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Abstract. This paper examines the performance of hill-climbing algo-
rithms on standard test problems for combinatorial auctions (CAs). On
single-unit CAs, deterministic hill-climbers are found to perform well,
and their performance can be improved significantly by randomizing
them and restarting them several times, or by using them collectively. For
some problems this good performance is shown to be no better than chan-
cel; on others it is due to a well-chosen scoring function. The paper draws
attention to the fact that multi-unit CAs have been studied widely un-
der a different name: multidimensional knapsack problems (MDKP). On
standard test problems for MDKP, one of the deterministic hill-climbers
generates solutions that are on average 99% of the best known solutions.

1 Introduction

Suppose there are three items for auction, X, Y, and Z, and three bidders, B1,
B2, and B3. Bl wants any one of the items and will pay $5, B2 wants two items
— X and one of Y or Z — and will pay $9, and B3 wants all three items and will
pay $12. In a normal auction items are sold one at a time. This suits buyers like
B1, but not B2 and B3: they cannot outbid Bl on every individual item they
require and stay within their budget. If X is auctioned first it will likely be won
by B1, and the seller’s revenue ($5) will be much worse than optimal ($14). In
a combinatorial auction (CA) each bid offers a price for a set of items (goods).
Thus, bidders can state their precise requirements and the seller can choose the
winners to optimize total revenue (sum of the selected bids’ prices).
Combinatorial auctions have been studied since at least 1982[32], when they
were proposed as a mechanism for selling time-slots at airports in order to per-
mit airlines to bid simultaneously for takeoff and landing time-slots for a given
flight. Fuelled by the FCC’s interest [13] and potential e-commerce [22] and other
applications [21, 25], interest in combinatorial auctions has increased rapidly in
recent years. Among the many research issues raised, of main interest to Al is
the fact that “winner determination” - selecting the set of winning bids to opti-
mize revenue - is a challenging search problem. A recent survey of CA research
is given in [10]. Previous research has mainly focused on single-unit CAs, in
which there is exactly one copy of each item. Multi-unit CAs, in which there
can be any number of identical copies of each item, were introduced to the Al



community in [27], which claimed the problem was new. One contribution of the
present paper 1s to point out that multi-unit CAs have been studied extensively
in the Operations Research literature, where they are called multidimensional
knapsack problems (MDKP).

This paper examines the performance of hill-climbing algorithms on standard
test problems for CAs. Theoretical analysis shows that greedy algorithms cannot
guarantee finding near-optimal solutions for winner determination [1, 7, 9, 12,
15, 17, 18, 29, 33, 34]. But these are mostly worst-case results, and in some
cases apply only to specific types of greedy algorithm and not to the type of
hill-climbing algorithm considered here. The main finding of this paper is that
on the standard CA and MDKP test sets, hill-climbers perform very well.

2 The Hill-climbing Algorithms

The hill-climbing algorithms compared in this paper are identical except for the
criterion used to select which successor to move to. Search begins with the empty
set of bids and adds one bid at a time. Because bids have positive prices and
search can only add bids to the current bid-set, the total revenue for the current
bid-set must increase as search proceeds. Search terminates when a bid-set is
reached that has no successors. The solution reported is the bid-set seen during
search that maximizes revenue, which may be different than the local maximum
at which the search terminated.

Each different way of adding one bid to the current bid-set creates a potential

successor. A potential successor is eliminated if it is infeasible or if it can be
shown that no extension of it can possibly yield a greater revenue than the best
solution seen so far. For this purpose Sandholm & Suri’s “admissible heuristic”
(p.96, [35]) is used. Of the remaining successors the one that adds the bid with
the maximum “score” is selected to be the current bid-set and and the process
is repeated. Three different ways of computing a bid’s score are considered:
Price: the bid’s price
N2norm: the bid’s price divided by its “size”, where the size of bid j is the 2-
norm (square root of the sum of squares) of the f; ;, the fraction of the remaining
quantity of item ¢ that bid j requires.
KO: the bid’s price divided by its “knockout cost”, where a bid’s knockout cost
is the sum of the prices of the available bids that are eliminated if this bid is
chosen. KO is the only novel scoring function; the others, and many variations
of them, have been studied previously [5, 17, 23, 28, 39, 40].

