Le seul véritable voyage,
ce ne serait pas d’aller
vers de nouveauxr paysages,
mais d’avoir d’autres yeuz.

(Marcel Proust, Novelist)

Generalised Local Search Machines

In this chapter, we introduce a novel formal framework for stochastic local search algo-
rithms, the Generalised Local Search Machines (GLSM) model. The underlying idea is
that adequate SLS algorithms are obtained by combining simple (pure) search strategies
using a control mechanism;in the GLSM framework, the control mechanism is essentially
realised by a non-deterministic finite state machine (FSM). This model provides a uniform
framework capable of representing most modern SLS algorithms in an adequate way; it
facilitates representations which clearly separate between search and search-control. As a
consequence, the GLSM model can be very useful in developing and testing new, hybrid
SLS algorithms. Furthermore, it offers analytical advantages, as well-known concepts from
FSM theory can be applied to analyse SLS algorithms and search control mechanisms.

Here, we will mainly concentrate on general aspects of the GLSM model, while concrete
GLSM realisations of SLS algorithms will be discussed in the following chapters. After a
short introduction to local search algorithms, we introduce the basic GLSM model and
define its semantics. Then, we establish the relation between the general scheme of local
search and the GLSM model. Next, we discuss several structural GLSM types, transition
types, and state types. Finally, we will address extensions of the basic GLSM model, such
as cooperative, evolutionary, and learning GLSMs. The chapter ends, as usual, with a
brief overview of related work and a conclusion summarising its main contents.

3.1 Local Search Algorithms

Generally, local search algorithms are working in the following way: After initialising the
search process at some point of the given problem instance’s search space, the search
iteratively moves from one position to a neighbouring position where the decision on each
step is based on information about the local neighbourhood only. Thus, the following
components are required to define a local search procedure for a problem class Il applied
to a given problem instance m € II:

51



52 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

e the search space S which is a set of positions s € S (also called locations or states);

a sel of solutions S" C S

e a neighbourhood relation N C S x S on 5

an initial distribution init : S +— R for selecting the initial search positions;

a step function step : S +— (S — R) mapping each position onto a probability
distribution over its neighbouring states, for specifying the local search steps.

Often, local search algorithms make use of an objective function f : S — R, mapping
each search space position onto a real number in such a way, that the global optima
correspond to the solutions. Without loss of generality, in this work we will always
assume that the solutions correspond to the global minima of the objective function.
This objective function can also be used to define the step function. For optimisation
problems, the values of the objective function usually correspond to the quantity which
is optimised. This way, in the context of local search, decision problems and optimisation
problems can be treated quite analogously; only for the former, the result of the local
search algorithm is generally useless if it is not a global minimum, while for optimisation
problems, suboptimal solutions (usually local minima) can be useful on their own.

Examples for local search algorithms are stochastic local hill-climbing [MJPL90, MJP1.92,
SL.M92], steepest descent, Simulated Annealing [KJV83], Tabu Search [Glo89, Glo90], it-
erated local search [MOF91, Joh90], Evolutionary Algorithms [Rec73, Sch81], and Ant
Colony Optimisation algorithms [DMC96]. These algorithms are applied to a variety
of hard combinatorial optimisation and decision problems, like Satisfiability in Proposi-
tional Logic (SAT), Constrained Satisfaction Problems (CSPs), the Traveling Salesperson
Problem (TSP), scheduling and planning problems, etc.

Note that for NP-complete problems like SAT or CSP, the search space is typically
exponentially larger than the problem size. However, for a problem like SAT, local search
algorithms are not restricted to operate on a search space defined by a set of candidate
solutions (i.e., assignments in the SAT case). It is also possible to use search spaces
consisting of a set of partial solutions (for SAT, partial assignments) which contain the
actual solution candidates as a subset. Also for SAT, local search methods need not
operate on assignments at all; instead, they could, for example, use the set of all resolution
proofs of a given formula as a search space and thus be used to solve the complementary

UNSAT or the equivalent VAL problem.

Modern local search algorithms are often a combination of several pure strategies, like
steepest descent and random walk, tabu search and random restart, or the search and
diversification phases in iterated local search. This suggests that these algorithms operate
on two levels: at a lower level, the pure search strategies are executed, while activation of
and transitions between different strategies is controlled at a higher search control level.
The GLSM model which we introduce in the following section is based on this distinction
between search strategies and search control.



3.2. THE BASIC GLSM MODEL 53

3.2 The Basic GLSM Model

Intuitively, a Generalised Local Search Machine (GLSM) for a given problem class 11 is
a finite state machine (FSM) each state of which corresponds to a simple local search
strategy for instances of 1I. The machine starts with an initial state zy and executes
one step of the local search method associated with the current state. Then, according
to a transition relation A, a new state is selected in a nondeterministic manner. This
is iterated until either (1) a solution for the given problem instance is found or (2) a
given maximal number ms of local search steps have been performed without satisfying
condition (1). Note, that in this model the machine has no final states. Although it would
be possible, and maybe more elegant from a theoretical point of view, to base the model
on the notion of absorbing final states, this requires the introduction of additional states
and transition types, which is avoided here for the sake of simplicity.

