
MIC��� � III Metaheuristics International Conference �

Analyzing the Run�time Behaviour of Iterated Local Search for the TSP

Thomas St�utzle
�
and Holger H� Hoos

�

�Universit�e Libre de Bruxelles� IRIDIA
Avenue Franklin Roosevelt ��� CP ������ ���� Brussels� Belgium	

E
mail � tstutzle�ulb�ac�be

�University of British Columbia� Computer Science Department
�
�� Main Mall� Vancouver� BC� V�T �Z� Canada	

E
mail � hoos�cs�ubc�ca

� Introduction

Metaheuristics strongly involve random decisions during the search process� Such random deci�
sions are� for example� due to random initial solutions� randomized tie breaking criteria� randomized
sampling of neighborhoods� probabilistic acceptance criteria and many more� Because of their nonde�
terministic nature� the run�time required by such an algorithm to achieve a speci�c goal � like �nding
an optimal solution to a given problem instance � is a random variable� Obviously� knowledge on the
distribution of this random variable can give valuable information for the analysis and the character�
ization of an algorithm�s behavior� provide a basis for the comparison of algorithms� and give hints
on possible improvements of an algorithm�s performance ���� To obtain empirical knowledge on the
run�time distribution 	RTD
 of an algorithm when applied to a speci�c problem instance� one may
estimate the RTD from data collected over several runs of the algorithm and possibly approximate the
empirically observed RTD by a distribution function known from probability theory� If similar behav�
ior is observed on all tested instances from a particular problem class� for example� on Euclidean TSP
instances� the observed type of RTDs characterizes the run�time behavior on this problem class� The
RTDs may also give an indication under which conditions an algorithm may be improved� As we will
later explain� the exponential distribution plays a crucial role for judging an algorithm�s e�ectiveness�

In this work we investigate the run�time behavior of local search algorithms for optimization
problems� in particular� of Iterated Local Search 	ILS
 algorithms for the Traveling Salesman Problem
	TSP
� Iterated local search 	ILS
 ��� 
�� 

� ��� is a very simple and powerful metaheuristic which
has proved to be among the best performing approximation algorithms for the well known Traveling
Salesman Problem 	TSP
 �
�� 

�� ILS is based on the observation that iterative improvement local
search is easily trapped in local minima� Instead of restarting the local search from a new� randomly
generated solution� a better idea may be to modify the current solution� moving it to a point beyond
the neighborhood searched by the local search algorithm� ILS then continues the local search from the
so perturbed solution� An acceptance criterion determines to which local optimum the perturbation
step is applied� In fact� in almost all ILS applications the solution modi�cations are always applied
to the best solution found since the start of the algorithm �
�� ����

ILS algorithms make heavily use of random decisions and� in particular� the solution perturbations
are randomized� Therefore� as argued before� measuring RTDs is potentially very helpful for analyzing
ILS� performance� To empirically measure the RTDs we run a given algorithm many times on the same
problem instance and collect some elementary data� in each run it su�ces to report the solution quality
whenever a new best solution is found� the computation time needed to obtain it� and possibly some
other statistic data for further analysis� Then� a posteriori the empirical distributions for di�erent
bounds on the required solution quality can be easily estimated� Then� a posteriori the empirical
distribution run�time distribution Gc	t
 to reach a solution quality bound c can be easily computed

as cGc	t
 � j fj j rt	j
 � t � f	sj
 � cg j �k� For some problems� optimal solutions or tight bounds

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



� MIC��� � III Metaheuristics International Conference

on the optimal solution value may be known� In such a case it might be preferable to �x the solution
quality bound c relative to the optimal solution value� that is� to require the algorithm to get within a
certain percentage of the optimal solution value� The analysis of ILS run�time behavior reported in this
work suggests improvements of the standard ILS algorithm� we exemplify the improved performance
by giving some experimental results on known benchmark instances�

The paper is structured as follows� First� in Section � we introduce the TSP� In the next section
we give details on the ILS implementations we used in our study� Then� Section � gives the results of
the analysis of the RTDs� Based on this analysis we present computational results for improved ILS
variants in Section � and end with some concluding remarks in Section ��

� The Travelling Salesman Problem

The TSP is an NP�hard ��� optimization problem which is extensively studied in the litera�
ture �

