
Stochastic Search Algorithms

Holger H. Hoos

Computer Science

University of BC

Canada

Thomas Sẗutzle

FB Informatik

TU Darmstadt

Germany

Hoos / Sẗutzle Stochastic Search Algorithms 1

Motivation: Why Stochastic Search?

Stochastic search is the method of choice for solving many hard

combinatorial problems.

Recent Progress & Successes:

� Ability of solving hard combinatorial problems

has increased significantly

– Solution of large propositional satisfiability problems

– Solution of large travelling salesman problems

� Good results in new application areas

Hoos / Sẗutzle Stochastic Search Algorithms 2

Reasons & Driving Forces:

� New algorithmic ideas

– Nature inspired algorithms

– New randomisation schemes

– Hybrid and mixed search strategies

� Increased flexibility and robustness

� Improved understanding of algorithmic behaviour

� Sophisticated data structures

� Significantly improved hardware

Hoos / Sẗutzle Stochastic Search Algorithms 3

Goals of the Tutorial

Provide answers to these questions:

� What is stochastic search and how can it be used

to solve computationally hard problems?

� Which stochastic search techniques are available

and what are their features?

� How should stochastic search algorithms

be studied and analysed empirically?

� How are specific problems solved using stochastic search?

Hoos / Sẗutzle Stochastic Search Algorithms 4

Outline

Introduction

Part I: Combinatorial Problems and Search

– Combinatorial problems

– Complexity issues

– Search methods

– Stochastic search

[Short Break]

Hoos / Sẗutzle Stochastic Search Algorithms 5

Part II: Stochastic Local Search Methods

– Simulated Annealing

– Tabu Search

– Iterated Local Search

– Evolutionary Algorithms

– Ant Colony Optimization

[Short Break]

Hoos / Sẗutzle Stochastic Search Algorithms 6

Part III: Stochastic Search Behaviour

– Empirical evaluation

– Search space characteristics

– Parameterisation and tuning

[Short Break]

Hoos / Sẗutzle Stochastic Search Algorithms 7

Part IV: Applications

– SAT

– Traveling Salesman Problem

– Quadratic Assignment Problem

– Scheduling

– Planning

– Combinatorial Auctions

Conclusions and Issues for Future Research

Hoos / Sẗutzle Stochastic Search Algorithms 8

Part I

Combinatorial Problems and Search

Hoos / Sẗutzle Stochastic Search Algorithms 9

Combinatorial Problems

Examples for combinatorial problems:

� finding shortest/cheapest round trips (TSP)

� finding models of propositional formulae (SAT)

� planning, scheduling, time-tabling

� resource allocation

� protein structure prediction

� sequencing genomes

Hoos / Sẗutzle Stochastic Search Algorithms 10

Combinatorial problems ...

� typically involve finding a grouping, ordering, or assignment of a

discrete set of objects which satisfies certain constraints

� arise in many domains of computer science

and various application areas

� have high computational complexity (NP-hard)

� are solved in practice by searching an exponentially large

space of candidate / partial solutions

Hoos / Sẗutzle Stochastic Search Algorithms 11

Combinatorial Decision Problems:

For a given problem instance, decide whether a solution (grouping,

ordering, or assignment) exists which satisfies the given constraints.

Hoos / Sẗutzle Stochastic Search Algorithms 12

The Propositional Satisfiability Problem (SAT)

Simple SAT instance (in CNF):

(a _ b) ^ (:a _ :b)

; satisfiable, two models:

a = true; b = false
a = false; b = true

Hoos / Sẗutzle Stochastic Search Algorithms 13

SAT Problem – decision variant:

For a given propositional formula�,

decide whether� has at least one model.

SAT Problem – search variant:

For a given propositional formula�, if � is satisfiable,

find a model, otherwise declare� unsatisfiable.

Hoos / Sẗutzle Stochastic Search Algorithms 14

SAT ...

� is a pervasive problem in computer science

(Theory, AI, Hardware, ...)

� is computationally hard (NP hard)

� can encode many other combinatorial problems

(NP completeness)

� is one of the conceptually simplest combinatorial

decision problems

; facilitates development and evaluation of algorithmic ideas

Hoos / Sẗutzle Stochastic Search Algorithms 15

Combinatorial Optimisation Problems:

Objective function (evaluation function) assigns a numerical value to

each candidate solution.

For a given problem instance, find a solution (grouping, ordering, or

assignment) with maximal (or minimal) value of the evaluation

function.

Hoos / Sẗutzle Stochastic Search Algorithms 16

The Traveling Salesperson Problem (TSP)

TSP – optimisation variant:

For a given weighted graphG = (V;E;w), find a Hamiltonian cycle

in G with minimal weight,

i.e., find the shortest round-trip visiting each vertex exactly once.

TSP – decision variant:

For a given weighted graphG = (V;E;w), decide whether a

Hamiltonian cycle with minimal weight� b exists inG.

Hoos / Sẗutzle Stochastic Search Algorithms 17

TSP instance: shortest round trip through 532 US cities

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TSPLIB instance att532 -- optimal solution

"att532-opt"

Hoos / Sẗutzle Stochastic Search Algorithms 18

TSP instance: minimal drill path for printed circuit board

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

"pcb1173"

Hoos / Sẗutzle Stochastic Search Algorithms 19

TSP instance: minimal drill path for printed circuit board

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

TSPLIB instance fl1577

"fl1577"

Hoos / Sẗutzle Stochastic Search Algorithms 20

TSP ...

� is one of the most prominent and widely studied

combinatorial optimisation problems in computer science

and operations research

� is computationally hard (NP-hard)

� is one of the conceptually simplest

combinatorial optimisation problems

; facilitates development and evaluation of algorithmic ideas

Hoos / Sẗutzle Stochastic Search Algorithms 21

Generalisations of combinatorial problems:

� many combinatorial decision problems naturally generalise to

optimisation problems, e.g. SAT to MAX-SAT

� many combinatorial problems have practically relevant dynamic

variants (dynamic SAT, dynamic TSP, internet routing, dynamic

scheduling)

� often, algorithms for decision problems can be generalised to

optimisation and / or dynamic variants

� typically, good solutions to generalised problems require

additional heuristics.

Hoos / Sẗutzle Stochastic Search Algorithms 22

Complexity Issues

Motivation:

Analyse inherent hardness of problems and inherent complexity

of algorithms

Some basic concepts and results:

� complexity classes:P vs.NP

� NP -completeness,NP-hardness

� P 6= NP not known

� but: if there were an efficient (polynomial) algorithm for any

NP-complete problem, allNP problems could be solved

efficiently

Hoos / Sẗutzle Stochastic Search Algorithms 23

Complexity of combinatorial decision problems:

� many combinatorial decision problems areNP-hard

� this is reflected in search spaces of size

exponential in problem size

� SAT is theclassical example of anNP-complete problem

� TSP (decision variant) isNP-complete

� but: not all combinatorial problems with large search spaces

are hard (2 SAT / Horn SAT, shortest path, minimal spanning

tree.)

Hoos / Sẗutzle Stochastic Search Algorithms 24

Complexity of combinatorial optimisation problems:

� complexity of optimisation vs. decision variants

� approximation algorithms

� approximability / inapproximability

Some results for the TSP:

� general TSP: inapproximable for arbitrary constant bounds

on solution quality

� TSP with triangle inequality: polynomially approximable

to 1:5� optimal solution

� Euclidean TSP: polynomial approximation schema exists

Hoos / Sẗutzle Stochastic Search Algorithms 25

Are computationally hard problems really intractable?