A GLSM is formally defined as a tuple M = (7, z0, A,07,0a,77z,7a) Where Z is a set of
states and zg € Z the initial state. A C 7 x Z is the transition relation for M; oz and
oa are sets of state types and transition types resp., while 7z : Z — 0z and 7o : A — op
associate the corresponding types to states and transitions. We call 7z(z) the type of state
z and 7a((21,22)) the type of transition (z1, z3), respectively. The number ms € N which
specifies an upper bound on the number of steps, i.e., state transitions, is not part of
this definition because it is considered rather a parameter controlling the execution time
behaviour than a structural aspect of the model.

It is useful to assume that oz, 0a do not contain any types which are not associated with
at least one state or transition of the given machine (i.e., 77, 7a are surjective). In this
case, we define the type of machine M by ma := (0z,0a). However, we allow for several
states of M having the same type (i.e., 7z need not be injective). Note, that we do not
require that each of the states in Z can be actually reached when beginning in state ; as
we will shortly see, it is generally not trivial to decide this reachability. Thus, however, by
adding unreachable states, the type of a given machine can be extended in an arbitrary
way such that for any two GLSMs M;, M,, one can always find functionally equivalent
models My, My of the same type (i.e., Tayy = Tazy ).

The semantics of a GLSM M are defined by specifying an interpretation for its state- and
transition types and then introducing a function 73, : N — D(S), where N denotes the
set of natural numbers and D(S) a distribution over the positions of search space S which
is underlying the local search strategies for the given problem instance. Note that in the
actual search process, there is only one position at each given instant. However, to capture
the non-determinism of the search process, we have to use distributions over positions
instead when formalising the semantics of a GLSM. Intuitively, 7};(n) determines the
distribution over search space positions of the overall local search process realised by M
at time n; it is therefore called the search trajectory of M.

Before giving a formal definition of the general semantics here, we demonstrate the spec-
ification and application of the GLSM concept by giving several examples. However, it
should be noted that the specific semantics of a given GLSM always depends on the given
problem class Il and the set of local search strategies which are used as interpretations of



54 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

PROBQn

PO :> ()

PROBQ@
Figure 3.1: 3-state GLSM

the state types in 0. For the sake of simplicity, we will assume here that different state
types are always interpreted by different local search strategies (i.e., the interpretation
function for state types is injective).

We will usually specify GLSMs by giving a graph representation for the finite state ma-
chine part (as it is commonly used in FSM theory) and additionaly labelling the states
and transitions with their resp. types. As long as the meaning is clear from the context,
we use the same symbol for denoting a state and its type. The initial state is marked by an
ingoing arrow without a source. This is demonstrated for a small example in Figure 3.1;
the corresponding machine is defined as

M = ({507 517 52}7 SO7A70-Z70-A77_Z77_A)
with

A= {(507 51)7 (Sh 52)7 (527 Sl)a (Sla 51)7 (527 S?)}
Oz = {50751752}

oa = {PROB(p)|p € R}
TZ(Si) = Sza NS {17273}
TA((Sl,SQ)) = PROB(p )
7a((52,51)) = PROB(ps)
TA((Sl, Sl)) = PROB(l - pl)
TA((SQ,SQ)) = PROB(l —pg)

The generic transition types PROB(p) correspond to unconditional, probabilistic tran-
sitions with an associated transition probability p. For simplicity’s sake, we omit the
transitions between a state and itself in the diagrammatic representation, using the de-
fault assumption, that whenever no other transition is selected, the next state is identical
to the current state.

Thus the semantics of this small example can be intuitively described in the following
manner: For a given problem instance m, the local search process is initialised by setting
the machine to its initial state Sy and executing one local search step corresponding
to state type So. With a probability of 1.0, the machine then switches to state 5,
executing one step of the local search strategy corresponding to state type S;. Now, with a
probability of p;, the machine switches to state 53, performing one local search step of type
Sy; otherwise it remains in 57 and does an Si-step. When in S5, an analogous behaviour
is observed; resulting in a local search process which repeatedly and nondeterministically
switches between S; and 95, steps. However, only once in each run of the machine, an Sy



3.3. GLSM SEMANTICS H)

step is performed, and that is at the very begin of the local search process. As described
above, the local search process terminates when either a solution for the given problem
instance is found or a given number ms of local search steps has been performed without
finding a solution. Note, that if a solution is found, the machine terminates in the state
in which the solution was discovered.

3.3 GLSM Semantics

To formally define the semantics of a GLSM as described above, we assume that the
semantics of each state type 7 are already defined in form of a trajectory 7, : S — D(5),
where S denotes the set of positions in the search space induced by the given problem
instance, and D(S) the set of distributions over S. Intuitively, 7, determines for each
position in the search space the resulting position after one 7-step has been performed.

We further need the functions 7z : S x Z + D(Z) which model the direct transitions
between states of the GLSM. These are defined on the basis of the transitions from a
given state s and their respective types.

The mz(s, z) are given by the specific transition types of 7((z,2'));
for 7((2i, 2z1)) = PROB(pi k), mz(s, z;) = D? with D?(zx) = p; .

Remark: To facilitate a concise formulation of the definitions, we often use the functional
form of discrete probability distributions; thus for D = {... (e, p),...}, D(e) is equal to
p and denotes the probability of event e.

