solution, while in the
case of an optimisation problem, it corresponds to determining the respec-
tive value of the objective function. Although for A”P-hard combinatorial
problems the time complexity of finding solutions can grow exponentially
with instance size, evaluating candidate solutions can often be done much
more efficiently, i.e., in polynomial time. For example, for a given TSP in-
stance, a candidate solution would correspond to a round-trip visiting each
vertex of the given graph exactly once, and its objective function value can
be computed easily by summing up the weights associated with all the edges
used for that round-trip.

Generally, the evaluation of solution candidates is very dependent on
the given problem, and often rather straightforward to implement. The fun-
damental differences between search algorithms are in the way in which
solution candidates are generated, which can have a very significant impact
on the algorithms’ theoretical properties and practical performance. In this
context, general mechanisms can be defined that are applicable to a broad
range of search problems. Consequently, in the remainder of this section,
we discuss various search paradigms based on their underlying approaches
to generating candidate solutions.

Perturbative vs Constructive Search

Typically, candidate solutions for instances of combinatorial problems are
composed of atomic assignments of values to objects, such as the assign-
ment of truth values to individual propositional variables in the case of SAT.
Hence, given candidate solutions can easily be changed into new candidate
solutions by modifying one or more of the corresponding atomic assign-
ments. This can be characterised as perturbing a given candidate solution,
and hence we classify search algorithms which rely on this mechanism for
generating the candidate solutions to be tested as perturbative search meth-
ods. Applied to SAT, perturbative search would start with one or more com-
plete truth assignments and then in each step generate other truth assign-
ments by changing the truth values of a number of variables in each such
assignment.

While for perturbative approaches, the search typically takes place di-

24

rectly in the space of candidate solutions, it can sometimes be useful to also
include partial candidate solutions in the search space, i.e. candidate solu-
tions for which some atomic assignments are not specified. Examples for
such partial assignments are partial truth assignments for a SAT instance in
which no truth values are specified for certain propositional variables, and
partial round-trips for a TSP instance, which correspond to paths in the cor-
responding graph that visit a subset of the vertices and can be extended into
Hamiltionian cycles by adding additional edges.

The task of generating (complete) candidate solutions by iteratively ex-
tending partial candidate solution can be formulated as a search problem
where typically, the goal is to obtain a ‘good’ candidate solution, where
for optimisation problems, the goodness corresponds to a close-to-optimal
value of the objective function. Algorithms for solving this type of prob-
lem are called constructive search methods or construction heuristics. As a
simple example, consider the following method for generating solution can-
didates for a given TSP instance: Start at a randomly chosen vertex in the
graph, and then iteratively follow an edge with minimal weight connecting
the current vertex to one of the vertices that have not yet been visited. This
method generates a path that, by adding the starting vertex as a final element
to the corresponding list, can be easily extended into a Hamiltonian cycle in
the given graph, i.e., a candidate solution for the TSP instance. This simple
construction heuristic for the TSP is called the nearest neighbour heuristic;
on its own, it typically does not generate good solutions (i.e. candidate so-
lutions with close-to-optimal objective function values), but it is commonly
and successfully used in combination with perturbative search methods (this
will be discussed in more detail in Chapter 8).

Systematic vs Local Search

A different, and more common, classification of search approaches is based
on the distinction between systematic and local search: Systematic search
algorithms traverse the search space of a problem instance in a systematic
manner which guarantees that eventually either a solution is found, or, if
no solution exists, this fact is determined with certainty. This typical prop-
erty of algorithms based on systematic search is called completeness. Local
search algorithms, on the other hand, start at some location of the given
search space and subsequently move from the present location to a neigh-

1.4. SEARCH PARADIGMS 25

bouring location in the search space, where each location has only a rel-
atively small number of neighbours and each of the moves is determined
by a decision based on local knowledge only. Typically, local search algo-
rithms are incomplete, i.e., there is no guarantee that an existing solution
is eventually found, and the fact that no solution exists can never be deter-
mined with certainty. Furthermore, local search methods can visit the same
location within the search space more than once. In fact, many local search
algorithms are prone to getting stuck in some part of the search space which
they cannot escape from without special mechanisms like a complete restart
of the search process or some other sort of diversification steps.

As an example for a simple local search method for SAT, consider the
following algorithm: Given a propositional formula F' in CNF over n propo-
sitional variables, randomly pick a variable assignment as a starting point.
Then, in each step, check whether the current variable assignment satisfies
F. If not, randomly select a variable, and change its truth value from L
to T or vice versa. Terminate the search when a model is found, or af-
ter a specified number of search steps have been performed unsuccessfully.
This algorithm is called Uninformed Random Walk and will be revisited in
Section 1.5.

To obtain a simple systematic search algorithm for SAT, we modify this
local search method in the following way. Given an ordering of the n propo-
sitional variables, with each variable assignment a we uniquely associate a
number £ between 0 and 2™ — 1 such that digit 7 of the binary representation
of k£ is 1 if and only if assignment « assigns T to propositional variable i.
Our systematic search algorithm starts with the variable assignment setting
all propositional variables to L, which corresponds to the number 0. Then,
in each step we move to the variable assignment obtained by incrementing
the numerical value associated with the current assignment by one. The pro-
cedure terminates when the current assignment satisfies F' or after 2" — 1
of these steps. Obviously, this procedure searches the space of all variable
assignments in a systematic way and will either return a model of F or ter-
minate unsuccessfully after 2" — 1 steps in which case we can be certain that
F is unsatisfiable.

26

Local Search = Perturbative Search?