� NP-hardness results apply to the worst case but do not imply

that all instances of a problem are hard to solve

� approximate solutions are often useful and easier to compute

� heuristics can often help to solve practically important

classes of instances in reasonable time

� randomisation can help to find good solutions

reasonably efficient with high probability

� parallelisation can help to increase size of

practically soluble instances

Hoos / Sẗutzle Stochastic Search Algorithms 26

Search Methods

Types of search methods:

systematic ! local search

deterministic ! stochastic

sequential ! parallel

Hoos / Sẗutzle Stochastic Search Algorithms 27

Properties of search methods:

Decision problems: completevs. incomplete

Optimisation problems: exactvs. approximate

Hoos / Sẗutzle Stochastic Search Algorithms 28

’Classical’ search algorithms based on back-tracking:

� iteratively construct candidate solution

� use back-tracking to explore full search space

� use appropriate techniques for pruning search space

Hoos / Sẗutzle Stochastic Search Algorithms 29

The ‘Davis-Putnam’ algorithm for SAT

� iteratively select variables and search both truth assignments

for these

� backtracking guarantees completeness of search

� use unit propagation to prune search space

� ordering of variables and values is critical for performance

Hoos / Sẗutzle Stochastic Search Algorithms 30

Binary search tree for Davis-Putnam-style algorithm

x = F
1

x = T
1

x = F
2

x = T
2

Hoos / Sẗutzle Stochastic Search Algorithms 31

Branch-and-bound methods for the TSP

� extension of backtracking algorithms which additionally

considers solution cost

� branching partitions the set of solutions represented

at current node in exclusive sets

� lower bound estimates completion cost of partial solutions

� upper bound estimates the optimal solution from above

� partial solutions are discarded if lower bound is larger

than upper bound

� analogous toA� search in AI

Hoos / Sẗutzle Stochastic Search Algorithms 32

Local Search (LS) Algorithms

search spaceS

(SAT: set of all complete truth assignments

to propositional variables)

solution set S0 � S

(SAT: models of given formula)

neighbourhood relation N � S � S

(SAT: neighbouring variable assignments differ

in the truth value of exactly one variable)

objective function f : S 7! R
+

0

(SAT: number of clauses unsatisfied

under given assignment)

Hoos / Sẗutzle Stochastic Search Algorithms 33

Local Search:

� start from initial position

� iteratively move from current position to neighbouring position

� uses objective function for guidance

Two main classes

� local search on partial solutions

� local search on complete solutions

Hoos / Sẗutzle Stochastic Search Algorithms 34

Construction Heuristics:

� specific class of LS algorithms

� search space: space of partial solutions

� search steps: extend partial solutions, but never reduce them

� Neighbourhood typically given by individual solution elements

� solution elements are often ranked according to a greedy

objective function

Hoos / Sẗutzle Stochastic Search Algorithms 35

Nearest Neighbor heuristic for the TSP:

� always choose at the current city the closest unvisited city

– choose an arbitrary initial city�(1)

– at theith step choose city�(i+ 1) to be the cityj that

minimisesfd(�(i); j)g; j 6= �(k); 1 � k � i

� running timeO(n2)

� worst case performanceNN(x)=OPT (x) � 0:5(dlog
2
ne+ 1)

� other construction heuristics for TSP are available

Hoos / Sẗutzle Stochastic Search Algorithms 36

Nearest neighbour tour through 532 US cities

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

NN:att532

Hoos / Sẗutzle Stochastic Search Algorithms 37

Example of a (greedy) construction heuristic for SAT

� start with empty variable assignment

� in each step select an unassigned variable

and set it to a truth value

– if 9 unsatisfied clause with only one unassigned variable,

assign this variable to satisfy this clause

– otherwise choose variable and truth value such that maximal

number of clauses become satisfied

Hoos / Sẗutzle Stochastic Search Algorithms 38

Construction Heuristics ...

� can be used iteratively to solve combinatorial problems

� provide only a limited number of different solutions

� can be combined with back-tracking to yield systematic search

algorithms (e.g., Davis-Putnam for SAT)

� are used within some state-of-the-art local search approaches

(e.g., Ant Colony Optimisation)

Hoos / Sẗutzle Stochastic Search Algorithms 39

Local Search on complete solutions

� widely used class of LS algorithms

� search space: the space of feasible solutions

(SAT: complete truth assignments, TSP: valid round trips)

� initial position often randomly chosen

� search steps: move from current solution to neighbouring,

feasible solutions

Hoos / Sẗutzle Stochastic Search Algorithms 40

Iterative Improvement (Greedy Search):

� initialise search at some point of search space

� in each step, move from the current search position

to a neighbouring position with better objective function value

Hoos / Sẗutzle Stochastic Search Algorithms 41

procedure BestImprovementStep(s 2 S)
w = ;, s� = s

while (N (s)=w 6= ;) do
s0 = GenerateSolution(s)
w = w [s0

if (f(s0) < f(s�))

s� = s0

end
return s�

end BestImprovement

Hoos / Sẗutzle Stochastic Search Algorithms 42

Iterative Improvement for SAT

� initialisation: randomly chosen, complete truth assignment

� neighbourhood: variable assignments are neighbours iff they

differ in truth value of one variable

� objective function: number of clauses unsatisfied under given

assignment

Hoos / Sẗutzle Stochastic Search Algorithms 43

Iterative Improvement for the TSP

� initial solution is a complete tour

� k-opt neighbourhood: solutions which differ by at mostk edges

2-opt

� neighborhood sizeO(nk)

� More complex neighbourhoods: variable depth search

Hoos / Sẗutzle Stochastic Search Algorithms 44

Stochastic Local Search

Typical problems with local search:

� getting stuck in local optima

� being misguided by objective function

Hoos / Sẗutzle Stochastic Search Algorithms 45

solution space

o
b
j
e
c
t
i
v
e

f
u
n
c
t
i
o
n

v
a
l
u
e

global optimum

local optima

Hoos / Sẗutzle Stochastic Search Algorithms 46

Stochastic Local Search:

� randomise initialisation step

– random initial solutions

– randomised construction heuristics

� randomise search steps

such that suboptimal/worsening steps are allowed

; improved performance & robustness

� typically, degree of randomisation controlled by noise parameter

� allows to invest arbitrary computation times

Hoos / Sẗutzle Stochastic Search Algorithms 47

Pros:

� for many combinatorial problems more efficient

than systematic search

� easy to implement

� easy to parallelise

Cons:

� often incomplete (no guarantees for finding existing solutions)

� highly stochastic behaviour

� often difficult to analyse theoretically / empirically

Hoos / Sẗutzle Stochastic Search Algorithms 48

Simple SLS methods

Random Search (Blind Guessing):

In each step, randomly select one element of the search space.

(Uninformed) Random Walk:

In each step, randomly select one of the neighbouring positions of the

search space and move there.

Hoos / Sẗutzle Stochastic Search Algorithms 49

Randomised Iterative Improvement:

� initialise search at some point of search space

� search steps:

– with probabilityp, move from current search position

to a randomly selected neighbouriing position

– otherwise, move from current search position

to neighbouring position with better objective function value

Hoos / Sẗutzle Stochastic Search Algorithms 50

Randomised Systematic Search

Typical problems with systematic search:

� abysmal performance for certain instances

� being misguided by search heuristic

Hoos / Sẗutzle Stochastic Search Algorithms 51

Randomised Systematic Search:

� randomise heuristic choices using the concept of

heuristic equivalence

; improved robustness

� degree of randomisation controlled by noise parameter

� additionally, use random restart

Hoos / Sẗutzle Stochastic Search Algorithms 52

Randomised Davis-Putnam algorithm for SAT

� randomise selection of variable to be instantiated next

and/or order of instantiations (with truth values)

� algorithm remains complete

; increased robustness and performance when combined

with random restart strategy and using tuned parameter settings

(e.g., satz-rand [Gomes et al.])

Hoos / Sẗutzle Stochastic Search Algorithms 53

Pros:

� increased robustness, in particular when using

suitably tuned noise and restart strategies

� simple, generic extension of systematic search

� resulting algorithms typically still complete

� potential for easy parallelisation

Cons:

� highly stochastic behaviour

� difficult to analyse theoretically / empirically

� parameter tuning often difficult,

but critical for obtaining good performance

Hoos / Sẗutzle Stochastic Search Algorithms 54

Part II

Stochastic Local Search Methods

Hoos / Sẗutzle Stochastic Search Algorithms 55

Overview:

� Parameterised local search extensions

– Simulated Annealing

– Tabu Search

� hybrid strategies

– Iterated Local Search

– Evolutionary Algorithms

– Ant Colony Optimization

; representation as Generalized Local Search Machines

(GLSMs)

Hoos / Sẗutzle Stochastic Search Algorithms 56

These SLS algorithms are general frameworks for the design of

heuristic algorithms and are often calledmetaheuristics.

Metaheuristic: general-purpose heuristic method

designed to guide underlying problem specific heuristic

(e.g., local search algorithm or construction heuristic)

towards promising regions of the search space.