The direct state transition functions w7 can be generalised into functions 7%, : D(S) x
D(Z) w D(Z), which map distributions of search space positions and GLSM states onto
GLSM state distributions.

"T/Z(DSaDZ) = D;
with D(2z) = Yseszez DY (21) - Ds(s) - D.(2)

where D! = my(s, z)

Based on the functions 7, and w7, we next define the direct search transition function
m S x Z — D(S) which determines for a given search space position and a state
distribution the search position distribution after one step of the GLSM.

m(sk,z) = DV

with D”(s;) = P(go from state z to z') - P(in state z' go from s, to s;).
P(go from state z to z') = D’(z)

where D! = m(sy, 2)

P(in state z' go from sy to s;) = D.(s;)

where D} = 7.1 (s%)



56 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

Again, this is generalised into the corresponding function ' : D(S) x D(Z) — D(S).

7r’(DS, DZ) =D
with D(ss) = Yaeseez D(se) - Dals) - Da(2)

where D = 7(s, z).

Finally, we inductively define the state and search position trajectories 7% : N — D(Z) and
7 : N+ D(S). The interlocked inductive definitions reflect the operation of a GLSM,
where in each step, the next search space position and the next state are determined
based on the current state and position. The initial search space position sq € S can be
arbitrarily chosen, since usually the state distribution determined in the first step does
not depend on sq.

7* and 7} are defined inductively by:
m(0) = Do with Do(so) = 1,Vs € S —{so} : Do(s) =0
m(t+1) =a'(x7(1), 75(1))

m7(0) = 2o
Tyt + 1) = ay(r(l), 75(1))

Remark: To keep the definitions simple and concise, we did not consider the termina-
tion condition here (¢f. Section 3.2); however, this can be easily incorporated into the
semantics of the individual search states.

Actual GLSM trajectories

Based on the semantics defined above, it is quite simple to define the notion of an actual
search trajectory 6* : N — S which determines a sequence of search space positions
visited by a given GLSM when actually being executed. Note, that due to the inherent
non-determinism of GLSMs, generally each actual search trajectory will only be observed
with a certain probability. To formally define §*, we use a function draw(D) which for
each probability distribution D, randomly selects an element ¢’ from its domain such
that P(draw(D) = €') = D(¢€'). Based on this, we define functions § : S x Z — S and
07+ S x Z + Z which for each given position and state, randomly determine the position
and state after one step of the GLSM:

§(s,z) = draw(n'(s, 2))
ds(s, z) = draw(nly(s, 2))

Assuming that the given GLSM is started in state zp and at search position sy, we now
define the actual position and state trajectory by another double induction:



3.4. GLSMS AND LOCAL SEARCH 57

0* : N+ S and 0% : N+— 7 are defined inductively by:
5*(0) = Sp
§*(t+1) = 0(67(t),0%(1))

85(0) = zo
05 (t+1) =dz(67(1), 0%(t))

Note the similarity between these definitions and the ones for 7* and 77; the only differ-
ence is in the use of the draw function to randomly select elements from the underlying
probability distributions.

3.4 GLSMs and Local Search

The GLSM model has been introduced to provide a generalisation of the standard local
search scheme presented in Section 3.1. Each GLSM, however, still realises a local search
scheme and can therefore be described using the components of such a scheme. The
notions of search space and solution set are not part of the model. This is mainly because
both are not only problem- but actually instance-specific, they thus form the environment
in which a given GLSM operates. Consequently, to characterise the behaviour of a GLSM
when applied to a given instance, both the machine definition and this environment are
required. The initial distribution is also not an explicit part of the GLSM model. The
reason for this is the fact that the initial state, which is part of the model, can be easily
used to generate arbitrary initial distributions of search space positions. The general local
search scheme’s step function is what is actually realised by the states of the GLSM and
the finite control mechanism as given by the state transition relation.

The remaining component of the general local search scheme, the neighbourhood relation,
generally does not have a direct representation in the GLSM model. This is because for
a GLSM, each state type can be based on a different neighbourhood relation. However,
for each GLSM as a whole, a neighbourhood relation can be defined by constructing a
generalised relation which contains the neighbourhood relation for each state type as a
special case.

Taking a slightly different point of view, each GLSM state represents a local search algo-
rithm of its own. While all these share one search space and solution set, they generally
differ in their neighbourhood relations and step functions. In this case, however, ini-
tial distributions for the individual local search algorithms are not needed since they are
defined by the context in which a GLSM state is activated.

3.5 Machine Types

One of the major advantages of using the GLSM model for characterising hybrid local
search schemes is the clear distinction between search control and the actual search strate-



58 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

OO

Figure 3.2: Sequential (left) and alternating (right) 1-state+init GLSM.

oo Gl
® ® @\@

Figure 3.3: Sequential (left) and alternating (right) 2-state+init GLSM.

gies thus facilitated. Abstracting from state and transition types, and thus concentrating
on the structure of the search control mechanism alone, GLSMs can be categorised into
the following structural classes:

1-state machines This is the minimal form of a GLSM. Since initialisation of the local
search process has to be realised using a GLSM state, 1-state machines realise a very
basic form of local search which basically only picks search space positions without doing
actual local search. Consequently, the practical relevance of this machine type is extremely
limited. It can, however, be used for analytical purposes, e.g. as a reference model when
evaluating other types of GLSMs.