Local search methods are often, but not always based on perturbative search.
The Uninformed Random Walk algorithm for SAT introduced above is a
typical example of a perturbative local search algorithm, since in each search
step we change the truth value assigned to one variable, which corresponds
to a perturbation of a candidate solution. However, local search can also be
used for constructive search. This is exemplified by the nearest neighbour
heuristic for the TSP introduced earlier in this section, where vertices are it-
eratively added to a given partial tour based on the weight of the edges lead-
ing to vertices adjacent to the last vertex on that tour. Clearly, this process
corresponds to a constructive local search on the given graph. Generally,
construction heuristics can be interpreted as constructive local search meth-
ods, and as we will see in Chapter 2, there are some prominent examples of
SLS algorithms based on constructive local search.

In many cases, constructive local search can be combined with perturba-
tive local search. A typical example is the use of nearest neighbour search
for generating the starting points for a perturbative local search algorithm
for the TSP. Another interesting example is Ant Colony Optimisation [25],
which can be seen as a perturbative search, where in each step one or more
constructive local searches are performed. This SLS algorithm will be dis-
cussed in detail in Section 2.3.

Interestingly, perturbative search, although naturally associated with lo-
cal search methods, can also provide the basis for systematic search algo-
rithms. As an example, let us consider the systematic variant of the Un-
informed Random Walk algorithm for SAT, presented on page 25. The
steps of this search algorithm correspond to perturbations of complete vari-
able assignments; consequently, the algorithm can be considered a per-
turbative systematic search method. As this example shows, perturbative
search methods can be complete. It should be noted, however, that we are
presently not aware of any perturbative systematic search methods which
achieve competitive performance on any hard combinatorial problem.

Constructive Search + Backtracking = Systematic Search

Another interesting relationship can be established between constructive
search methods and systematic search algorithms. Let us once more con-

1.4. SEARCH PARADIGMS 27

sider our prototypical example for constructive search, the nearest neigh-
bour heuristic for the TSP. If we modify this algorithm such that in each
step of the construction process the given partial tour can be extended with
arbitrary neigbours of its last vertex, it is clear that the constructive search
method thus obtained can in principle find the optimal solution to any given
TSP instance. Hence, an algorithm which could systematically enumerate
all such constructions would obviously be guaranteed to solve arbitrary TSP
instances (given sufficient time), i.e., it would be complete.

Such a complete algorithm for the TSP can be obtained easily by com-
bining the nearest neighbour heuristic with backtracking: At each choice
point of the construction algorithm (including the initial vertex), a list of
all alternative choices is kept. Once a complete tour has been generated,
the search process “backtracks” to the most recent choice point at which
unexplored alternatives exist, and the constructive search is resumed there
using an alternate vertex at this point. This backtracking process first tries
alternate choices for recent decisions (which are deep in the corresponding
search tree), and once all alternatives are explored for a given choice point,
revisits earlier choices; in this latter case, all subsequent choice points are
newly generated, i.e., in our example, from that point on, we first use the
nearest neighbour heuristic to generate another complete tour, and then re-
cursively continue to revise the choices made in this process.

Visiting all solutions by a backtrack search algorithm leads to an expo-
nential time algorithm which even for very small problems rapidly becomes
infeasible. Fortunately, in many situations it is possible to prune large parts
of the corresponding search tree which can be shown to not contain any so-
lutions. For example, in the case of the TSP, the search on a given branch
can be terminated if the length of the current partial tour plus a lower bound
on the length of the completion of the tour exceeds the shortest tour found
in the search so far. This type of algorithm is called branch & bound or A*
search in the Operations Research and Artificial Intelligence communities,
respectively.

For SAT, one can easily devise a backtrack algorithm which searches
a binary search tree in which each node corresponds to assigning a truth
value to one variable, which is then fixed for the subtree beneath that node.
This tree can be pruned considerably by using unit propagation, a technique
which propagates the logical consequences of particular atomic variable as-
signments down the search tree and effectively eliminates subtrees from the

28

search which cannot contain a model of the given formula. Unit propaga-
tion is one of the key techniques used in all state-of-the-art systematic search
algorithms for SAT.

In general, systematic backtracking is a recursive mechanism which can
be used to build a complete search algorithm on top of a constructive search
method. This approach can be applied to basically any constructive search
algorithm. Moreover, many prominent and successful systematic search al-
gorithms, can be decomposed into a constructive search method and some
form of backtracking. It should be noted that the construction methods used
in this context need not be as “greedy” as the nearest neighbour heuristic.
Furthermore, although many well-known systematic search algorithms are
deterministic, it is possible to combine randomised construction heuristics
with backtracking in order to obtain stochastic systematic search algorithms
[50]. There is also some flexibility in the backtracking mechanisms, which
does not have to revisit choices in the simple recursive manner indicated
above; in fact, as long as there is a reasonably compact representation of
all unexplored candidate solutions, basically any strategy that guarantees to
eventually evaluate these, leads to a complete search algorithm. In particu-
lar, this allows the order in which decisions are revisited to be randomised
or dynamically changed based on search progress — approaches which pro-
vide the basis for some of the best-known systematic search algorithms for
combinatorial problems such as SAT.

Advantages and Disadvantages of Local Search

It might appear that, due to their incompleteness, local search algorithms
are generally inferior to systematic methods. But as will be shown later,
this is not the case. Firstly, many problems are constructive by nature and
it is known that they are soluble. In this situation, the goal of any search
algorithm is the generation of a solution rather than just deciding whether
a solution does exist. This holds in particular for optimisation problems,
like the Traveling Salesperson Problem (TSP) where the actual problem is
to find a solution of sufficiently high quality, but also for underconstrained
decision problems, which are not uncommon in practice. Obviously, the
main advantage of a complete algorithm — its ability to detect that a given
problem instance has no solution — is not relevant for finding solutions of
soluble instances.