Hoos / Sẗutzle Stochastic Search Algorithms 57

Simulated Annealing

Combinatorial search technique inspired by the

physical process of annealing [Kirkpatrick et al. 1983, Cerny 1985]

� physical annealing process:

1. heat up a solid until it melds

2. decrease slowly the temperature to reach a ground state

� algorithmic analogy:

states ! solutions

energy ! objective function

Hoos / Sẗutzle Stochastic Search Algorithms 58

Simulated Annealing – general outline

� generate a neighboured solution / state

� probabilistically accept the solution / state

probability of acceptance depends on the objective function

(energy function) difference and an additional parameter

called temperature

Hoos / Sẗutzle Stochastic Search Algorithms 59

Solution generation

� typically returns a random, neighboured solution

Acceptance criterion

� Metropolis acceptance criterion

– better solutions are always accepted

– worse solutions are accepted with probability

� exp

�
f(s)� f(s0)

T

�

Annealing

� parameterT , called temperature, is slowly decreased

Hoos / Sẗutzle Stochastic Search Algorithms 60

Generic choices for annealing schedule

� initial temperatureT0
(example: based on statistics of objective function)

� temperature function — how to change temperature

(example: geometric cooling,Tn+1 = � � Tn; n = 0; 1; : : :)

� number of iterations at each temperature

(example: multiple of the neighbourhood size)

� stopping criterion

(example: no improved solution found for a

number of temperatures)

Hoos / Sẗutzle Stochastic Search Algorithms 61

Example application to the TSP [Johnson & McGeoch, 1997]

� baseline implementation

– start with random initial solution

– uses 2-opt neighborhood

– straightforward annealing schedule

; relatively poor performance

� improvements

– look-up table for acceptance probabilities

– neighbourhood pruning

– low-temperature starts

Hoos / Sẗutzle Stochastic Search Algorithms 62

Discussion

� SA is historically important

� easy to implement

� convergence proofs: theoretically interesting, but practical

relevance very limited

� good performance often at the cost of substantial run-times

Hoos / Sẗutzle Stochastic Search Algorithms 63

Tabu Search

Combinatorial search technique which heavily relies on the use of an

explizit memory of the search process [Glover 1989, 1990]

� systematic use of memory to guide search process

� memory typically contains only specific attributes of

previously seen solutions

� simple tabu search strategies exploit only short term memory

� more complex tabu search strategies exploit long term memory

Hoos / Sẗutzle Stochastic Search Algorithms 64

Simple tabu search algorithm – exploiting short term memory

� in each step move to best neighboured solution although it may

be worse than current one

� to avoid cycles, tabu search tries to avoid revisiting previously

seen solutions

� avoid storing complete solutions by basing the memory on

solution attributes of recently seen solutions

� tabu solution attributes are often defined via local search moves

� a tabu list stores attributes of thetl most recently visited

solutions; parametertl is calledtabu list lengthor tabu tenure

� solutions which contain tabu attributes are forbidden

Hoos / Sẗutzle Stochastic Search Algorithms 65

� problem: previously unseen solutions may be tabu

; use ofaspiration criteriato overwrite tabu status

� stopping criteria:

– all neighbored solutions are tabu

– maximum number of iterations

– no. of iterations without improvement

� appropriate choice of tabu tenure critical for performance

; robust tabu search[Taillard, 1991], reactive tabu search[Battiti,

Tecchiolli, 1994–1997]

Hoos / Sẗutzle Stochastic Search Algorithms 66

Example: Tabu Search for SAT / MAX-SAT [Hansen & Jaumard,

1990; Selman & Kautz, 1994]

Neighborhood: assignments which differ in exactly one variable

instantiation

Tabu attributes: variables

Tabu criterion: flipping a variable is forbidden for a given number

of iterations

Aspiration criterion: if flipping a tabu variable leads to a better

solution, the variable’s tabu status is overwritten

Hoos / Sẗutzle Stochastic Search Algorithms 67

Tabu search — use of long term memory

Longer term memory: often based on some measure of frequency,

e.g., the frequency of local search moves

Intensification strategies: intensify the search in specific regions

of the search space

� recoverelite solutions and restart search around such

solutions

� lock some solution attributes, e.g., in the TSP edges

contained in several elite solutions may be locked

� : : :

Hoos / Sẗutzle Stochastic Search Algorithms 68

Diversification Strategies: drive the search towards previously

unexplored search space regions

� introduce solution attributes which are not very frequently

used, e.g., by penalizing frequently used solution attributes

� Restarting mechanisms which bias construction heuristics

� : : :

Hoos / Sẗutzle Stochastic Search Algorithms 69

Discussion

� short term memory strategies alone often perform

astonishingly well

� additional intensification and diversification strategies

can considerably improve performance

� several additional strategies available (e.g., strategic oscillation,

path relinking, ejection chains,: : :)

� rather complex to use

� very good performance but often at the cost of

time-intensive fine-tuning

Hoos / Sẗutzle Stochastic Search Algorithms 70

Hybrid stochastic search techniques

Note: Many of the best-performing SLS algorithms arecombinations

of various simple search strategies.

E.g.: greedy hillclimbing + Random Walk, Ant Colony Optimisation

+ 3-opt, : : :

; conceptual separation of simple search strategies and

(higher-level) search control.

Hoos / Sẗutzle Stochastic Search Algorithms 71

GLSMs – Generalised Local Search Machines

� search control = non-deterministic finite state machine

� simple search strategies = states

� change of search strategy = transitions between states

State transition types:

� deterministic: DET

� unconditional probabilistic: PROB(p)

� conditional probabilistic: CPROB(C,p)

Hoos / Sẗutzle Stochastic Search Algorithms 72

The GLSM model ...

� allows adequate and uniform represention of local search

algorithms

� facilitates design, implementation, and analysis

of hybrid algorithms

� provides the conceptual basis for some of the best known

SLS algorithms for various domains (e.g., SAT [Hoos 1999])

Hoos / Sẗutzle Stochastic Search Algorithms 73

GLSM representation of Randomised Best Improvement

Tr

Tr

T

Trs

RI

BI

RS

T

bi

bi

T

rs

Hoos / Sẗutzle Stochastic Search Algorithms 74

Iterated Local Search (ILS)

Iterative application of local search to modifications of previously

visited local minima

� basic idea: Build a chain of local minima

� the search space is reduced to the space of local minima

� simple, but powerful way to improve local search algorithms

Hoos / Sẗutzle Stochastic Search Algorithms 75

GLSM representation of Iterated Local Search

SLC

LS

RI PS

T

T

T

s

r p

DET DET

Hoos / Sẗutzle Stochastic Search Algorithms 76

Why is ILS a good idea?

� speed – large number of local search applications in given time

� bias towards good solutions

� very easy to implement

� few parameters

Hoos / Sẗutzle Stochastic Search Algorithms 77

Issues for Iterated Local Search applications

� choice of initial solution

� choice of solution modification

— Too strong: close to random restart

— Too weak: Not enough to escape from local minima

� choice of local search

— effectiveness versus speed

� choice of acceptance criterion

— strength of bias towards best found solutions

Hoos / Sẗutzle Stochastic Search Algorithms 78

ILS for the TSP

� local search: 2-opt, 3-opt, Lin-Kernighan

� solution modification: non-sequential 4-opt move (double-bridge

move)

� acceptance criterion: apply solution modification to best solution

since start of the algorithm; other acceptance criteria may

perform better for long run times.

Results

� ILS is among the best available algorithms for the TSP

Hoos / Sẗutzle Stochastic Search Algorithms 79

Other applications:

� Graph partitioning

� Quadratic Assignment Problem

� Scheduling problems

Related idea:

� Variable Neighbourhood Search

Hoos / Sẗutzle Stochastic Search Algorithms 80

Evolutionary Algorithms

Combinatorial search technique inspired by the evolution of species

� population of strings which are manipulated via evolutionary

operators and compete for survival

� population is manipulated viaevolutionary operators

– mutation

– crossover

– selection

Hoos / Sẗutzle Stochastic Search Algorithms 81

� several variants have been developed

– Genetic algorithms [Holland, 1975, Goldberg 1989]

– Evolution strategies [Rechenberg, 1973, Schwefel, 1981]

– Evolutionary Programming [Fogel, Owens, Walsh, 1966]

– Genetic Programming [Koza, 1992]