1-state4init machines These machines have one state for search initialisation and one
working state, realising the search strategy. There are two sub-types of these machines:
1-state+init sequential machines visit the initialisation state only once, while alternating
machines might visit it again in the course of the search process, causing re-initialisations.
As we will see in Chapter 4, most of today’s popular SLS algorithms for SAT can be
modelled by machines of this type.

2-state+init sequential machines This machine type has three states, one of which is
an init state that is only visited once while the other two are working states. However,
once the machine has switched from the first of these to the second, it will never switch
back to the former again. Thus, each trajectory of such a machine can be partitioned into
three phases: one initialisation step, a number of steps in the first working state and a
number of steps in the second working state.

2-state+init alternating machines Like the 2-state+init sequential machine, this ma-
chine type has one initialisation state and two working states. Here, however, arbitrary
transitions between all states are possible. An interesting sub-type of these machines is
given by the special case in which the initial state is only visited once, while the machine
might arbitrarily switch between the two working states. Another sub-type that might
be distinguished is a uni-directional cyclic machine model which allows the three states



3.5. MACHINE TYPES 59

Figure 3.5: Uni-directional (left) and bi-directional (right) cyclic k-state+init GLSM.

to be visited only in one fixed order.

Of course, the categorisation can be easily continued in this manner by successively in-
creasing the number of working states. However, as we will later see, to describe state-
of-the-art stochastic local search algorithms, usually three-state-machines are sufficient.
We therefore conclude this categorisation with a brief look at two potentially interesting
cases of the k-state+init machine types:

k-state+init sequential machines As a straightforward generalisation of the sequential
2-state+init machines, in this machine type we have k& + 1 states which are visited in a
linear order. Consequently, after a machine state has been left, it will never be visited
again.

k-state+init alternating machines These machines allow arbitrary transitions be-
tween the k& + 1 states and may therefore re-initialise the search process and switch be-
tween strategies as often as desired. Some special cases worth noting are the uni- and
bi-directional cyclic machine models which allow to switch between states in a cyclic man-
ner. In the former case, the cyclic structure can be traversed only in one direction, in the
latter case the machine can switch from any state to both its neighbouring states.

This categorisation of machines according to their structure is useful for characterising the
structural aspects of the search control as realised by the GLSM model. Of course, this
is a very high-level view of GLSMs which can be refined in many ways, but nevertheless
in the context of this work it will prove to be useful for capturing some fundamental
differences between various stochastic local search schemes.



60 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

3.6 Transition Types

In refining the structural view of GLSMs given above, we next focus on transition types.
As mentioned before, properties of the transition types are used as a basis for defining
GLSM semantics. Here, we will introduce transition types in terms of a hierarchy of
increasingly complex (or expressive) types and define the semantics in terms of the state
transition functions m, for each transition type.

Unconditional deterministic transitions, DET

This is the most basic transition type; DET transitions from state z; to state zp cause,
when the GLSM is in state z;, always an immediate transition into state z;. Formally,
if 7((z;,2x)) = DET, this behaviour is captured by mz(s,z;) = D? with D”(z;) = 1 for
arbitrary s € S. Note that because D” is a probability distribution, the above condition
implies DY(z) = 0 for all states z # z.

The use of this transition type is fairly limited, because it causes a state with such
a transition as its source to be left immediately after being entered. This obviously
implies that for each state there can be only one transition leaving it. Consequently,
using exclusively DET transitions, one can only realise a very limited class of GLSM
structures. However, at least for the transition leaving the initial state, DET transitions
are frequently used in practically occurring GLSMs.

Unconditional probabilistic transitions, PROB(p)

A PROB(p) transition from the actual state is executed with probability p. Thus, DET
transitions are actually equivalent to a special case of this transition type, namely to
PROB(1). For the moment, we can therefore assume without loss of generality that all
transition types in a given GLSM are of type PROB. To define the semantics of this
transition type, we consider an arbitrary GLSM state z; and assume that the set of
transitions leaving z; is given as {t1,...,¢,}. If further 7(¢;) = PROB(p;), we can define
the semantics of PROB transitions by mz(s,2;) = D? with DY(z;) = p’ for arbitrary
s € S where p' is given by 7((z;, zx)) = PROB(p’). Note that to guarantee that D” is a
probability distribution, and 3>7%_; p; must be equal to one.

Note that by using PROB(0) transitions we can restrict ourselves to fully connected
GLSMs, where for each pair of states (z;, zx), a transition of type PROB(p;z) is defined.
This allows a more uniform representation of this class of GLSMs which in turn will
facilitate both theoretical investigations and practical implementations of this GLSM
type. Furthermore, the behaviour of these GLLSMs can be easily modelled using Markov
processes [(in75], which facilitates their analysis, as well-known techniques for studying
Markov processes can be directly applied.



3.6. TRANSITION TYPES 61

_|

always true
tcount(k

mcount(k
[mi

obf(z

- impr(k

total number of local search steps > k

total number of local search steps modulo k£ =0

current local search position is local minimum w.r.t. its direct neighbours
current objective function value < z

D S S

et N’

objective function value could not be improved within last k& steps

Table 3.1: Some examples for simple condition predicates.