� 
�� ���� It has become a standard test�bed for new algorithmic ideas and a good performance
on the TSP is often taken as a proof for the usefulness of an algorithmic approach� Intuitively� the TSP
is the problem of a salesman who wants to �nd� starting from his home town� a shortest possible trip
through a given set of customer cities and to return to its home town� More formally� it can be repre�
sented by a complete� weighted graph G � 	N�A� d
 with N being the set of nodes� also called cities� A
being the set of edges fully connecting the nodes� and d is a weight function which assigns to each arc
	i� j
 � A a value dij which represents the distance between cities i and j� The TSP is the problem of
�nding a minimal length Hamiltonian circuit of the graph� where a Hamiltonian circuit is a closed tour
visiting each of the n � jN j nodes of G exactly once� For symmetric TSPs� the distances between the
cities are independent of the direction of traversing the arcs� that is� dij � dji for every pair of nodes� In
the asymmetric TSP 	ATSP
 at least for one pair of nodes i� j we have dij �� dji� All the TSP instances
used in the empirical studies presented in this article are taken from the TSPLIB Benchmark library ac�
cessible at http���www�iwr�uni�heidelberg�de�iwr�comopt�soft�TSPLIB���TSPLIB�html� These
instances are actually Euclidean instances� that is� the cities are given points in the Euclidean space
and the distance is the Euclidean distance between the points� These instances� in fact� have been
used in many other algorithmic studies and partly stem from practical applications to the TSP� In
Figure ��
 we show two example TSPLIB instances�

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

"att532"

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

"fl1577"

Figure ��
 � TSP instances att��� 	left side
 and fl��		 	right side
 from TSPLIB with ��� and 
���
cities� resepctively� The �rst instance is based in ��� cities in the USA while the second instance�
which stems from a drilling problem� shows a pathological clustering of the cities�

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference �

� Iterated Local Search for the TSP

��� Algorithmic Outline

Iterated Local Search is a very simple and powerful metaheuristic which has provided the basis
for some of the best performing approximation algorithms for the TSP �
�� 

�� ILS is based on the
observation that local search algorithms are easily trapped in local minima� Instead of restarting
the local search from a new� randomly generated solution� it is usually a better idea to modify the
current solution s� such that it is moved to a point s� beyond the neighborhood searched by the
local search algorithm and to restart the local search from s� to reach a new local minimum s��� An
acceptance criterion determines whether the search is continued from s� or s�� 	or possibly from some
other solution
� This is captured in the algorithmic outline given in the following algorithmic outline�

procedure Iterated Local Search
s� � GenerateInitialSolution

s � LocalSearch�s��
repeat

s� � Modify�s�
s�� � LocalSearch�s��
s � AcceptanceCriterion�s� s���

until termination condition met
end

The instantiation of the functions LocalSearch� Modify� and AcceptanceCriterion is an important
issue in the design of ILS algorithms� In the following we discuss the choices for these functions for
the ILS algorithms we applied to the TSP�

��� Generic Algorithm Choices for the Symmetric TSP

����a Choice of LocalSearch

In principle� any local search algorithm can be used� but the choice of the particular local search
algorithm may have a crucial in�uence on the �nal performance of the ILS algorithm� In this paper
we consider three possible local search algorithms for the TSP� The most simple ones to implement are
��opt and ��opt� which try to �nd an improved solution by exchanging two or at most three edges�
respectively� However� typically the best performance with respect to solution quality is obtained
with the considerably more complex Lin�Kernighan heuristic 	LK
 �
��� For each move� it considers a
variable number of edges to be exchanged� Yet� a disadvantage of the LK heuristic is that considerable
implementation e�ort is required to achieve short run�times and best performance with respect to
solution quality� ��opt and ��opt� on the other hand� are much simpler to implement and may
therefore be the preferred choice for practitioners� Additionally� ��opt and ��opt�s run�time is much
more robust with respect to the particular instance type than LK�s run�time� In particular� LK�s run�
time grows strongly when applied to highly clustered TSP instances like instance fl��		 plotted in
Figure ��
 �

�� Therefore� we did not apply the LK heuristic to such clustered instances� In the
following� we will refer to the ILS algorithms using ��opt and ��opt and LK local search as Iterated
��opt 	I�opt
� Iterated ��opt 	I�opt
� and Iterated LK 	ILK
� respectively�

In the experiments with ILS we used our own ��opt and ��opt implementation� while the LK local
search algorithm was kindly provided by Olivier Martin 	details on that implementation are given in
�
��
� Our ��opt and ��opt implementations use standard speed�up techniques which are described