� for combinatorial optimization the most widely used and most

effective variant are genetic algorithms

Hoos / Sẗutzle Stochastic Search Algorithms 82

GLSM representation of a basic Genetic Algorithm

SLC

XO

PI

T

T
Mut

DET

DETDET

c

r

Hoos / Sẗutzle Stochastic Search Algorithms 83

Important issues for evolutionary algorithms

� solution representation

– binary vs. problem specific representation

� fitness evaluation of solutions

– often defined by objective function of the problem

� crossover operator

– parent selection scheme

– problem specific vs. general purpose crossover

– how can meaningful information be given to the offspring

� mutation operator

– background operator vs. thriving the search

Hoos / Sẗutzle Stochastic Search Algorithms 84

� selection scheme

– prefer better solutions for survival

– elitist strategies

– maintenance of population diversity

� local search

– often local search is useful to improve solutions

– population based search in the space of local optima

;memetic algorithms

� stopping criteria

– fixed no. of generations

– convergence of population

Hoos / Sẗutzle Stochastic Search Algorithms 85

GA application to SAT

solution representation:a binary string

evaluation function:no. of violated clauses

crossover operator:

00

0 0 0 0

1 1 1 1

1111

0 0

cut

000 1 1 1 1 1

Hoos / Sẗutzle Stochastic Search Algorithms 86

mutation: with a fixed probability flip a variable’s truth value

selection: choose bestp strings for the next population avoiding

duplicate solutions

additional local search:after each crossover or mutation apply a

1-opt local search

Hoos / Sẗutzle Stochastic Search Algorithms 87

Discussion

� population provides an easy way to increase search space

exploration

� large number of different implementation choices

� best performance achieved when operators take problem

characteristics into account

� good results for a wide variety of applications

Hoos / Sẗutzle Stochastic Search Algorithms 88

Ant Colony Optimisation

Combinatorial search technique inspired by the foraging

behaviour of real ants: [Dorigo et al. 1991, 1996]

� population of simple agents (“ants”) communicates indirectly

via “pheromone trails” (odorous substance)

� ants follow a local stochastic policy to construct solutions.

� the solution construction is probabilistically biased by

pheromone trail information, heuristic information,

and the partial solution of each ant

� Pheromone trails are modified during the algorithm’s execution

to reflect the search experience

Hoos / Sẗutzle Stochastic Search Algorithms 89

GLSM representation of Ant Colony Optimization

AS

LSAI

TU

Tu

Tl

TI
DET

DET

DET

Hoos / Sẗutzle Stochastic Search Algorithms 90

Application principles:

� Definesolution componentsfor the problem to be solved

� Ants construct solutions by iteratively adding

solution components

� Possibly improve solutions by applying local search

� Reinforce solution components of better solutions more strongly

Hoos / Sẗutzle Stochastic Search Algorithms 91

ACO for the TSP – tour construction

� Solution components are “arcs”

� �ij = 1=dij: Heuristic information, indicates the

utility of going from nodei to nodej

� �ij(t): Intensity of the pheromone trail in

iterationt on arc(i; j)

� Probabilistic selection of the next node according to:

pij(t) � (�ij(t))
� � (�ij)

� if nodej allowed

Hoos / Sẗutzle Stochastic Search Algorithms 92

ACO for the TSP – Update of pheromone trails

� Parameter0 < � < 1, 1� � represents pheromone evaporation

� Update of the pheromone trails according to (Ant System):

�ij(t) = � � �ij(t� 1) +

mX
k=1

��k
ij

� ��k
ij
= 1=Lk if arc (i; j) is used by antk on its tour

Lk: Tour length of antk

m: Number of ants

Several improved extensions have been proposed.

Hoos / Sẗutzle Stochastic Search Algorithms 93

Discussion

� General framework for ACO applications: ACO Metaheuristic

[Dorigo, Di Caro 1999, Dorigo, Di Caro, Gambardella, 1999]

� Two main application fields:

static problems ! dynamic problems

� considerable success despite being a very recent metaheuristic

Hoos / Sẗutzle Stochastic Search Algorithms 94

Characteristics of Various Metaheuristics

Feature SA TS ILS GA ACO

Trajectory + + � � �

Population � � � + +

Memory � + 9 9 9

Multiple neighborhoods � � + 9 �

Sol. construction � � � � +

Nature-inspired + � � + +

+: feature present,9: partially present,�: not present

Hoos / Sẗutzle Stochastic Search Algorithms 95

Chance vs. Necessity

� randomisation of search algorithms often increases their

performance and robustness

� stochastic search algorithms need to balance randomised

and goal-directed search (exploration vs. exploitation,

diversification vs. intensification)

� best performance will be achieved if good, problem specific

balance is found

� different techniques can be used to achieve this balance

� peak performance obtained by successful exploitation of

problem and algorithm specific knowledge

� this knowledge is often still poorly understood

Hoos / Sẗutzle Stochastic Search Algorithms 96

Part III

Analysing and Characterising
Stochastic Search Behaviour

Hoos / Sẗutzle Stochastic Search Algorithms 97

Analysing Stochastic Search Behaviour

Many SLS algorithms ...

� perform well in practice

� are incomplete, i.e., cannot be guaranteed to find

(optimal) solutions

� are hard to analyse theoretically

; empirical methods are used to analyse and characterise

their behaviour.

Hoos / Sẗutzle Stochastic Search Algorithms 98

Aspects of stochastic search performance:

� variability due to randomisation

� robustness w.r.t. parameter settings

� robustness across different instance types

� scaling with problem size

Hoos / Sẗutzle Stochastic Search Algorithms 99

Insights into algorithmic performance...

� help assessing suitability for applications

� provide basis for comparing algorithms

� characterise algorithm behaviour

� facilitate improvements of algorithms

Hoos / Sẗutzle Stochastic Search Algorithms 100

RTD-based empirical methodology:

� run algorithm multiple times on given problem instance(s)

� estimate empirical run-time distributions (RTDs)

� get simple descriptive statistics (mean, stddev, percentiles, ...)

from RTD data

� approximate empirical RTDs with known distribution functions

� check statistical significance using goodness-of-fit test

[Hoos & Sẗutzle 1998]

Hoos / Sẗutzle Stochastic Search Algorithms 101

Raw run-time data (each spike one run)

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 s

ec

tries

Hoos / Sẗutzle Stochastic Search Algorithms 102

RTD graph and approximation with exponential distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

P
(s

ol
ve

)

variable flips

RLD for WSAT
ed[39225]

Hoos / Sẗutzle Stochastic Search Algorithms 103

This methodology facilitates ...

� precise characterisations of run-time behaviour

� prognoses for arbitrary cutoff times

� empirical analysis of asymptotic behaviour

� fair and accurate comparison of algorithms

� cleanly seperating different sources of randomness

(SLS algorithm / random generation of problem instances)

Hoos / Sẗutzle Stochastic Search Algorithms 104

Asymptotic run-time behaviour of SLS algorithms

� complete

— for each problem instanceP there is a time boundtmax(P)

for the time required to find a solution

� probabilistic approximate completeness (PAC property)

— for each soluble problem instance a solution is found

with probability! 1 as run-time!1.

� essential incompleteness

— for some soluble problem instances, the probability

for finding a solution is strictly smaller 1 for run-time!1.

Hoos / Sẗutzle Stochastic Search Algorithms 105

Some results [Hoos 1999]:

� Until recently, some of the most prominent and best-performing

SLS algorithms for SAT were essentially incomplete

� In practice, essential incompleteness often causes stagnation

behaviour which drastically affects the performance of the

algorithm

� By a simple and generic modification, (Random Walk Extension)

these algorithms can be made PAC in a robust manner.

� The algorithms thus obtained are among the best-performing

SAT algorithms known to date.

Hoos / Sẗutzle Stochastic Search Algorithms 106

RTD-based analysis of randomised optimisation algorithms:

� Additionally solution quality has to be considered

� introduce bounds on the desired solution quality

; qualified RTDs

� bounds can be chosen w.r.t. best-known or optimal solutions,

lower bounds of the optimal solution cost etc.

� estimate run-time distributions for several bounds on the solution

quality

Hoos / Sẗutzle Stochastic Search Algorithms 107

Qualified RTDs for TSP instance att532 with ILS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

so
lu

tio
n

pr
ob

ab
ili

ty

CPU time

Run-time distributions for iterated 3-opt on att532.tsp

"1%"
"0.5%"

"0.25%"
"0.1%"

"opt"
ed1
ed2

Hoos / Sẗutzle Stochastic Search Algorithms 108

SQD-based methodology randomised optimisation algorithms:

� run algorithm multiple times on given problem instance(s)

� estimate empirical solution quality distributions (SQDs) for

different run-times

� get simple descriptive statistics (mean, stddev, percentiles, ...)

from SQD data

� approximate empirical SQD with known distribution functions

� check statistical significance using goodness-of-fit test

Hoos / Sẗutzle Stochastic Search Algorithms 109

Questions for SQD-based methodology:

� How do the SQDs scale with increasing run-time?