Conditional probabilistic transitions, CPROP(C, p)

While until now we have focused on transitions the execution of which only depends
on the actual state, the next generalisation from PROB(p) introduces context depen-
dent transitions. A CPROP(C,p) transition from state z; to state zj is executed with
a probability proportional to p only when a condition predicate C' is satisfied. If C' is
not satisfied, all transitions CPROP(C, p) from the current state are blocked, i.e., they
cannot be executed. For practical reasons, the condition predicates C' will depend on
local information only; this includes information on the current search space position, its
immediate neighbourhood, the number of local search steps performed up to this point,
and, possibly, some simple statistics on these. We will see later some predicates which can
be practically used. Generally, the crucial condition restricting the choice of condition
predicates C' is that these have to be efficiently computable (when compared to the cost
for executing local search steps).

Obviously, PROB(p) transitions are equivalent to CPROB(T, p) conditional probabilistic
transitions, where T is the predicate which is always true. Without loss of generality, we
can therefore assume that for a given GLSM all transitions are of type CPROB(C, p). To
define the semantics of this transition type we consider the actual GLSM state z;. As z; 1s
the actual state, we have all the local information to decide the condition predicates of all
transitions leaving z;. Since in this situation only a non-blocked transition can be executed,
i.e., a transition for which C is satisfied and therefore equivalend to T in the given
situation, we can now define the semantics like in the case of PROB(p) transitions. To this
end, we assume that the set of non-blocked transitions leaving z; is given as {t1,...,1,},
and for 7(t;) = CPROB(C},p;), C; currently satisfied, we define mz(s,z) = D? with
D(z) = p'/c for arbitrary s € S where p’ is given by 7((zi,2x)) = CPROB(C’,p’) and

c=3_"_; pj is the normalisation factor which ensures that D is a probability distribution.

An important special case of conditional transitions are conditional deterministic transi-
tions. These occur, if for a given GLSM state z;, from all the transitions leaving it at most
one transition is not blocked. One way to obtain deterministic GLSMs using conditional
transitions is to make sure that by their logical structure, the condition predicates for
the transitions leaving each state are mutually exclusive (or non-overlapping). Generally,
depending on the nature of the condition predicates used, the decision whether a condi-
tional transition is deterministic or not can be very difficult. For the same reasons it can
be difficult to decide for a given GLSM with conditional probabilistic transitions, whether
a particular state is reachable from the initial state.



62 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

For practically using GLSMs with conditional transitions it is important to make sure
that the condition predicates can be evaluated in a sufficiently efficient way. There are
two kinds of condition predicates, the first of which is based on the search space position
and/or its local neighbourhood. The other, however, is based on search control aspects
alone, like the time that has been spent in the current GLSM state, or the overall run-
time. Of course, these two kinds of conditions can also be mixed. Some concrete examples
for condition predicates can be seen in Table 3.1. Note that all these predicates are based
on only local information and can thus be efficiently evaluated during the search.

Usually, for each condition predicate, a positive as well as a negative (negated) form
will be defined. Using propositional connectives like “A” or “V”, these simple predicates
can be combined into complex predicates. However, it is not difficult to see that every
GLSM using complex condition predicates can be reduced to an equivalent GLSM using
only simple predicates by introducing additional states and/or transitions. Thus, using
complex condition predicates can generally be avoided without restricting the expressive
power of the model.

Transition actions

After discussing a hierarchy of increasingly general transition types, we now introduce
another conceptual element into the context of transitions: transition actions. Transition
actions are associated with the individual transitions and are executed whenever the
GLSM executes the corresponding transition. At this point, the motivation for adding
this notion to the GLSM model might not be obvious. However, as we will see, there are
some situations in which transition actions provide an adequate method of modelling SIS
algorithms. One such case is the manipulation of global search parameters, like adapting
the length of a tabu-list or a noise parameter.

Generally, transition actions can be added to each of the transition types defined above,
while the semantics of the transition (in terms of my) is not affected. If T"is a transition
type, by T : A we denote the same transition type with associated action A. The nature
of the actions A has to be such that they neither directly affect the state of the GLSM,
nor its search space position. Instead, the actions generally can be used for

e modifying global parameters of one or more state types,
e realisation of input / output functionality in actual GLSM realisations,

e communication between GLSMs in cooperative GLSM models.

By introducing an action NOP without any effects we obtain uniform GLSMs in which
all transitions have associated actions. Note, however, that we do not need multiple
actions (i.e., sequences or sets of actions which are associated with the same transition),
because by introducing copies of a transition’s destination state the (intuitive) semantics
of multiple actions can be emulated.



3.7. STATE TYPES 63

From a minimalist point of view, of course, even simple transition actions are not strictly
required because they, too, can be emulated by embedding the corresponding actions into
the search strategies associated with the GLSM states. This, however, means to mix
conceptually different notions, namely the local search strategies and the actions which
are rather part of the search control mechanism that is represented by the modified finite
state machines underlying the GLSM model. Because here our main motivation is to
devise an adequate representation of SLS algorithms, if the notion of transition actions
occurs naturally, we prefer to rather model them explicitly in the way outlined above.