1.4. SEARCH PARADIGMS 29

Secondly, in a typical application scenario often the time to find a so-
lution is limited. Examples for such real-time problems can be found in
virtually all application domains. Actually one might argue that almost ev-
ery real-world problem involving interaction with the physical world, in-
cluding humans, has real-time constraints. Common examples are real-time
production scheduling, robot motion planning and decision making, most
game playing situations, and speech recognition for natural language in-
terfaces. In these situations, systematic algorithms often have to be aborted
after the given time has been exhausted, which — of course — renders them
incomplete. This is particularly problematic for certain types of systematic
optimisation algorithms which search through spaces of partial solutions
without computing complete solutions early in the search (this is the case
for many dynamic programming algorithms); if such a systematic algorithm
is aborted prematurely, usually no solution candidate is available, while in
the same situation local search algorithms typically offer the best solution
found so far. Ideally, algorithms for real-time problems should be able to
deliver reasonably good solutions at any point during their execution. For
optimisation problems this typically means that run-time and solution qual-
ity should be positively correlated; for decision problems one could guess a
solution when a time-out occurs, where the accuracy of the guess should in-
crease with the run-time of the algorithm. This so-called any-time property
of algorithms is usually difficult to achieve, but in many situations the local
search paradigm is naturally suited for devising any-time algorithms.

As a matter of fact, systematic and local search algorithms are somewhat
complementary in their applications. A nice example for this can be found
in [74], where a fast local search algorithm is used for finding actual solu-
tions for planning problems the optimality of which is proven by means of a
systematic algorithm. As we will discuss later in more detail, different views
of the same problem may in certain cases call for local search algorithms,
particularly if reasonably good solutions are required within a short time
using parallel computation and the knowledge about the problem domain is
very limited. In other cases, usually if optimal solutions are required, time
constraints are less important and some knowledge about the problem do-
main can be exploited, systematic search will be the better choice. Finally,
there is some evidence that for certain problem classes, local and systematic
search methods are most effective on different subclasses of instances. Un-
fortunately, to date the general question of when to prefer local search over

30

systematic methods and vice versa, remains mainly open.

1.5 Stochastic Local Search

Many widely known and high performance local search algorithms make
use of randomised choices in generating or selecting candidate solutions
for a given combinatorial problem instance. These algorithms are called
stochastic local search (or SLS) algorithms, and they constitute one of the
most successful and widely used approaches for solving hard combinatorial
problems.

SLS algorithms have been used for many years in the context of combi-
natorial optimisation problems. Among the most prominent algorithms of
this kind we find the Lin-Kernighan algorithm [82] for the Traveling Sales-
person Problem, as well as general methods like Evolutionary Algorithms
[6], and Simulated Annealing [77] (these SLS methods will be presented
and discussed in Chapter 2). More recently, it has become evident that
stochastic local search algorithms can also be very successfully applied to
the solution of A/P-complete decision problems such as the Graph Colour-
ing Problem (GCP) [60, 97] or the Satisfiability Problem in propositional
logic (SAT) [134, 52, 133].

A General Definition of Stochastic Local Search

As outlined in the previous section, local search algorithms generally work
in the following way. For a given instance of a combinatorial problem,
the search for solutions takes place in the space of candidate solutions, also
called the search space. Note that the search space can include partial candi-
date solutions, as required in the context of constructive search algorithms.
The local search process is started by selecting an initial candidate solution,
and then proceeds by iteratively moving from one candidate solution to a
neighbouring candidate solution, where the decision on each search step is
based on a limited amount of local information only. In stochastic local
search algorithms, these decisions as well as the search initialisation can be
randomised. Formally, a stochastic local search algorithm can be defined in
the following way:

Definition 1.10 (Stochastic Local Search Algorithm)

1.5. STOCHASTIC LOCAL SEARCH

Given a (combinatorial) problem TI, a stochastic local search
algorithm for solving an arbitrary problem instance = € II is
defined by the following components:

e the search space S(r) of instance 7, which is a set of can-
didate solutions s € S (also called search positions, loca-
tions, configurations, or states);

e a set of (feasible) solutions S’(7) C S(7);

¢ aneighbourhood relation on S(w), N(w) C S(m) x S(7);

e an initialisation function init(r) : § — (S(r) — R)
which specifies a probability distribution over initial search
positions.

e a step function step(w) : S(w) — (S(w) — R) mapping
each position onto a probability distribution over its neigh-
bouring positions, for specifying the local search steps.

e atermination predicate terminate(r) : S(m) — ({T,L}
— R) mapping each position to a probability distribution
over truth values (T =true, L. = false), which indicates the
probability with which the search is to be terminated upon
reaching a specific point in the search space.

As an alternative to the initialisation and step functions, one can
also specify initialisation and step procedures that draw an ele-
ment from the probability distributions init(7)() and step()(s)
(for a given search position s). The same holds for the termina-
tion predicate. In the remainder of this book, we will use both
types of definitions interchangeably, where init(r), step(r, s),
and terminate(m, s) when used in algorithm outlines represent
the procedures realising the probabalistic selection from the
corresponding probability distributions.

Furthermore, it is often convenient to use N(s) = {s' € S |
N(s, s")} to denote the set of all points in .S which are direct
neighbours of a given candidate solution s € S; N(s) is also
called the neighbourhood set, or just the neighbourhood of s.
O

31

32

Remark: In this definition, all components depend on the
given problem instance 7. Therefore, these could be defined as
(higher-order) functions mapping the given problem instance
onto the corresponding search space, solution set, etc. While
this is a straightforward extension of the definition as given
above, for increased readability, we specify the components in-
stantiated for a given problem instance; furthermore, we will
typically omit the formal reference to the problem instance, by
writing S instead of S(7), etc.

It should be noted that although the mathematical models of the step
function and the termination predicate specify as their only parameters the
given problem instance and the current search position, many instantiations
of these in fact make use of various aspects of search history (such as the
number of steps since certain events occured) as well as, in the case of op-
timisation problems, of the objective function. Furthermore, termination
conditions often reflect bounded computational resources (e.g., CPU time)
and their choice is therefore more dependent on a specific application con-
text then an integral part of the respective SLS algorithm. In many of the
concrete SLS algorithms we present in this book, the choice of a termination
predicate will therefore not be discussed.?