� What is the limiting shape of the SQDs with increasing instance

size

Hoos / Sẗutzle Stochastic Search Algorithms 110

SQD analysis for Graph Partitioning (GP)

BA

[Martin, Houdayer, Schreiber, 1999] studied best performing SLS

algorithms for GP on ensemble of randomly generated graphs

Hoos / Sẗutzle Stochastic Search Algorithms 111

Results:

� SQD distributions approach a limiting Gaussian shape,

both within individual graphs and across all graphs

� for increasing instance size the SQD distributions become

increasingly peaked

; solution quality becomes dominating factor when comparing

SLS algorithms on large instances

� Similar results also on the TSP

Hoos / Sẗutzle Stochastic Search Algorithms 112

Use solution quality distribution to estimate optimum

� given a sample ofk feasible solutions and letx be the extreme

value from the sample

; for increasingk, the distribution ofx approaches a Weibull

distribution with position parameter�, where� is optimal

solution value [Dannenbring, 1977]

Estimation of optimum possible:

� generatem independent samples ofx

� estimate parameters of Weibull distribution

� get confidence interval for optimum

Hoos / Sẗutzle Stochastic Search Algorithms 113

Search Space Analysis

Intuition:

� algorithm searches in afitness landscapeof the

problem to be solved

� fitness landscape can be imagined as a mountainous

region with hills, craters, valleys ..

Goal: Findest lowest point (for minimization problems)

; analyse structure of the fitness landscape

Hoos / Sẗutzle Stochastic Search Algorithms 114

Fitness landscape is defined by:

� the set of all possible solutions (search space)

� an objective function that assigns to every solution a fitness

(objective function) value

� a neighbourhood structure which induces a distance measure

between solutions

Distance between solutions:

� defined as the minimum number of moves to convert

one solution into another one

� often surrogate distance metrics are used

(e.g., distance between tours in the TSP interpreted as number of

different edges in two tours)

Hoos / Sẗutzle Stochastic Search Algorithms 115

Important aspects of fitness landscapes:

� number of local optima

� ruggedness of the fitness landscape

� distribution of local minima and their relative location to the

global minima

� topology of basins of attraction of local optima

Search space analysis:

� analysis of search space ruggedness

� analysis of (linear) correlation between solution fitness and

distance to global optima (fitness-distance correlation)

e.g., [Boese 1994, 1996, Jones, Forrest 1995]

Hoos / Sẗutzle Stochastic Search Algorithms 116

Measures for landscape ruggedness:

� autocorrelation function [Weinberger, 1990, Stadler, 1995]

� correlation length [Stadler, 1995]

� autocorrelation coefficient [Angel, Zissimopoulos, 1998, 1999]

Measure for fitness-distance correlation:

� correlation coefficient

�(F;D) =
Cov(F;D)p

Var(F) �
p

Var(D)

� graphical visualization through plots of fitness–distance

relationship

Hoos / Sẗutzle Stochastic Search Algorithms 117

Fitness–distance relationship in TSP instance rat783

8950

9000

9050

9100

9150

9200

9250

140 150 160 170 180 190 200 210 220 230 240

"opt-dist.rat783-ls" using 2:1

Hoos / Sẗutzle Stochastic Search Algorithms 118

Some results for the TSP:

instance �avg avgd�opt avgd�opt=n �ls

lin318.tsp 3.56 67.25 0.211 0.469

rat783.tsp 4.85 204.24 0.261 0.624

pcb1173.tsp 5.91 274.34 0.234 0.585

pr2392.tsp 5.71 552.49 0.231 0.538

�avg: Percentage deviation from optimum

avgd�opt: Average distance from optimum

�ls: Correlation coefficient

Hoos / Sẗutzle Stochastic Search Algorithms 119

Results:

� local minima are contained in a small subspace of the whole

search space

� solution fitness guides SLS algorithms towards better solutions

; the shorter (on average) the tours are, the closer they are to

the optimal one

Fitness-distance correlations have been analysed

for several other problems.

Hoos / Sẗutzle Stochastic Search Algorithms 120

Paramaterisation and Tuning

� performance of stochastic search algorithms depends very

strongly

on appropriate parametrisation and tuning

� tuning can be very time-intensive

� limited understanding of how performance depends on

parameter settings

� many stochastic search algorithm leave important

implementation

choices to the user

� experience with stochastic seaech algorithms is required

to obtain best performance

Hoos / Sẗutzle Stochastic Search Algorithms 121

Difficulties with parametrisation

� SLS algorithms are often highly stochastic

; empirical analysis more difficult

� algorithm parameters are not independent

� seemingly small implementation choices can have significant

effects on algortihm behaviour and performance

� : : :

Possible remedies

� use of adequate empirical methodology (statistical techniques)

for analysing behaviour

� automatic parameter adjustement during search

; reactive search

Hoos / Sẗutzle Stochastic Search Algorithms 122

Parallelising Stochastic Search

� randomised algorithms allow extremely easy and scalable

parallelisation: multiple independent tries

� effectiveness depends on run-time behaviour of underlying

algorithms

� under certain conditions, optimal speedup can be obtained

Hoos / Sẗutzle Stochastic Search Algorithms 123

Analysis of the distribution type of RTDs for various

well-performing SLS algorithms for a number of problem classes

; Result [Hoos & Stützle 1998]:

For optimal parameterisations and applied to hard problem

instances, many state-of-the-art SLS algorithms show

exponential run-time distributions (EPAC property).

Hoos / Sẗutzle Stochastic Search Algorithms 124

Goodness of fit for hard Random-3-SAT instances

0

100

200

300

400

500

600

100 1000 10000 100000

0.05 acceptance
0.01 acceptance

Hoos / Sẗutzle Stochastic Search Algorithms 125

EPAC property implies:

� search is “memory-less”

; “random restart” is ineffective

� optimal speedup can be achieved through

“multiple independent tries” parallelisation

(very easy to implement, almost no communication overhead,

arbitrarily scalable)

� new interpretation of SLS behaviour as “random picking”

from “virtual search space” (whose size can be computed

from RTD data)

Hoos / Sẗutzle Stochastic Search Algorithms 126

Efficiency of multiple independent tries parallalelisation

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000

ef
fic

ie
nc

y

procs

bw_large.c, novelty(0.2)
bw_large.b, novelty(0.3)
bw_large.a, novelty(0.4)

Hoos / Sẗutzle Stochastic Search Algorithms 127

ACO algorithms

– fine-grained, not successful

– coarse-grained, more succesful

Genetic Algorithms

– Work onfine-grainedandcoarse-grained

parallel implementations.

Simulated Annealing

– Parallel Runs

– Evaluation of moves

Tabu Search

– Exponential run-time distributions (QAP)

– Cooperative approaches [Crainic et al.]

Hoos / Sẗutzle Stochastic Search Algorithms 128

Part IV

Applications

Hoos / Sẗutzle Stochastic Search Algorithms 129

Applications of Stochastic Search

Some recent successful applications:

� SAT [e.g., Selman et al. 1992–1997, Hoos et. al. 1994–2000]

� TSP [e.g., Johnson & McGeoch 1997, Stützle & Hoos

1997–2000]

� Quadratic Assignment Problem [e.g., Stützle 1997-1999;

Taillard 1995]

� Scheduling [e.g., den Besten, Stützle, Dorigo 2000]

� Planning [e.g., Kautz et al. 1996–1999, Brafman & Hoos

1998–2000]

� Combinatorial Auctions [Hoos & Boutilier 2000]

Hoos / Sẗutzle Stochastic Search Algorithms 130

Propositional Satisfiability (SAT)

Progress in SAT solving:

classic SAT solvers:based on ’Davis-Putnam’ algorithm

(systematic search based on back-tracking)

1990–1992:successful application of SLS algorithms for solving

hard SAT instances [Selman et al.; Gu]

1993–1994:new, hybrid SLS strategies with improved performance

and robustness [Selman et al.; Gent & Walsh]

1996–1997:further improvements in SLS algorithms [McAllester et

al.]; randomised systematic search methods [Gomes et al.]