3.7 State Types

At this point, the only component for specifying concrete GLSMs which is still missing
are state types. As outlined above, for formally specifying the semantics of a GLSM,
the semantics of the individual state types are required to be specified in the form of
a trajectory m, : S — D(S). For practical purposes, however, state types will usually
be rather defined in a procedural way, usually by using some form of pseudo-code. In
some cases, more adequate descriptions of complex state types can be obtained by using
other formalisms, such as decision trees. Concrete examples for various state types will
be give in Chapter 4, where we show how existing local search algorithms for SAT can be
represented as GLSMs.

Here, we want to concentrate on some fundamental distinctions between certain state
types. One of these concerns the role of the state within the general local search scheme
presented in Section 3.1. Since we are modelling the search initialisation and local search
steps using the same mechanism, namely GLSM states, there is a distinction between
initialisation states and search step states. An initialisation state is usually different from
a search step state in that it is left after one corresponding step has been performed.
Also, while search step states correspond to moves in a restricted local neigbourhood (like
flipping one variable in SAT), one initialisation step can lead to arbitrary search space
positions (like a randomly chosen assignment of all variables of a SAT instance). Formally,
we define an initialising state type as a state type 7, for which the local search position
after one 7-step is independent of the local search position before the step; the states of
an initialising type 7 are called initialising states. Generally, each GLSM will have at
least one initialising state, which is also its initial state. A GLSM can, however, have
more than one initialising state and use these states for dynamically restarting the local
search process.

If for a given problem there is a natural common neighbourhood relation for local search,
we can also distinguish single-step states from multi-step states. For the SAT problem,
most local search algorithms use a neighbourhood relation where two variable assignments
are direct neighbours if they differ in exactly one variable’s value. In this context, a single-
step state would flip one variable’s value in each step, whereas a multi-step state could
flip several variables per local search step. Consequently, initialising states are an extreme
case of multi-step states, since they can affect all variable’s values at the same time.



64 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

3.8 Extensions of the Basic GLSM Model

In this section we discuss various extensions of the basic GLSM model. One of the
strengths of the GLSM model lies in the fact that these extensions arise quite naturally
and can be easily realised within the basic framework. However, in the context of this
work none of the extensions proposed here has been studied in detail, with the exception
of the homogeneous cooperative model discussed later in this section. The main reason for
this lies in the fact that in the context of SAT and CSP, the existing state-of-the-art SLS
algorithms are conceptually fairly simple but nevertheless very powerful. Consequently, as
we will see later, improvements of these algorithms can be achieved using simple GLSM
techniques, but this requires a rather detailed understanding of their behaviour. The
extensions as outlined in the following are of a more complex nature, but at the same
time can be applied to all domains for which local search techniques are available.

Learning via dynamic transition probabilities

One of the features of the basic GLSM model with probabilistic transitions is the fact
that the transition probabilities are static, i.e., they are fixed when designing the GLSM.
An obvious generalisation, along the lines of learning automata theory [NT89], is to let
the transition probabilities evolve over time as the GLSM is running. The search control
in this model corresponds to a variable structure learning automaton. The environment
such a dynamic GLSM is operating in, is given by the objective function induced by
an individual problem instance or a class of objective functions induced by a class of
instances. In the first case (single-instance learning), the idea is to optimise the control
strategy on one instance during the local search process. The second case (multi-instance
learning), is based on the assumption that for a given problem domain (or sub-domain),
all instances share certain features to which the search control strategy can be adapted.

The modification of the transition probabilities can either be realised by an external
mechanism (external adaption control), or within the GLSM framework by means of
specialised transition actions (internal adaption control). In both cases, suitable criteria
for transition probability updates have to be developed. Two classes of such criterias
are those based on trajectory information, and those based on GLSM statistics. The
latter category includes state occupancies and transition frequencies, while the former
comprises primarily basic descriptive statistics of the objective function value along the
search trajectory, possibly in conjunction with discounting of past observations. The
approach as outlined here captures only a specific form of parameter learning for a given
parameterised class of GLSMs. Conceptually this can be further extended to allow for
dynamic changes of transition types (which is equivalent to parameter learning for a more
general transition model, such as conditional probabilistic transitions).

Concepts and methods from learning automata theory can be used for analysing and
characterising dynamic GL.SMs; basic properties, such as expedience or optimality can
be easily defined. We conjecture, however, that theoretically proving such properties will
be extremely difficult, as the theoretical analysis of standard SLS behaviour is already



3.8. EXTENSIONS OF THE BASIC GLSM MODEL 65

very complex and limited in its results. Nevertheless, we believe that based on empirical
methodology, it should be possible to devise and analyse dynamic GLSMs.

Cooperative GLSM models

Another line of extending the basic GLSM model is to apply several GLSMs simulta-
neously to the same problem instance. In the simplest case, such an ensemble consists
of a number of identical GLSMs and there is no communication between the individual
machines. We call this the homogenous cooperative GLSM model without communication;
its semantics are conceptually equivalent to executing multiple independent tries of an
individual GLSM. In Chapter 5 we will use this scheme in the context of efficiently par-
allelising SLS algorithms for SAT. It is particularly attractive for parallelisation, because
it is very easy to implement, involves virtually no communications overhead, and can be
almost arbitrarily scaled.