Also included in the experiments is a form of randomized hill-climbing in
which, after pruning, a successor is chosen randomly: the probability of choosing
each successor is proportional to its score. Such hill-climbers can produce differ-
ent solutions each time they are run. In the experiments each is restarted from
the empty bid-set 20 times and the best solution on any of the runs is recorded.
In the tables these are identified by appending x20 to the scoring function. For
example, Pricex20 is the randomized hill-climber that makes its probabilistic
selection based on Price.



heuristic || arb | match | path | r75P | r9oP | r90N | sched |

1. Price 3 39 4 0 10 8 14
2. N2norm 4 39 11 0 11 9 14
3. KO 4 25 14 1 10 8 15
best of 1-3 5 54 28 1 11 9 27
4. Pricex20 12 39 4 1 19 15 22
5. N2normx20|| 9 39 11 0 15 13 19
6. KOx20 13 25 14 1 18 16 22
best of 4-6 19 54 28 2 26 22 37

Table 1. Percentage of problems on which the heuristic solution is optimal

3 The Test Problems

Test problems were generated using the CATS suite of problem generators ver-
sion 1.0 [26]. Each problem generator in CATS models a particular realistic
scenario in which combinatorial auctions might arise. For example, matching.c
models the sale of airport time-slots. The experiments use each of CATS’s five
generators for single-unit CAs, one with 3 different parameter settings, for a
total of seven different types of test problem. The abbreviations used to identify
the type of test problem in the tables of results and the corresponding CATS
program and parameter settings are as follows (default parameter settings were
used except as noted): arb (arbitrary.c), match (matching.c), path (paths.c
with NUMBIDS=150), r90P (regions.c), r90N (regions.c with ADDITIVITY=
-0.2), r75P (regions.c with ADDITIONAL LOCATION= 0.75), sched (schedul-
ing.c with NUMGOODS=20 and NUMBIDS=200).

100 instances of each problem type are generated. In addition to the hill-
climbers, a systematic search algorithm is run in order to determine the optimal
solution. This 1s a relatively unsophisticated branch-and-bound search. There
were a handful of instances that it could not solve within a 1 million node limit;

these are excluded from the results.

4 Heuristic Hill-climbing Experimental Results

Tables 1-3 have a column for each type of test problem and a row for each
of the hill-climbers. There are also two “best of” rows. “Best of 1-3” refers to
the best solution found by the deterministic hill-climbers on each individual
test problem. “Best of 4-6” is the same but for the randomized hill-climbers.
Because hill-climbing is so fast, these represent realistic systems which run a set
of hill-climbers on a given problem and report the best of their solutions.
Table 1 shows the percentage of test problems of a given type that are solved
optimally by a given hill-climber. On the r75P problems the hill-climbers almost
never find the optimal solution. On match, path, and sched problems, the
deterministic hill-climbers collectively (best of 1-3) find the optimal solution on



heuristic || arb |match| path | r75P | r90P | r90N | sched |

1. Price 60-69 (1) ] 80-89 (8) [ 70-79 (2) | 50-59 (3) [ 70-79 (7) ] 60-69 (1) | 60-69 (1)
2. N2norm  ||70-79 (22)] 80-89 (8) | 80-89 (4) | 60-69 (7) [ 70-79 (8) | 60-69 (1) | 70-79 (8)
3. KO 60-69 (1) | 80-89 (3) | 80-89 (3) [60-69 (16)| 70-79 60-69 (1) | 70-79 (2)

(7)
best of 1-3  ||70-79 (14)]90-99 (46)| 80-89 (1) | 60-69 (2) | 70-79 (4) | 70-79 (5) | 80-89 (9)
4. Pricex20  ||80-89 (23)[80-89 (7) [80-89 (28)] 70-79 (2) [ 70-79 (1) [80-89 (18)[80-89 (11)
5. N2norm x 20| 70-79 (1) | 80-89 (7) | 80-89 (3) | 70-79 (1) [80-89 (11)[80-89 (21)[80-89 (13)
6. KOx20 80-89 (29)] 80-89 (1) | 80-89 (3) | 70-79 (2) [80-89 (13)]80-89 (16)] 70-79 (1)
best of 4-6  ||80-89 (10)[90-99 (46)[90-99 (72)[80-89 (29)] 80-89 (3) | 80-89 (4) | 80-89 (1)

11)
13)

Table 2. Suboptimality decile of the worst heuristic solutions

over a quarter of the problems, and on all types of problem except r75P the
randomized hill-climbers collectively find the optimal solution on between 19%
and 54% of the problems.

Table 2 summarizes the worst solutions found by each heuristic on each type
of problem. The heuristic’s solution, as a percentage of the optimal solution,
is put into a 10-point bin, or decile (e.g. 63% falls in the 60-69% decile). The
worst non-empty decile is reported in the table; in brackets beside the decile
is the percentage of test problems that fell into that decile. For example, the
60 — 69(1) entry in the upper left indicates that on 1% of the arb problems, the
solutions found by the Price hill-climber were 60-69% of optimal, and on none of
the arb problems were this hill-climber’s solutions worse than 60% of optimal.
On all the problems all the hill-climbers find solutions that are 50% of optimal
or better, and only very rarely do any of them find solutions worse than 70%
of optimal. The solutions found by the randomized hill-climbers are very rarely
worse than 80% of optimal.