1998–2000:latest improvements in SLS algorithms,

based on GLSM model [Hoos & Stützle]

Hoos / Sẗutzle Stochastic Search Algorithms 131

SLS algorithms for SAT

� search through space of complete variable assignments

� solutions = models of the given formula

� two assignments are neighbours if they differ in the value

of exactly one variable

� evaluation function is the number of clauses unsatisfied

under a given assignment

Hoos / Sẗutzle Stochastic Search Algorithms 132

� search initialisation: randomly chosen assignment

� search steps: algorithm dependent, use random choices

and/or tie-breaking rules

� most algorithms use random restart if no solution has been found

after a fixed number of search steps

Hoos / Sẗutzle Stochastic Search Algorithms 133

The GSAT Algorithm [Selman, Mitchell, Levesque, 1992]

� in each search step, flip the variable which gives

the maximal increase (or minimal decrease)

in the number of unsatisfied claused

� ties are broken randomly

� if no model found aftermaxStepssteps, restart from

randomly chosen assignment

Hoos / Sẗutzle Stochastic Search Algorithms 134

The GWSAT Algorithm [Selman, Kautz, Cohen, 1994]

� search initialisation: randomly chosen assignment

� Random Walk step: randomly choose a currently unsatisfied

clause and a literal in that clause, flip the corresponding variable

to satisfy this clause

� GWSAT steps: choose probabilistically between a GSAT step

and a Random Walk step with ‘walk probability’ (noise)wp

Hoos / Sẗutzle Stochastic Search Algorithms 135

GLSM representation of GWSAT

Tg

Tg

RW

Tr

Tr

T

Tw

w
RI

GD

Hoos / Sẗutzle Stochastic Search Algorithms 136

The WalkSAT algorithm family [McAllester et al., 1997]

� search initialisation: randomly chosen assignment

� search step

1. randomly select a currently unsatisfied clause

2. select a literal from this clause according to a heuristich

� if no model found aftermaxStepssteps, restart from randomly

chosen assignment

Hoos / Sẗutzle Stochastic Search Algorithms 137

Some WalkSAT algorithms

SKC: Select variable such that minimal number of currently

satisfied clauses become unsatisfied by flipping;

if ‘zero-damage’ possible, always go for it; otherwise,

with probabilitywp variable is randomly selected.

Tabu: Select variable that maximises increase in total number

of satisfied clauses when flipped; use constant length tabu-list

for flipped variables and random tie-breaking.

Hoos / Sẗutzle Stochastic Search Algorithms 138

Novelty: Order variables according to increase in total number

of satisfied clauses when flipped; if best variable in this ordering

not most recently flipped, always go for it; otherwise,

select second-best with probabilitywp.

R-Rovelty: Similar to Novelty, but more complex decision

between the variable with best and second-best score.

Hoos / Sẗutzle Stochastic Search Algorithms 139

Some properties of these algorithms

[Hoos & Stützle 1998-1999, Hoos 1999]:

� SKC, Tabu, Novelty, and R-Novelty: exponential run-time

distributions when applied to hard SAT instances and using

optimal (or greater-than-optimal) noise settings

; optimal parallelisation

� Tabu, Novelty, and R-Novelty: essentially incomplete,

i.e., can get stuck in non-solution areas of search space.

Hoos / Sẗutzle Stochastic Search Algorithms 140

Novelty+ and R-Novelty+ [Hoos 1998]:

� extend Novelty, R-Novelty with (unconditional) Random Walk

— simple generic modification of the corresponding GLSM

� resulting algorithms are probabilistically approximately

complete

� significantly improved performance & robustness

These algorithms are amongst the best-performing algorithms

for SAT known today; they solve hard instances up to

> 10; 000 variables and> 100; 000 clauses.

Hoos / Sẗutzle Stochastic Search Algorithms 141

GLSM representations of Novelty vs. Novelty+

Tr

DET

RI Nov Tn

RW

Tr

Tr

T

Tw

w
RI

Nov

Tn

Tn

Hoos / Sẗutzle Stochastic Search Algorithms 142

Essential Incompleteness vs. PAC behaviour

of Novelty vs. Novelty+

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

pr
ob

ab
ili

ty
 o

f f
in

di
ng

 s
ol

ut
io

n

local search steps

nov (p=0.7)
nov+ (p=0.7, wp=0.01)

Hoos / Sẗutzle Stochastic Search Algorithms 143

Some other stochastic search approaches for SAT:

� simulated annealing [Spears, 1993; Beringer et al., 1994]

� genetic algorithms [Frank, 1994]

� GRASP [Feo & Resende, 1996]

� simple learning strategies for SLS [Selman & Kautz, 1993;

Frank, 1997; Boyan & Moore 1998]

� REL SAT [Bayardo & Schrag, 1997]

Hoos / Sẗutzle Stochastic Search Algorithms 144

Similar SLS algorithms are successfully used

to solve more general problems:

� MAX-SAT [e.g., Hansen & Jaumard, 1990; Battiti & Protasi,

1997]

� CSP [e.g., Minton et al., 1990–1992; Stützle, 1997; Galinier,

Hao 1997]

� Dynamic SAT [Hoos & O’Neill, 2000]

Hoos / Sẗutzle Stochastic Search Algorithms 145

The Travelling Salesman Problem (TSP)

The TSP ...

� has been a source of inspiration for new algorithmic ideas

� is a standard test-bed for exact and approximate algorithms

Recent contributions to TSP solving:

� finding approximate solutions of very high quality

� pushing the frontier of tractable instance size

� understanding of algorithm behaviour

Hoos / Sẗutzle Stochastic Search Algorithms 146

Approaches for the TSP:

� Exact Algorithms: Branch & Cut

; largest instance solved has 13,509 cities!

� SLS algorithms:

– construction heuristics

– iterative improvement algorithms

– metaheuristics

Hoos / Sẗutzle Stochastic Search Algorithms 147

Results for SLS algorithms:

� construction heuristics and iterative improvement can be applied

to very large instances (> 106 cities) with considerable success

[Applegate et al. 2000, Johnson, McGeoch 1997]

� best performance results w.r.t. solution quality obtained

with iterated local search, genetic algorithms, or more

TSP-specific approaches [Applegate et al., 2000, Johnson,

McGeoch, 1997, Merz, Freisleben, 1997, Stützle, Hoos, 1999]

� best performing hybrid algorithms use 3-opt

or Lin-Kernighan local search

� instances with< 1000 cities can regularily be solved

to optimality within few minutes

Hoos / Sẗutzle Stochastic Search Algorithms 148

Comparison of SLS algorithms for the TSP

� TSP algorithms compared:

– Iterated Local Search with diversification (ILS)

– Genetic Algorithm with DPX-crossover (DPX)

– Repair-based genetic algorithm (RGA)

– ACO algorithm (MMAS)

and same data structures

� all algorithms use same 3-opt local search

and same data structures

� all algorithms are run on same machine

� comparative analysis based on RTDs

Hoos / Sẗutzle Stochastic Search Algorithms 149

Comparison of TSP algorithms on instance rat783

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

P
ro

b.
 o

f f
in

di
ng

 o
pt

im
um

CPU time

ILS
MMAS

RGA
GLS

Hoos / Sẗutzle Stochastic Search Algorithms 150

Comparison of TSP algorithms on instance pr1002

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000

P
ro

b.
 o

f f
in

di
ng

 o
pt

im
um

CPU time

ILS
MMAS

RGA
GLS

Hoos / Sẗutzle Stochastic Search Algorithms 151

Results:

� very good performance by all algorithms

� no algorithm dominates all others on all instances

� ILS algorithm performs best on most instances

� all algorithms need effective diversification features to achieve

best performance

� additional experiments with other 3-opt implementations

of 3-opt showed that specific implementation details can result

in significant performance difference

� some RTDs are “steeper” than an exponential distribution

Hoos / Sẗutzle Stochastic Search Algorithms 152

The Quadratic Assignment Problem (QAP)

Given:

� n items to be assigned ton locations

� aij : Flow from itemi to itemj

� drs : Distance between locationr and locations

Objective: Minimise sum of products flow� distance

Hoos / Sẗutzle Stochastic Search Algorithms 153

The QAP ...

� is a generic problem in layout design

� has applications in hospital layout, typewriter keybord design, ..