The restrictions of this model can be relaxed in two directions. One is to allow ensembles
of different GLSMs. This heterogeneous cooperative GLSM model without communication
is particularly useful for modelling robust combinations of various SLS algorithms, each
of which shows superior performance on certain types of instances, when the features of
the given problem instances are not known a priori. This approach has been recently
studied in the context of complete algorithms for hard combinatorial problems [GS97al;
in this context the heterogenous ensembles were called algorithm portfolios. Generally,
this cooperative model has almost the same advantages as its homogeneous variant; it is
easy to implement and almost free of communication overhead.

Another generalisation is to allow communication between the individual GLSMs of a co-
operative model. This communication can be easily realised by means of transition actions
(e.g., send and receive); possible communication schemes include using a blackboard,
synchronous broadcasting, and one-to-one message passing in a fixed network topology.
These different variants of cooperative GLSMs with communication are more difficult to
design and to realise, since issues like preventing and detecting deadlocks and starvation
situations generally have to be considered. Furthermore, the communication between in-
dividual GLSMs usually involves a certain amount of overhead. This overhead has to be
amortised by the performance gains which can be achieved by using this model in a given
application situation. These gains may be realised in terms of speedup when applied to a
specific problem class, but also in terms of increased robustness w.r.t. different problem

types.

Generally, one way of using communication to improve the performance of cooperative
GLSMs is to propagate search space positions with low objective function values (or other
attractive properties) within the ensemble such that individual GLSMs which detect that
they are not doing particularly well can pick up these “hints” and restart their local
search from there. This can be easily realised as a homogeneous cooperative GLSM with
communication. In such a model, the search effort will be more focussed on exploring
promising parts of the search space than in a cooperative model without communication.
Another general scheme uses two types of GLSMs, analysts and solvers. Analysts do not



66 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

attempt to find solutions but rather try to analyse features of the search space. The
solvers try to use this information to improve their search strategy. This architecture is
an instance of the heterogeneous cooperative GLSM model with communication. It can
be extended in a straightforward way to allow for different types of analysts and solvers,
or several independent sub-ensembles of analysts and solvers.

Evolutionary GLSM models

From the cooperative GLSM models discussed in the previous section it is only a short
step to evolutionary GLSMs. These are cooperative models where the number or type
of the individual GLSMs may vary over time; these population dynamics can be inter-
preted as another form of learning. As for the learning GLSMs described earlier, we can
distinguish between single-instance and multi-instance learning and base the dynamic
adaption process on similar criteria. In the conceptually simplest case, the evolutionary
process only affects the composition of the cooperative ensemble: machines which are
doing well will spawn off numerous offspring replacing individuals showing inferior perfor-
mance. This mechanism can be applied to both, homogeneous and heterogeneous models
for single-instance learning. In the former case, the selection is based on the trajctory
information of the individual machines and achieves a similar effect as described above
for the homogeneous cooperative GLSM with communication: The search is concentrated
on exploring promising parts of the search space. When applied to heterogeneous models,
this scheme allows to realise self-optimising algorithm portfolios, which can be useful for
single-instance as well as multi-instance learning.

This scheme can be further extended by introducing mutation, and possibly cross-over
operators. It is also possible to combine evolutionary and indivual learning by evolving
ensembles of learning GLSMs. And finally, these models can also allow communication
within the ensemble. Thus, combining different extensions we arive at very complex
and potentially powerful GLSM models; while these are very expressive, in general they
will also be extremely difficult to analyse. Nevertheless, their implementation is quite
simple and straightforward and an empirical approach for analysing and optimising their
behaviour seems viable enough. We expect that such complex models, which allow for
a very flexible and fine-grained search control, will be most effective when applied to
problem classes which contain a lot of structural features. There is little doubt that, to
some extent, this is the case for most real-world problem domains.

Continuous GLSM models

The basic GLSM model and all extensions thereof discussed until here model local search
algorithms for solving discrete decision or optimisation problems. But of course, the model
can easily be applied to continuous problems; the only changes required are to use contin-
uous local search strategies for the GLSM state types instead of discrete ones. Although
our experience and expertise is mainly limited to discrete combinatorial problems, we
assume that the GLSM model’s main feature, the clear distinction between simple search



3.9. RELATED WORK 67

strategies and search-control, is also a useful architectural and conceptual principle for
continuous optimisation algorithms.

3.9 Related Work

The main idea underlying the GLSM model, namely to realise adequate algorithms as
a combination of several simple strategies, seems to be common lore. However, our ap-
plication of this general metaphor to local search algorithms for combinatorial decision
and optimisation problems using suitably extended finite state machines for search con-
trol, is to our best knowledge novel and original. The GLSM model is partly inspired
by Amir Pnueli’s work on hybrid systems [MMP92] and Thomas Henzinger’s work on
hybrid automata; the latter uses finite state machines to model systems with continuous
and discrete components and dynamics [ACHH93, Hen96] and is therefore conceptually
related to the GLSM model.