Based on the components of the definition, the algorithmic outlines in
Figures 1.2 and 1.3 specify the semantics of stochastic local search algo-
rithms for the search variants of decision and optimisation problems, respec-
tively. The only major difference between the two versions is that for op-
timisation problems, the best candidate solution found so far, the so-called
incumbent solution, is being memorised and returned upon termination of
the algorithm (if it is a feasible solution). Furthermore, for decision prob-
lems, the termination condition is typically satisfied, if a solution is found,
i.e. s € S’. For the optimisation algorithm, however, finding a feasible so-
lution s € S is typically not a sufficient termination criterion; in fact, many
SLS algorithms for optimisation algorithms search through spaces contain-
ing feasible solutions only, i.e. S’ = S.

2However, issues such as (conditional) search restarts or switches between different
search phases, which can be seen aslosely related to termination conditions, will be covered
in depth later.

1.5. STOCHASTIC LOCAL SEARCH 33

procedure .S Decision
input problem instance 7 € 11
output solution s € S(r) or ()
§ := init(m)
while not terminate(r, s) do
s := step(m, s)
end
if s € §'(m) then
return s
else
return ()
end
end S.SDecision

Figure 1.2: General outline of a stochastic local search algo-
rithm for a decision problem II.

Example 1.3: A Simple SLS Algorithm for SAT

For a given problem instance, i.e., a CNF formula F', we define the search
space as Assign(F'), the set of all possible variable assignments of F'. Ob-
viously, the set of solutions is then given by the set of all models (sat-
isfying assignments) of F'. A frequently used neighbourhood relation is
the so-called ‘one-flip neighbourhood’, which defines two variable assign-
ments to be direct neighbours, if and only if they differ in the truth value
of exactly one variable, while agreeing on the assignment of the remain-
ing variables. Formally, this can be written in the following way: For all
a,a’ € Assign(F), N(a,a’) if and only if there exists v' € Var(F'), such that
Val,(v'") # Val,(v'") and for all v € Var(F') — {v} : Val,(v) = Valy (v).

As an initialisation function, let us consider an ‘uninformed” random
selection realised by a uniform distribution over the whole search space.
This initialisation function randomly selects any assignment of F' with equal
probability. Formally, it can be written as init(a) := 1/|S| = 1/2", where
a € S is an arbitrary variable assignment of F' and n is the number of vari-
ables appearing in F'. Analogously, we can define a step function to map

34

procedure S.SMinimisation
input problem instance 7’ € I, objective function f ()
output solution s € S(x’) or 0
s := init(7")
§:=s
while not terminate(w’, s) do
s := step(n’, s)
if f(n',s) < f(«',8) then
S:=3s
end
end
if $ € S'(n') then
return s
else
return ()
end
end SLS-Minimisation

Figure 1.3: General outline of a stochastic local search algo-
rithm for a minimisation problem IT" with objective function
f('); § is the best candidate solution found at any time during
the search so far (also called incumbent solution).

any variable assignment « to the uniform distribution over all its neighbour-
ing assignments. Formally, if A" = N(a) = {a' € S | N(a,d’)} is the
set of all assignments neighbouring to a, the step function can be defined as
step(a)(a’) :=1/]|A"].

This SLS algorithm is called uninformed random walk; as one might
imagine, it is quite ineffective, since it does not provide any mechanism for
steering the search towards solutions of the problem.

1.5. STOCHASTIC LOCAL SEARCH 35

2-opt .
op ./o\./ \\\\.

\

S .\./

Qv

\ o’//, \\\. \ o ---°
/ ./ ;

Figure 1.4: Schematic view of a single SLS step based on the standard 2-
exchange neighbourhood relation for the TSP.

Neighbourhoods and Neighbourhood Graphs

Generally, the choice of an appropriate neighbourhood relation is crucial
for the performance of an SLS algorithm and often, this choice needs to
be made in a problem specific way. Nevertheless, there are standard types
of neighbourhood relations which form the basis for many successful ap-
plications of stochastic local search. One of the most widely used types of
neighbourhood relations are the so-called k-exchange neighbourhoods, in
which two candidate solutions are neighbours if they differ in &£ solution
components. 3

The neighbourhood used in the simple SAT algorithm from Example 1.5
(as well as in most state-of-the-art SLS algorithms for SAT) is a 1-exchange
neighbourhood. For the TSP, one could define a k-exchange neighbourhood
such that from a given candidate round-trip, all its direct neighbours can be
reached by changing the positions of & vertices in the corresponding permu-
tation. However, this neighbourhood relation was found to be inferior to a
different type of k-exchange neighbourhood, where the edges of the given
graphs are viewed as the solution components and two candidate round-
trips are k-exchange neighbours, if and only if one can be obtained from
the other by removing k& edges and rewiring the resulting partial tours [120].
Figure 1.4 illustrates two tours which are neighbours under the 2-exchange
neighbourhood, a prominent and useful neighbourhood relation for the TSP.

3In the literature, k-exchange neighbourhoods are sometimes called k-opt neighbour-
hoods, since they form the basis for k-opt local search, a simple iterative improvement
algorithm, which will be discussed later in this section.