� is considered to be one of the “hardest” optimization problems

for exact solution

; need for approximate solution

Hoos / Sẗutzle Stochastic Search Algorithms 154

Local search algorithms for the QAP

� search space given by all possible assignments, represented by

permutations

� assignments are neighboured if they differ in the location of

exactly two items

SLS approaches for the QAP

� SA, TS, ILS, EA, ACO have all been to the QAP

� several additional approaches to the QAP

� relative performance depends strongly on instance characteristics

Hoos / Sẗutzle Stochastic Search Algorithms 155

Four classes of QAP instances in QAPLIB[Taillard, 1995]

� randomly generated instances according to uniformly

distributed matrix entries (class I)

� random flows on grids (class II)

� real-life problems (class III)

� randomly generated problems which resemble the

structure of real-life problems (class IV)

Hoos / Sẗutzle Stochastic Search Algorithms 156

Indication of type

� flow and/or distance dominance

fd(A) = 100 �
�

�
;where

� =
1

n2
�

nX
i=1

nX
j=1

aij ; � =

vuut 1

n2 � 1
�

nX
i=1

nX
j=1

(aij � �)

� sparsity of flow and/or distance matrix

Hoos / Sẗutzle Stochastic Search Algorithms 157

Fitness-Distance Analysis

� instances of class I show no significant fitness-distance

correlations

� most of the instances of classes II and III do have significant

fitness-distance correlations; the largest correlations are

observed for instances of classes III and IV

� local minima are spread over the whole search space

� some instances have many optimal solutions

� dominance and sparsity give indication of instance type

Hoos / Sẗutzle Stochastic Search Algorithms 158

Case study: ACO algorithm (MMAS) for the QAP

� ACO algorithm constructs solutions by iteratively assigning

items to locations

� pheromone trails�ij refer to the desirability of assigning itemi

to locationj

� solution construction only uses pheromone trails

� solutions are improved by local search

Hoos / Sẗutzle Stochastic Search Algorithms 159

Which type of local search to be used?

� 2-opt local search algorithm (MMAS2�opt)

; needs only few steps to reach local minimum

� short tabu search runs (MMASTS)

;more run-time intensive than 2-opt but finds

solutions of higher quality than 2-opt

Tradeoff: Speed vs. Quality

Hoos / Sẗutzle Stochastic Search Algorithms 160

Solution quality development on class I instance

4.95e+06

5e+06

5.05e+06

5.1e+06

5.15e+06

5.2e+06

5.25e+06

0 50 100 150 200 250 300

so
lu

tio
n

qu
al

ity

time (sec.)

MMAS vs. MD for instance tai50a.dat

"MMAS-best-50a"
"MMAS-tabu-50a"

"MD-tabu-50a"
"MD-best-50a"

Hoos / Sẗutzle Stochastic Search Algorithms 161

Solution quality development on instance of class IV

4.55e+08

4.6e+08

4.65e+08

4.7e+08

4.75e+08

4.8e+08

0 100 200 300 400 500 600

so
lu

tio
n

qu
al

ity

time (sec.)

MMAS vs. MD for instance tai50b.dat

"aus.50b-best.gpd"
"aus.50b-mls.gpd"
"aus.50b-mtb.gpd"

"aus.50b-tabu.gpd"

Hoos / Sẗutzle Stochastic Search Algorithms 162

Computational comparison of QAP algorithms

� algorithms compared are among the best known for the QAP:

– robust tabu search (Ro-TS): long runs of same TS used

MMASTS [Taillard, 1991, 1995]

– genetic hybrids (GH): genetic algorithm using the same

TS algorithm asMMASTS [Fleurent, Ferland, 1994]

– hybrid ant system (HAS)[Gambardella et al., 1999]

– MMASTS andMMAS2�opt [Stützle, Hoos, 1997-2000]

� algorithms use approx. same computation time

� results are given as the average deviation from best known

solutions over 10 independent algorithm runs

Hoos / Sẗutzle Stochastic Search Algorithms 163

instance Ro-TS GH HAS MMASTS MMAS2�opt

uniformly, random instances; class I

tai40a 0.990 0.884 1.989 0.933 1.131

tai50a 1.125 1.049 2.800 1.236 1.900

tai60a 1.203 1.159 3.070 1.372 2.484

tai80a 0.900 0.796 2.689 1.134 2.103

random flows on grids; class II

nug30 0.013 0.007 0.098 0.026 0.042

sko72 0.146 0.143 0.277 0.109 0.243

sko81 0.136 0.136 0.144 0.071 0.223

sko90 0.128 0.196 0.231 0.192 0.288

Hoos / Sẗutzle Stochastic Search Algorithms 164

instance Ro-TS GH HAS MMASTS MMAS2�opt

real-life instances; class III

bur26a-h 0.002 0.043 0.0 0.006 0.0

kra30a 0.268 0.134 0.630 0.134 0.314

kra30b 0.023 0.054 0.071 0.023 0.049

ste36a 0.155 n.a. n.a. 0.036 0.181

ste36b 0.081 n.a. n.a. 0.0 0.0

real-life like instances; class IV

tai40b 0.531 0.211 0.0 0.402 0.0

tai50b 0.342 0.214 0.192 0.172 0.002

tai60b 0.417 0.291 0.048 0.005 0.005

tai80b 1.031 0.829 0.667 0.591 0.096

Hoos / Sẗutzle Stochastic Search Algorithms 165

Results:

� relative performance of algorithms depends strongly

on instance class

� frequent application of a fast local search performs better

on more structured instances

� MMAS among best algorithms for the QAP

Hoos / Sẗutzle Stochastic Search Algorithms 166

Scheduling

Scheduling: allocation of limited resources to tasks over time

Resources:examples are machines in a workshop,

runways at airport,: : :

Tasks: examples are operations in a production process,

take-offs and landings at an airport,: : :

Objectives: usually depending on the tasks completion time,

shipping dates to be met,: : :

Hoos / Sẗutzle Stochastic Search Algorithms 167

The Single Machine Total Weighted Tardiness Problem

Often, single machine is the bottleneck in production environment.

Given (for each item):

� due datedj given for each task

� weight (importance)wj for each single task

� processing timepj for each task

Objective: minimise sum of weighted tardiness

(tardiness = surtime a task is completed after its due date)

The SMTWTP isNP-hard.

Hoos / Sẗutzle Stochastic Search Algorithms 168

Local search algorithms for SMTWTP

� several construction heuristics available

� search space given by all possible task sequences

� possible neighbourhoods:

– swaps of two neighboring jobs at positioni andi+ 1

swap-neighbourhood

– interchanges of jobs atith andjth position

interchange-neighbourhood

– removals of job atith position and insertion injth position

insert-neighbourhood

Hoos / Sẗutzle Stochastic Search Algorithms 169

More effective local search

Observation: local optimum w.r.t. one neighbourhood need not be a

local optimum for another neighbourhood relation

Idea: concatenate local search in different neighbourhoods

this idea is systematically exploited in variable neighbourhood

search [Mladenovic, Hansen, 1995–2000]

Tests: effectiveness of concatenating interchange and insert

neighbourhood with different construction heuristics

Instances:125 randomly generated benchmark instances with 40,

50, and 100 tasks; results are averaged over the benchmark

instances

Hoos / Sẗutzle Stochastic Search Algorithms 170

constr. no local search interchange insert

heuristic �avg nopt tavg �avg nopt tavg �avg nopt tavg

EDD 135 24 0.001 0.62 33 0.140 1.19 38 0.64

MDD 61 24 0.002 0.65 38 0.078 1.31 36 0.77

AU 21 21 0.008 0.92 28 0.040 0.56 42 0.26

constr. inter+insert insert+inter

heuristic �avg nopt tavg �avg nopt tavg

EDD 0.24 46 0.20 0.47 48 0.67

MDD 0.40 46 0.14 0.44 42 0.79

AU 0.59 46 0.10 0.21 49 0.27

�avg: avg. deviation from best known,nopt: No. of best known solutions found

tavg: avg. computation in seconds on Pentium II 266MHz

Hoos / Sẗutzle Stochastic Search Algorithms 171

Results:

� concatenated local search significantly more effective

;more complex neighbourhood yields more effective

local search

� other local search extension:

Dynasearch[Congram, Potts, van de Velde 1998]

� final solution quality depends strongly on starting solution

� improvements possible by hybrid algorithms

; extensions using ILS and ACO

Hoos / Sẗutzle Stochastic Search Algorithms 172

ILS algorithm

� solution modification: variable number of random

left-insert moves

� acceptance criterion: Apply solution modification to best

solution since start of the algorithm

� local search: several possibilities examined, best results with

interchange-insert concatenation

Hoos / Sẗutzle Stochastic Search Algorithms 173

ACO algorithm

� solutions are constructed starting from an empty sequence

by iteratively appending tasks

� pheromone trail�ij refers to desirability of assigning

taski to positionj

� solution construction uses pheromone trails and heuristic

information

� local search: half the colony applies insert-interchange,

the other half interchange-insert local search

Hoos / Sẗutzle Stochastic Search Algorithms 174

Summary of results

� excellent performance of both approaches

� they consistently find best-known solutions on all known

benchmark instances in reasonable time (few seconds up to some

minutes)

� heterogeneous colony in ACO improved robustness

� ILS on most instances faster than ACO

� benchmark instances obtained with specific parameter settings

for instance generator are very easily solved

� search space analysis could identify reasons for good

performance

Hoos / Sẗutzle Stochastic Search Algorithms 175

Planning

Given: set of actions (operators), initial and goal state

Objective: find sequence (or partially ordered collection) of a

actions which allow to reach goal state from initial state

Some prominent AI planning problems:

� blocks world

� logistics

� configuration

Planning is anNP-hard combinatorial problem.