The GLSM definition and semantics are heavily based on well-known concepts from au-
tomata theory (for a general references, ¢f. [Har78, RS97]). However, when using condi-
tional transitions or transition actions, the GLSM model extends the conventional model
of a finite state machine. In its most general form, the GLSM model bears close resem-
blance to a restricted form of Petri nets [Kri89], where only one token is used. Of course,
the same type of search control mechanism could be represented using formal systems
other than a FSM-based formalism. First of all, other types of automata, such as push-
down automata or Turing machines could be considered. However, we feel that the FSM
model, one of the simplest types of automata, is powerful enough for representing most
interesting search-control strategies we found in the local search literature. Furthermore,
it is our impression that it leaves enough room for extension, while being analytically
more tractable than more complex automata models. Finally, FSMs offer the potential
advantage of being implementable in hardware in a rather straightforward way, which
might be interesting in the context of applying local search algorithms to time-critical
problems (¢f. [HM97]). Summarising these arguments, the use of FSMs for formalising
the search-control mechanism seems to be sufficient and adequate. Of course, formalisms
equivalent to the FSM model, such as rule-based descriptions, could be chosen instead.
While this could be easily done and might be advantageous in certain contexts (such as
reasoning about properties of a given GLSM), we find that the automaton model provides
a slightly more intuitive and easier-to-handle framework for designing and implementing
local search algorithms, the nature of which is mainly procedural.

The GLSM model allows to adequately represent existing algorithmic frameworks for
local search, such as GenSAT [GW93a] or iterated local search [MOF91, Joh90]. These
frameworks are generally more specific and more detailed than the GLSM model; however,
they can be easily realised as generic GLSMs without losing any detail of description. This
is done by using structured generic state types to capture the more specific aspects of
the framework to be modelled. The same technique will be used in Chapter 4 to model
modern SLS algorithms for SAT, such as WalkSAT or R-Novelty. In these cases, the

structure of the simple search strategies can be represented by decision trees which are



68 CHAPTER 3. GENERALISED LOCAL SEARCH MACHINES

associated with the state types. While the GLSM model can be used to represent any local
search algorithm, many of these do not really make use of the search control mechanism
it provides. Note, however, that some of the most successful local search algorithms for
various problem classes (such as R-Novelty for SAT [MSK97], HRTS for MaxSAT [BP96],
and iterated local search schemes for TSP [MOF91, Joh90, JM97]) rely on search control

mechanisms of the type provided by the GLSM model.

The various extensions of the basic model discussed in this chapter are closely related to
established work on learning automata [NT89], parallel algorithm architectures [J4j92],
and Evolutionary Algorithms [B&c94]. While most of the proposed extensions have not
been implemented and empirically evaluated so far, they appear to be promising, espe-
cially when taking into account our results on homogeneous cooperative GLSM models
reported in Chapter 5 and recent work on multiple independent tries parallelisation

[Sho93, GSK98], algorithm portfolios [GS97a], and learning local search approaches for
solving hard combinatorial problems [BM98, Min96].

3.10 Conclusions

Based on the intuition that adequate local search algorithms are usually obtained by com-
bining several simple search strategies, in this chapter we introduced and discussed the
GLSM model. This framework formalises the search control using a finite state machine
(FSM) model, which associates the pure search strategies with the FSM states. FSMs
belong to the most basic and yet fruitful concepts in computer science; using them to
model local search control offers a number of advantages. First, FSM-based models are
conceptually simple; consequently, they can be implemented easily and efficiently. At the
same time, the formalism is expressive enough to allow for the adequate representation
of a broad range of modern local search algorithms (this will be exemplified in Chap-
ter 4, where GLSM-realisations of several state-of-the-art SLS algorithms for SAT are
given). Secondly, there is a huge body of work on FSMs; many results and techniques can
be directly applied to GLSMs which is especially interesting in the context of analysing
and optimising GLSMs. And finally, in our experience, the GLSM model facilitates the
development and design of new, hybrid local search algorithms. In this context, both
conceptual and implementational aspects play a role: due to the conceptual simplicity
of the GLSM model and its clear representational distinction between search strategies
and search control, hybrid combinations of existing local search algorithms can be easily
formalised and explored. Using a generic GLSM simulator, which is not difficult to im-
plement, new hybrid GLSM algorithms can be realised and evaluated in a very efficient
way.

As we have shown, based on a clean and simple definition of a GLSM, the semantics of
the model can be formalised in a rather straightforward way. We then discussed the tight
relation between the GLSM model and a standard generic local search scheme. By cate-
gorising GLSM types according to their structure and transition types, we demonstrated
how the general model facilitates the systematic study of search control mechanisms.
Finally, we pointed out several directions into which the basic GLSM model can be ex-



3.10. CONCLUSIONS 69

tended. Most of these are very natural generalisations, such as continous or cooperative
GLSMs; however, these proposed extensions demonstrate the scope of the general idea
and suggest numerous routes for further research.

In the context of this work, GLSMs will be used for formalising, realising, and analysing
SLS algorithms for SAT. In Chapter 5 we will show how by applying minor modifications
to these GLSMs, some of the best known SAT algorithms can be further improved. In
Chapter 6, we will use very simple GLSMs as probes for analysing the search space
structure of SAT instances. While these applications demonstrate the usefulness of the
GLSM model, they hardly exploit its full power. Most modern SLS algorithms can be
represented by very simple GLSMs; the fact that the most efficient of them are structurally
slightly more complex than others suggests that further improvements can be achieved
by developing more complex combinations of simple search strategies. While some of
our results presented in Chapter 5 support this hypothesis, its general validity remains
to be shown by developing novel hybrid GLSM algorithms for different domains. In this
respect, the GLSM model provides many avenues and directions for further research.