36

Search Strategies, Steps, and Trajectories

Typically, the first three components of our definition of an SLS algorithm,
the search space, solution set, and neighbourhood relation, depend very
much on the problem being solved. Together, these components provide
the basis for solving a given problem using stochastic local search. But
based on a given definition of a search space, solution set, and neighbour-
hood relation, a wide range of search strategies, specified by the defintion
of initialisation and step functions, can be applied. To some extent, such
search strategies can be independent from the underlying search space, so-
lution set, and neighbourhood, and consequently can be studied and pre-
sented separately from these. In this context, the following concepts are
often useful:

Definition 1.11 (Search Steps and Search Trajectories)

Let IT be a (combinatorial) problem, and let = € II be an arbi-
trary instance of I1. Given an SLS algorithm A for IT accord-
ing to Definition 1.5, a search step (also called move) is a pair
(s,s") € S x S of neighbouring search positions such that the
probability for A moving from s to s’ is greater than 0, i.e.,
N(s, s") and step(s)(s’) > 0.

A search trajectory is a finite sequence (s, s, . . . , i) of search
positions s; (i = 0,...,k) such that for all i € {1,...,k},
(si_1,s;) is asearch step. O

For the simple SLS algorithm for SAT introduced in Example 1.5, each
search step is an arbitrary pair of neighbouring variable assignments, and a
search trajectory is a sequence of variable assignments in which each pair
of successive elements are neighbouring; obviously such a trajectory cor-
responds to a sequence of search steps. In general, any search trajectory
corresponds to a path (also called “walk”) in the neighbourhood graph.

Uninformed SLS: Random Picking and Random Walk

The two (arguably) simplest SLS strategies are Uninformed Random Pick-
ing and Uninformed Random Walk. Both are based on an initialisation func-

1.5. STOCHASTIC LOCAL SEARCH 37

tion which returns the uniform distribution over the entire search space. SLS
algorithms based on this initialisation function randomly select any element
of the search space S with equal probability for starting the search.

For Uninformed Random Picking, a complete neighbourhood relation is
used, i.e.,, N = S x .S, and the step function maps each point in S to a uni-
form distribution over all its neighbours, i.e., every point in S. Effectively,
this strategy randomly samples the search space, drawing a new candidate
solution in every step.

Uninformed Random Walk uses the same initialisation function, but for
a given, arbitrary neighbourhood relation N C S x S its step function re-
turns the uniform distribution over the set of neighbours of the given can-
didate solution, which implements a uniform, random picking from that
neighbourhood in each step. Obviously, for the complete neighbourhood
relation, this coincides with Uniform Random Picking; for more restricted
neighbourhoods it leads to a strategy that slightly more resembles the intu-
itive notion of local search.

As one might imagine, both of these uninformed SLS strategies are quite
ineffective, since they do not provide any mechanism for steering the search
towards solutions. Nevertheless, as we will see later, in combination with
more directed search strategies, both Uninformed Random Picking and vari-
ants of Uninformed Random Walk play a role for preventing or overcoming
premature stagnation in complex and much more effective SLS algorithms.

Evaluation Functions

To improve on the simple uninformed SLS strategies discussed above, a
mechanism is needed to guide the search towards solutions. For a given
problem instance 7, this can be achieved using an evaluation function g(7) :
S(m) — R, which maps each search space position onto a real number in
such a way that the global optima correspond to the solutions. Typically,
this evaluation function is used for assessing or ranking candidates solutions
in the neighbourhood of the current search position. The efficacy of the
guidance thus provided depends on properties of the evaluation function
and its integration into the search mechanism being used. Typically, the
evaluation function is problem specific and its choice is to some degree
dependent on the search space, solution set, and neighbourhood underlying
the SLS approach under consideration.

38

In the case of SLS algorithms for combinatorial optimisation problems,
the objective function characterising the problem is often used as an eval-
uation function, such that the values of the evaluation function correspond
directly to the quantity to be optimised. However, sometimes different eval-
uation functions can provide more effective guidance towards high-quality
or optimal solutions. For example, this is the case for MAX-SAT, the op-
timisation variant of SAT which tries to maximise the number of satisfied
clauses, where by using a specific evaluation function different from the
number of clauses satisfied by a given assignment, local search algorithms
with better theoretical approximation guarantees can be obtained [76]. For
combinatorial decision problems, sometimes evaluation functions are natu-
rally suggested by the objective functions of optimisation variants, but often
there is more than one obvious choice of an evaluation function.

In the case of SLS algorithms for SAT, the following evaluation function
g is often used: Given a formula £ in CNF and an arbitrary variable assign-
ment a of F, g(F, a) is defined as the number of clauses of F' that are unsat-
isfied under a. Obviously, the models of £ correspond to the global minima
of ¢ and are characterised by g(F, a) = 0. It should be noted that this eval-
uation corresponds to the objective function of the unweighted MAX-SAT
problem, a natural generalisation of SAT which is covered in more detail in
Chapter 7.

Remark: In the literature, often no distinction is made be-
tween an objective function and an evaluation function. To min-
imise potential confusion between the definition of the problem
to be solved (which, in case of an optimisation problem, in-
cludes an objective function) and the definition of SLS algo-
rithms for solving this problem (which might make use of an
evaluation function different from the problem’s objective func-
tion), we systematically distinguish between the two concepts
in this book.

Generally, through the use of an evaluation function whose global optima
correspond to the (optimal) solutions, decision problems and optimisation
problems can be treated analogously. However, for a decision problem,
the result of the SLS algorithm is generally useless unless it is a global
optimum of the evaluation function and hence corresponds to a solution.

1.5. STOCHASTIC LOCAL SEARCH 39

For optimisation problems, suboptimal solutions (usually local minima) can
be useful on their own — in which case the respective evaluation function
should guide the algorithm to high-quality solutions as effectively as possi-
ble (which might complicate or conflict with providing effective guidance
towards optimal solutions).

Remark: In the literature, the evaluation function is often
treated as an integral part of the definition of an SLS algorithm.
Although it is technically possible to define SLS algorithms us-
ing the concept of an evaluation function instead of that of a step
function, the resulting definitions would capture the concept of
stochastic local search less naturally, and would lead to unnec-
essarily complex or imprecise representations of specific SLS
algorithms. These difficulties specifically arise for SLS algo-
rithms which use multiple or dynamically changing evaluation
functions (such techniques are prominent and successful in var-
ious domains). Using our definition, in many cases the concept
of an evaluation function still provides a useful and convenient
means for structuring the definition of step functions.