Table 3 gives the average percentage of optimal of the solutions found by each
heuristic on each type of problem. The first row is for the “blind” hill-climber
discussed in the next section and will be ignored until then. r75P is clearly
the most difficult type of problem for the hill-climbers. arb, r90P and r90N
are moderately difficult for the deterministic hill-climbers. On all problem types
other than r75P the randomized hill-climbers find solutions that are more than
90% of optimal on average (95% if taken collectively).

The differences between the solutions found by the different hill-climbers are
not large in most cases, but paired t-tests indicate that some of the differences
are significant (p < 0.05). On all types of problem except match, where the dif-
ference was not significant, a randomized hill-climber is significantly better than
the deterministic version with the same scoring function and the randomized
hill-climbers collectively (“best of 4-6”) are significantly better than the deter-
ministic hill-climbers collectively. The Price scoring function is never superior to
others. For deterministic hill-climbing KO 1is significantly better than N2norm
on sched problems, but the opposite is true on arb, path and r75P problems.
For randomized hill-climbing N2norm is significantly better than KO on path



heuristic || arb | match | path | r75P | r9oP | r90N | sched |

blind 84 63 52 73 90 88 65
1. Price 85 97 91 75 90 89 92
2. N2norm 87 97 97 81 90 89 92
3. KO 86 97 96 79 90 89 94
best of 1-3 87 99 98 83 90 89 96

4. Pricex20 94 97 92 88 95 94 95
5. N2normx20|| 93 97 97 89 94 94 95
6. KOx20 93 97 96 90 95 94 96
best of 4-6 95 99 98 92 96 96 98

Table 3. Average solution value as a percentage of optimal

problems; on all other types of problem either the difference is not significant or
KO is better.

The overall conclusion of this experiment is that hill-climbing always finds ac-
ceptable solutions, usually very good ones, for the problem types studied. r75P
is the most challenging problem type. On it the hill-climbers rarely find an opti-
mal solution, but the randomized hill-climbers collectively find a solution that is
at least 90% of optimal more than 60% of the time. Thus, very good solutions are
found most of the time even on the most challenging type of problem. Problem
types match, path, and sched are the easiest. For them very good solutions
can almost always be found even by the deterministic hill-climbers (collectively).

5 Blind Hill-climbing

The experiment in this section was suggested by the unexpectedly strong per-
formance of Monte Carlo search on some of the standard test problems for the
multidimensional knapsack problem [4]. The previous section has shown that the
scoring mechanisms used by the hill-climbers, especially KO and N2norm, lead
to good solutions. But perhaps a blind hill-climber, which, after pruning, selects
among successors randomly with uniform probability, would do equally well. To
examine this, 100 instances of each problem type were generated, as above, and
solved by the deterministic hill-climbers. In addition, each instance was solved
200 times by the blind hill-climber.

Table 4 gives the percentage of the blind hill-climber’s solutions that are
strictly worse than the solution found by a particular deterministic hill-climber
on each problem type. On match, path and sched problems the deterministic
hill-climbers virtually always outperformed the blind hill-climber. On these types
of problem a well-chosen scoring function is essential for good performance. On
the other types of problem the scoring functions were no better than chance. This
may also be seen by comparing the blind hill-climber’s average solution quality
— the first row in Table 3 — with the averages for the deterministic hill-climbers.