Hoos / Sẗutzle Stochastic Search Algorithms 176

Some algorithms for planning:

� classic approaches: forward planning / regression planning

� GraphPlan [Blum & Furst, 1995]

� SATPLAN, Blackbox [Kautz & Selman, 1996-1999]

� LPSP [Brafman & Hoos, 1998-1999]

Hoos / Sẗutzle Stochastic Search Algorithms 177

The Planning-as-SAT approach:

� encode planning instance into SAT (given fixed/max plan length)

� use polynomial preprocessing to simplify SAT instance

(unit propagation, subsumption, etc.)

� use SAT algorithm to solve simplified SAT instance

(WalkSAT, satz, etc.)

� decode propositional model into plan

Hoos / Sẗutzle Stochastic Search Algorithms 178

Advantages:

� highly competitive with best known general purpose planners

[Kautz & Selman, 1996]

� makes use of very advanced propositional reasoning technology

� benefits from any improvements in SAT solving

(software & hardware)

Potential disadvantages:

� potentially more difficult to integrate domain-specific knowledge

� very large, explicit intermediate representations (CNF formulae)

� overhead through encoding / decoding

Hoos / Sẗutzle Stochastic Search Algorithms 179

Lifting SLS techniques to plan level:

� search directly in a space of candidate plans

� use SLS techniques for SAT at plan level

� add new, planning specific SLS strategies (GLSM states)

; LPSP algorithm for linear planning [Brafman & Hoos,

1998–1999]

Hoos / Sẗutzle Stochastic Search Algorithms 180

Search initialisation: Bi-directional stochastic search

(construction heuristic)

Search steps:

Best-Replacement:replace single action such that a maximal

number of flaws (unsatisfied preconditions of actions)

is removed from the current plan

Flaw-Repair: randomly chose a flaw from the current

plan and repair it by replacing a single action

Reorder: reorder current plan heuristically, trying to minimise

number of flaws and throwing out superfluous actions

Additionally: use reachability analysis as preprocessing step

to prune out impossible actions

Hoos / Sẗutzle Stochastic Search Algorithms 181

Run-time of LPSP vs. SATPLAN

instance plan length LPSP WalkSAT satz

mean vc mean vc

bw large.a 6 0.096 0.53 0.73 n=a 0.56

bw large.b 9 1.22 0.82 3.61 0.88 1.44

bw large.c 14 4.62 0.61 62.96 0.99 5.82

bw large.a 18 31.18 0.60 152.05 0.94 > 60

log.a 6 0.068 0.48 4.33 n=a 4.33

log.b 10 0.69 1.37 11.56 n=a 11.58

log.c 16 13.50 1.11 1,075.17 0.67 > 60

Hoos / Sẗutzle Stochastic Search Algorithms 182

Advantages:

� excellent performance for linear planning

� facilitates combination of general-purpose

and domain-specific SLS strategies

� avoids large intermediate representations

� easier to analyse / understand

Disadvantages:

� more complex, planning specific SLS algorithm

� more difficult to implement

� allows less use of “off-the-shelve” solver technology

Hoos / Sẗutzle Stochastic Search Algorithms 183

Combinatorial Auctions

Auctions are attractive as mechanisms for ...

� E-commerce (business transactions, sales)

� resource allocation

(radio frequencies, pollution rights, scheduling)

� coordinating agents in multi-agent systems

; increasing interest in CS / AI

Hoos / Sẗutzle Stochastic Search Algorithms 184

Standard, single item auctions:

� winner determination is easy

� cannot express complementarities of goods

Combinatorial auctions (CAs):

� bidding for bundles

� allows to express preferences more directly

� minimises buyer’s risk of getting incomplete combinations

Hoos / Sẗutzle Stochastic Search Algorithms 185

Example: (fictitious — at least for now)

Driving rights (polution control / restricted traffic capacity):

people bid for the guarantee to drive their car on a autobahn on

certain days.

Bidder A wants to go to from Berlin to Bremen over the weekend,

thus has to bid for Fri and Sun autobahn access.

; A needs both access permits (=bundle of items)

Hoos / Sẗutzle Stochastic Search Algorithms 186

Winner determination for CAs

Given:

� set of goods to be auctions

� set of bids for combinations (sets) of these goods

Problem:

Determine assignment of goods to bidders maximising total revenue

(sum of prices for satisfied bids).

Hoos / Sẗutzle Stochastic Search Algorithms 187

SLS algorithms for CA

search space:space of feasible, partial assignments

solution set: assignments with optimal / given revenue

neighbourhood relation: assignments reachable by reassigning set

of goods such that one formerly unsat bid becomes satisfied

search initialisation function: start with empty assignment

search step function: picks a neighbour according to

stochastic heuristich

[Hoos, Boutilier 2000]

Hoos / Sẗutzle Stochastic Search Algorithms 188

Casanova, one algorithm of this family ...

� was designed based on principles and methods developed

and tested for SLS algorithms for SAT

� outperforms best known algorithm for CA (CASS) for large

problems

with fixed cutoff times significantly

� although incomplete, finds optimal solutions to small

CA instances, often much faster than systematic search

� scales better with growing problem size than other methods

� can be easily parallelised with optimal speedup

Hoos / Sẗutzle Stochastic Search Algorithms 189

Run-time distributions for finding optimal solution

for a hard instance with 100 goods, 100 bids

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

P
(f

in
d

op
tim

al
 s

ol
ut

io
n)

run-time [CPU sec on Pentium II, 300MHz]

Casanova
CASS

Hoos / Sẗutzle Stochastic Search Algorithms 190

Run-time distributions for finding optimal solution

for a hard instance with 200 goods, 200 bids

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

P
(f

in
d

op
tim

al
 s

ol
ut

io
n)

run-time [CPU sec on Pentium II, 300MHz]

empirical RTD
ed[0.6]

Hoos / Sẗutzle Stochastic Search Algorithms 191

Average Revenue for CASS vs. Casanova

(fixed run-time)

problem type # goods # bids CASS Casanova Gain

simple uniform (3) 200 10000 281413 286164 1.69%

simple binomial (0.01) 500 5000 583279 616708 5.73%

simple exponential (5) 500 5000 647629 655329 1.19%

cnf uniform (3) 100 100 104868 127011 21.12%

cnf poisson (2) 100 500 101568 135973 33.87%

k-of uniform (2,4,2) 100 100 48812 59938 22.79%

Hoos / Sẗutzle Stochastic Search Algorithms 192

Conclusions and Issues for Future Research

Hoos / Sẗutzle Stochastic Search Algorithms 193

Conclusions

� Stochastic search is one of the most efficient approaches

for solving combinatorial problems in practice

� Studying stochastic search algorithms for conceptually simple

domains, such as SAT or TSP, facilitates development,

analysis, and understanding of algorithms

� Advanced empirical methodology helps to characterise

and exploit stochastic search behaviour based on

computational experiments

� Lots of potential application areas, lots of interesting

research questions

Hoos / Sẗutzle Stochastic Search Algorithms 194

Future Work

� further advance understanding of stochastic search behaviour

(; search space analysis, new theoretical & empirical results)

� further improvements in stochastic search algorithms

(; hybrid algorithms, adaptive algorithms)

� application to real-world problems

(e.g., intelligent systems, e-commerce, bioinformatics)

Hoos / Sẗutzle Stochastic Search Algorithms 195

Stochastic search is a general approach

for solving combinatorial problems with

significant research and practical potential,

but: it is certainly no panacea.

Hoos / Sẗutzle Stochastic Search Algorithms 196