Iterative Improvement

One of the most basic SLS algorithms using an evaluation function is It-
erative Improvement. Given a search space S, solution set .S’, neighbour-
hood relation N, and evaluation function g, Iterative Improvement starts
from a randomly selected point in the search space, and then tries to im-
prove the current candidate solution w.r.t. g. The initialisation function is
typically the same as in Uninformed Random Picking, i.e., for arbitrary
s € S, init(s) := 1/|S|. Furthermore, if for a given candidate solution s,
I(s) is the set of all neighbouring candidate solutions s’ € N(s) for which
g(s') < g(s), then the step function can be formally defined as:

step(s)(s’) = { 1/11(s)] ifs" € 1(s)

0 otherwise

This SLS strategy is also known as iterative descent or hill-climbing, where
the latter name is motivated by the application of Iterative Improvement to
maximisation problems. It should be noted that in the case where for a

40

given candidate solution none of its neighbours corresponds to an improve-
ment w.r.t. the evalution function, step(s) is not well-defined. Intuitively,
one might imagine that if this case occurs, the search just terminates — an
obviously unsatisfying mechanism which we will revisit shortly.

Example 1.4: Iterative Improvement for SAT

Using the same definition for the search space, solution set, and neigh-
bourhood relation as in Example 1.5, we consider the evaluation function
g which maps each variable assignment a to the number of clauses of the
given formula F* which are unsatisfied under «. lterative Improvement then
starts the search at a randomly selected variable assignment (like Unin-
formed Random Walk, see Example 1.5), and in each step, it randomly
selects one of the assignments that leave less clauses unsatisfied than the
current candidate solution. Since according to the definition of the neigh-
bourhood relation, each search step corresponds to flipping the truth value
associated with one of the variables appearing in F', Iterative Improvement
can be seen as always doing such variable flips which increase the overall
number of satisfied clauses.

Local Minima

In our definition of Iterative Improvement, the step function was not defined
for candidate solutions which do not have any improving neighbours. A
candidate solution with this property corresponds to a local minimum of the
evaluation function g. Formally, this is captured in the following definition:

Definition 1.12 (Local Minimum, Strict Local Minimum)

Given a search space .S, a solution set S” C S, a neighbourhood
relation N C S x S, and an evaluation function g : S — R,
a local minimum is a candidate solution s € S such that for all
s'€ N(s): f(s) < f(s"). We call a local minimum s a strict
local minimum if for all s € N(s) : f(s) < f(s'). (Local
maxima and strict local maxima can be defined analogously.)
O

1.5. STOCHASTIC LOCAL SEARCH 41

Under this definition, solutions which correspond to global minima of the
evaluation function, are also considered local minima. Intuitively, local min-
ima, and even more so, strict local minima, are points in the search space,
where no search step can achieve an improvement w.r.t. the evaluation func-
tion. In cases where an SLS algorithm guided by an evaluation function
encounters a local minimum that does not correspond to a solution, this al-
gorithm can “get stuck”. This happens, e.g., when an Iterative Improvement
algorithm is defined in such a way that it terminates (or just stays at the same
candidate solution) when a local optimum is encountered.

In general, there are no (non-trivial) theoretical bounds on the solution
quality of local optima for general combinatorial optimisation problems.
Guarantees on the solution quality of local optima can only be given for
complete neighbourhood relations, in which case any local minimum is also
a global minimum. Yet, the size of such complete neighborhoods is expo-
nential w.r.t. instance size and therefore it cannot be searched reasonably
efficiently in practice. However, typical instances of combinatorial optimi-
sation problems can be empirically shown to have high quality local optima
which often can be found reasonably efficiently by high-performance SLS
algorithms.

Computational Complexity of Local Search

While empirically, local minima of basically any instance of a combina-
torial optimisation problem can be found reasonably fast, theoretically, in
most cases the number of steps needed by an iterative improvement algo-
rithm to find a local optimum cannot be bounded by a polynomial. However,
any local search algorithm should at the very least be able to execute indi-
vidual local search steps efficiently. This idea gives rise to the complexity
class PLS [73]. Intuitively, PLS is the class of problems for which a feasi-
ble local search algorithm exists, in which initial positions and search steps,
as well as the evaluation function values of search positions can always be
computed in polynomial time (w.r.t. instance size) on a deterministic ma-
chine. This means that local optimality can be verified efficiently or, in case
a solution is not locally optimal, a neighbouring solution of better qual-
ity can be generated in polynomial time. Note that this theoretical concept
does not include a statement on the number of local search steps required
for reaching a local optimum.

42

Analogously to the notion of NP-completeness, the class of PLS-
complete problems is defined in such a way that it captures the hardest
problems in PLS. If for any of these problems local optima can be found in
polynomial time, the same would hold for all problems in PLS. It is con-
jectured that the class of polynomial local search problems is a strict subset
of PLS and hence, in the worst case super-polynomial run-time may be re-
quired by any algorithm to find local minima of a PLS-complete problem.
The first well-known combinatorial optimisation problem that was shown
to be PLS-complete is graph-partitioning of weighted graphs under the
Kernighan-Lin neighbourhood [75]. In [111], PLS-completeness has also
been shown for the most efficient local search algorithm for the TSP, the
Lin-Kernighan heuristic [82]. Furthermore, for the TSP Iterative Improve-
ment using the k-exchange neighbourhood with sufficiently large &, has
been shown to be P LS-complete, while the question of PLS-completeness
when using 2- or 3-exchange neighbourhoods remains open [72].