heuristic” arb | match | path | r75P |r90P |I‘90N |sched|

1. Price 20 100 100 53 7 6 98
2. N2norm|| 40 100 100 76 16 23 99
3. KO 20 100 100 63 7 6 99

Table 4. Percentage of blind solutions worse than heuristic solutions

|% of optimaIH arb | match | path | r75P |r90P |I‘90N | sched |

10 — 19 0.01

20 —29 0.005 2

30 — 39 1 13 0.05

40 — 49 8 29 0.12 6

50 — 59 29 32% 4 30

60 — 69 2 38* 19 30 0.56 33%*

70 —-179 21 20 5 48%* 9 13 20

80 — 89 63* 4 0.7 16 46* 45% 8

90 — 99 13 0.1 0.03 2 34 33 1.5
100 1 11 9 0.075

Table 5. Percentage of blind solutions in each suboptimality decile

Each column in Table 5 is a histogram. Each of the blind hill-climber’s so-
lutions is expressed as a percentage of the optimal solution and put into the
appropriate decile. The table shows what percentage of the solutions fall into
each decile for each type of problem. For example, the 0.01 at the top of the path
column means that on problems of type path 0.01% of the blind hill-climber’s
solutions were 10-19% of optimal (i.e. extremely poor). A blank entry represents
0. In each column an asterisk indicates the median decile. On match, path and
sched problems blind hill-climbing sometimes produces very poor solutions and
has a poor median. The opposite is true of arb, r90P and r90N. On these
types of problems no blind hill-climbing solution is worse than 60% of optimal
and the median decile is 80-89%. r75P is of medium difficulty. The bottom row
gives the percentage of blind hill-climbing runs which find the optimal solution.
Comparing this to the deterministic hill-climbing rows in Table 1, it is apparent
that on arb, r90P and r90N problems the ability of the scoring functions to
guide the hill-climber to optimal solutions is no better than chance, whereas on
match, path and sched problems they are far better than chance.

Two overall conclusions follow from the experiments in this and the preceding
section. In problems of type match, path and sched good solutions are rela-
tively rare, but the scoring functions are very effective for these problems and
deterministic hill-climbing performs very well on them. If suboptimal solutions
are acceptable, problems of these types (with the parameter settings used in this
study) are not especially promising as testbeds for comparing search strategies.
By contrast, for problems of type arb, r90P, r90N and r75P the guidance



hill—climber”mknapl mknap2 | mknapcbl | mknapcb2 | mknapcb3 | mknapcb?

1. Price 90 94 89 89 89 93

2. N2norm 98.99 99.00 98.94 99.03 99.21 98.35

3. KO 83 79 85 85 85 85
blind 84 58 82 83 83 81

Table 6. Average solution value as a percentage of optimal

of the scoring functions is no better than chance. These types of problems are
therefore good choices for evaluating search strategies, but in using them it is
crucial to take into account the high baseline performance of blind hill-climbing.

6 Multidimensional Knapsack Experimental Results

A multi-unit combinatorial auction is precisely a multidimensional knapsack
problem (MDKP): each item in the auction is a “dimension” and including a bid
in the solution bid-set corresponds to putting the bid into the knapsack. MDKP
has been the subject of several theoretical analyses [6, 9, 12, 15, 29, 38] and
experimental investigations involving all manner of search methods, including
genetic algorithms[8, 20, 24], TABU search [2, 19], local search [5, 11, 30] and
classical complete algorithms such as branch-and-bound [16, 37] and dynamic
programming [41]. A good review of previous work is given in [8].

A standard set of test problems for the MDKP is available through J. Beasley’s
ORLIBJ[3]. Files mknap1 [31] and mknap2 [14, 36, 37, 41] contain real-world test
problems widely used in the literature. The others were generated with the aim of
creating more difficult problems[8]. Each problem has an associated best known
solution, which in some cases is known to be optimal, and in all cases is extremely
close to optimal.

The hill-climbing algorithms were run on the six test sets indicated in the
column headings of Table 6. N2norm performs extremely well. Its average so-
lution is 99% of the best known solution on all the test sets except mknapch?7,
where its average is 98.35%. Only on two problems in mknap2 is its solution
worse than 90% of the best known (those solutions are in the 80-89% range). On
more than 25% of the problems in mknapl and mknap2 its solution is equal to
the best known (this virtually never happens for the other test sets). N2norm
is competitive with all previously reported systems on these datasets, and supe-
rior to previous “greedy” approaches. The blind hill-climber’s median decile is
50-59% for mknap2, but it is 80-89% for the other test sets, indicating that very
good solutions are abundant. KO performs poorly in the multi-unit setting.

7 Conclusions

The primary aim of this paper has been to examine the performance of hill-
climbing algorithms on standard test problems for combinatorial auctions (CAs).



On the CATS suite of test problems for single-unit CAs deterministic hill-
climbers perform well, and their performance can be improved significantly by
randomizing them and restarting them several times, or by using them collec-
tively. For some types of problem their performance, although good, is no better
than chance: these types of problems therefore have an abundance of high-quality
solutions. Providing the chance performance baseline is taken into account these
problems are good testbeds for comparative studies. On the other types of CATS
problems the good performance is due to the scoring function that guides the
hill-climbing. Unless parameter settings can be found which result in poor per-
formance by the hill-climbers, these problems are not especially good choices for
testbeds in experiments where suboptimal solutions are permitted. On the stan-
dard test problems for multi-unit CAs (also known as multidimensional knapsack
problems) deterministic hill-climbing using N2norm as a scoring function gener-
ates solutions that are on average 99% of the best known solutions; it is therefore
competitive with all previously reported systems on these problems.
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