Escape Strategies

In many cases, local minima are quite common (this will be further dis-
cussed and backed up by actual data in later chapters), and for optimisation
problems, they typically do not correspond to reasonably high-quality can-
didate solutions. Therefore, techniques are needed for avoiding or escaping
from local minima. In some sense, such techniques are one of the core
issues in SLS algorithm design, and a large number of such escape mech-
anisms have been proposed and evaluated in the literature. Many of these
are discussed in detail or mentioned in passing in the following chapters,
and specifically the next chapter introduces some of the most prominent
and successful techniques for dealing with the potential problem of getting
stuck in local minima. Therefore, we restrict the present discussion to two
very simple methods.

One simple way of modifying Iterative Improvement such that local
minima are dealt with more reasonably, is to simply start a new search when-
ever a local minimum is encountered. While this can work reasonably well
where the number of local minima is rather small, or restarting the algorithm
is not very costly (in terms of overhead cost for initialising data structures,
etc.), in many cases this technique is very ineffective. Alternatively, one can
relax the improvement criterion and, when a local minimum is encountered,

1.5. STOCHASTIC LOCAL SEARCH 43

randomly select one of the non-improving steps. This can be realised as a
uniform random selection among all neighbours of the current search po-
sition (which corresponds to an Uninformed Random Walk step), or it can
be done by randomly selecting one of the neighbours which give the lowest
increase in evaluation function value (this corresponds to a mildest ascent
step and is closely related to a variant of Iterative Improvement which will
be discussed in more detail in Chapter 2).

In either case, it cannot be guaranteed that the search algorithm effec-
tively escapes from arbitrary local minima, because the nature of a local
minimum can be such that after any such “escape step”, the only improving
step available leads directly back into the same local minimum. Further-
more, in the case of local minima which are not strict, best improvement es-
cape steps will lead to walks in regions of neighbouring candidate solutions
with identical evaluation function values, which are often called plateaus.
As we will see later, such plateaus can be very extensive, and it can be dif-
ficult to decide whether the search is stuck in a plateau that does not allow
any further improvement without an effective escape mechanism.

Intensification vs Diversification

As we will show in more detail in later chapters of this book, the strong
randomisation of local search algorithms, i.e., the utilisation of stochastic
choice as an integral part of the search process, can significantly increase
their performance and robustness. However, with this potential comes the
need to balance randomised and goal-directed components of the search
strategy, a trade-off which is often characterised as “diversification vs in-
tensification”. “Intensification” refers to a search strategy which aims to
greedily improve solution quality or the chances of finding a solution in the
immediate future by exploiting, for instance, the guidance given by the eval-
uation function. “Diversification” strategies try to prevent search stagnation
by making sure that the search process achieves a reasonable coverage when
exploring the search space, and does not get stuck in relatively confined re-
gions in which at some point no further progress can be made. In this sense,
Iterative Improvement is an intensification strategy, while Uninformed Ran-
dom Walk is a diversification strategy, and as we will see in the next chapter,
both strategies can be combined into an SLS approach called Iterative Im-
provement with Random Walk which typically shows improved performance

44

over both pure search methods.

A large variety of techniques for combining and balancing intensifica-
tion and diversification strategies have been proposed, and to some extent
these will be presented and discussed in the remainder of this book. While
the resulting SLS algorithms often perform very well in practice, typically
their behaviour is not well understood. The successful application of these
algorithms is often based on intuition and experience rather than on theo-
retically or empirically derived principles and insights, particularly when it
comes to the trade-off between diversification and intensification. While in
this context, problem specific knowledge is often (if not typically) crucial
for achieving peak performance and robustness, a solid understanding of the
SLS strategies and algorithms currently available, combined with detailed
knowledge of their properties and characteristics is at least of equal impor-
tance. The latter is especially relevant in cases where one of the reasons for
applying SLS algorithms is a lack of specfic knowledge about the problem
to be solved,; in this situation, where specialised algorithms are typically not
available, SLS algorithms are attractive because they often allow solving the
problem reasonably efficiently using fairly generic and easily implemented
techniques. More importantly, for many hard combinatorial problems, such
generic SLS techniques can also quite be naturally extended with or adapted
based on problem-specific knowledge as it becomes available. The spe-
cialised SLS algorithms thus obtained are often amongst the best-known
techniques for solving these problems, and specifically for large instances
of optimisation problems or under tight constraints on time and other com-
putational resources, in many cases represent the only known methods for
finding solutions in practice.

In the following chapters, we will introduce and discuss a broad range
of SLS algorithms, covering many state-of-the-art generic SLS techniques.
Our discussion will focus on underlying general properties and design prin-
ciples, such as the combination of search strategies and methods for bal-
ancing intensification and diversification aspects of search. Later, we will
show in detail how these general techniques are applied and adapted to spe-
cific combinatorial problems, yielding high-performing, state-of-the-art al-
gorithms for solving these problems.

1.6. FURTHER READINGS AND RELATED WORK 45

1.6 Further Readingsand Related Work

Due to the introductory nature of this chapter, there is a huge body of lit-
erature related to the concepts presented here. Introductions to combinato-
rial problems and search methods can be found in many modern or classic
textbooks on combinatorial optimization, Operations Research or Acrtificial
Intelligence (such as [2, 80, 107, 113, 116, 119, 117, 127], etc.); for de-
tails on heuristic search, see also [115]. For a slightly different definition
of combinatorial optimisation problems we refer to the classical text by Pa-
padimitriou and Steiglitz [113]. A detailed discussion of complexity the-
ory, N'P-completeness, and A/P-hard problems can be found in [37, 112]
or [121].

For a general reference to recent research on the Propositional Satis-
fiability Problem we refer to the book edited by van Maaren, Gent, and
Walsh [39] and to the overview article by Gu et al. [?]. For details and
a large number of variants of the TSP we refer to the now classical book
edited by Lawler et al. [81] or the monograph by Reinelt [120]. For a de-
tailed account of the state-of-the-art in TSP solving with SLS algorithms up
to 1997, the book chapter by Johnson and McGeoch [72] is the best ref-
erence; results of more recent variants are collected on the web pages for
the 8th DIMACS Challenge on the TSP. Regarding stochastic local search
methods for SAT, early studies are [134] and [52], while some of the better
performing algorithms are presented in [90]. For an overview and compar-
ison of the best performing SLS algorithms for SAT up to 2000 we refer to
[68].

1.7 Summary

This chapter started with a brief introduction to combinatorial problems
and distinguished between two main types of problems, decision and op-
timisation problems. We introduced the Propositional Satisfiability Prob-
lem (SAT) and the Travelling Salesman Problem (TSP) as two prototypical
combinatorial problems. Both problems are conceptually simple and easy
to state, which facilitates the design and analysis of algorithms. At the same
time, they are computationally hard and appear at the core of many real-
world applications; hence, these problems pose a constant challenge for the

46

development of new algorithmic techniques for solving hard combinatorial
problems. Many combinatorial problems, including SAT and TSP, are N'P-
hard; consequently, there is little hope for finding algorithms with better
than exponential worst-case behaviour. However, this does not imply that
all instances of these problems are intrinsically hard. Interesting or appli-
cation relevant subclasses of hard combinatorial problems can be efficiently
solvable. For example, for many optimisation problems, efficient approxi-
mation algorithms exist which can find good solutions reasonably efficient.
Additionally, stochastic algorithms can help in solving combinatorial prob-
lems more robustly and efficiently in practice.

In Section 1.4, we discussed various search paradigms and highlighted
their relations and properties. For example, we distinguished perturbative
local search methods which operate on fully instantiated candidate solu-
tions, and constructive search algorithms, which iteratively extend partial
candidate solutions. Constructive search algorithms can always be com-
bined with backtracking, leading to complete, systematic search methods
which are traditionally known as tree search or refinement search tech-
niques. Many local search algorithms have the advantage of being easily
applicable to a broad range of combinatorial problems, for many of which
they have been shown to be the most effective solution methods. Further-
more, they are typically rather easy to implement and often they have at-
tractive any-time properties. But these advantages come at a price. Local
search algorithms are typically incomplete and, particularly in the case of
stochastic local search methods, they are generally difficult to analyse — an
issue that will be addressed in more detail in Chapter 4.

Finally, in Section 1.5, we gave a general definition of stochastic lo-
cal search algorithms which covers both perturbative as well as constructive
methods within a unified framework. Based on this definition we introduced
and discussed a number of simple SLS algorithms such as Iterative Improve-
ment, which forms the basis of many of the more complex SLS techniques
presented in the next chapter.

1.8. EXERCISES 47

1.8 Exercises

Exercise 1.1 (Easy) Consider the following graph colouring problem: Given
agraph G = (V, E) with vertex set V" and edge relation E, the graph colour-
ing problem assign colours ¢y, ¢, . . ., ¢; to the vertices such that two ver-
tices which are connected by an edge in E are never assigned the same
colour. Show how this problem fits the definition of a combinatorial prob-
lem and state the different decision and optimisation variants as defined in
Section 1.1.

Exercise 1.2 (Hard) Consider the problem of finding a Hamiltonian cycle
in a given (undirected) graph. Is this Hamiltonian cycle problem A P-hard?
(Hint: Think about relations between this problem and the TSP.)

Exercise 1.3 (Hard) Consider the following argument. For Euclidean
TSPs, polynomial algorithms exist for arbitrary approximation ratios. Hence,
the associated decision problems can be solved in polynomial time for arbi-
trary solution quality bounds, which implies that the search variant is also
efficiently solvable. Why is this argument flawed? (Hint: Think carefully
about the nature of the solution quality bounds.)

Exercise 1.4 (Easy) Consider the following recursive algorithm for SAT:

procedure DP-SAT(F,A)
input propositional formula F, partial truth assignment A
output true or false

if A satisfies F' then
return true

end

if 3 unassigned variable in A then
randomly select variable = which is unassigned in A
A= Aextendedby z :=T
A" = Aextended by z := L

if DP-SAT (F,A’) = true or DP-SAT (F',A"”) = true then
return true

else
return false

48

end
end DP-SAT

Which search paradigm does this algorithm implement and which of the
properties discussed in Section 1.4 does it have?

Exercise 1.5 (Medium) Design a complete stochastic local search algo-
rithm for SAT (it can be very simple and naive) and show how it fits in
the formal definition from Section 1.5. Show also that your algorithm is
complete and discuss the practical impact of its completeness.

Exercise 1.6 (Medium) Consider the following, alternative definition of a
stochastic local search algorithm.

Given a (combinatorial) problem II, a stochastic local search
algorithm for solving an arbitrary problem instance = € II is
defined by the following components:

e a (directed) search graph G(7) = (V, E), where the ele-
ments V' are the candidate solutions of 7 and the arcs in
E connect any candidate solution to those candidate solu-
tions which can be reached in one search step;

e an evaluation function f, which assigns a numerical value
f=(s) to each candidate solution s and whose global max-
ima correspond to the (optimal) solutions of r;

e an initialisation procedure init(r), which determines a
candidate solution at which the search process is started;

e aiteration procedure iter(7), which for any candidate so-
lution s selects a candidate solutions s’ such that (s, s’) €
E;

e a termination function terminate(w) which for a given
candidate solution determines whether the search is to be
terminated (this function can make use of a random num-
ber generator and a limited amount of memory on earlier
events in the search process).

1.8. EXERCISES 49

Is this definition equivalent to the one given in Section 1.5 i.e., does it cover
the same class of algorithms? Discuss the differences between the defini-
tions and try to decide which one is better.

50