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



� MIC��� � III Metaheuristics International Conference

in ��� 

� 
��� In particular we perform a �xed radius nearest neighbor search within candidate lists of
the �� nearest neighbors for each city and use don�t look bits� Initially� all don�t look bits are turned
o� 	set to �
� If for a node no improving move can be found� its don�t look bit is turned on 	set
to 

 and the node is not considered as a starting node for �nding an improving move in the next
iteration� When an arc incident to a node is changed by a move� the node�s don�t look bit is turned
o� again� These speed�up techniques achieve that both algorithm�s run�time grows subquadratically
with instance size�

����b Choice of Modify

ForModify we use the so called double�bridge move which is the standard choice for ILS applications
to the TSP �
�� 
�� 

�� It cuts the current tour at four appropriately chosen edges into four subtours
s� � s� � s� � s� which are contained in the solution in the given order� These subtours are then
reconnected in the order s� � s� � s� � s� to yield a new starting solution for the local search� The
double�bridge move is a speci�c ��opt move done in such a way that it cannot be reversed directly
by either of the three local search algorithms applied here� In preliminary experiments we found that
best performance is obtained if the edges cut by the double�bridge move are not chosen completely
at random� Instead� we proceed as follows� in I�opt and I�opt we �rst randomly choose an edge
	i� j
 at random� The other three cut�points are then chosen such that they all lie within a candidate
set of the maxfn��� ���g nearest neighbors of city i� Such an approach has also been shown to be
e�ective on large TSP instances ����� Alternatively� length restrictions on the newly introduced edges
are imposed in the original ILK code of �
��� In particular� in the experiments we report here a newly
introduced edge has to be shorter than �� times the average edge length of the current solution�

We further found that the interaction between the double�bridge move and the setting of the don�t
look bits after Modify is important to achieve a good tradeo� between solution quality and run�time�
For ILK it was found experimentally was found that a very good tradeo� is achieved by only resetting
only the don�t look bits of the cities directly a�ected by the double�bridge move to zero �

� 
��� Yet�
for I�opt and I�opt we found that the performance with such a resetting strategy was relatively poor
with respect to solution quality� Here� a good compromise was found by resetting the don�t look bits
of a number of the cities� in the experiments chosen as ��� preceding and following a cut�point�

����c Choice of AcceptanceCriterion

Common knowledge in ILS applications to the TSP and also to other combinatorial optimization
problems appears to be that accepting better quality solutions only gives the best performance �
��

�� 
�� 

� �� ��� Consequently� we will use this acceptance criterion as the basis of our analysis� we
will denote it as Better	s� s��
 and it returns s�� if tour s�� is shorter than s� otherwise it returns s� If
side�moves are allowed� that is� a new solution is also accepted if it has the same cost as the current
one� we will call the acceptance criterion BetterEqual	s� s��
� Yet� it should already be noted here that
only occasionally for speci�c instances an improved performance has been reported with acceptance
criteria which may accept worse solutions with a small probability �
�� ����

����d Initial Solution

The initial solution for all the ILS algorithms applied are generated by the nearest neighbor
heuristic� Compared to random initial tours� this choice reduces the run�time for the �rst local search
application�

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference �

��� Generic Algorithm Choices for the Asymmetric TSP

When applying ILS to the ATSP� the generic algorithm choices are the same as for the symmetric
TSP except that we apply a particular ��opt algorithm which we called reduced ��opt� Note that in
��opt and some ��opt moves subtours have to be traversed in the opposite direction and in this case
for the ATSP the length of that subtour would have to be re�computed from scratch� To avoid this�
reduced ��opt only applies one speci�c ��opt move which does not lead to a reversal of any subtour�
For modify� again the double�bridge move can be applied since it does not reverse any subtour� The
acceptance criterion and the choice of the initial solution are the same as for the symmetric TSP�

Surprisingly� in the literature no results for the application of ILS to the ATSP are reported� The
only ILS application to ATSPs is described in ���� in the context of a speci�c code optimization problem
which is formulated as an ATSP� But there� the ATSP instances are solved via a transformation to the
symmetric TSP and by then applying an iterated ��opt algorithm for symmetric TSPs� Consequently�
the results presented here are the �rst evidence that ILS can be applied directly to the ATSP with
considerable success�

� Run�Time Distributions for ILS Applied to the TSP

In this section we analyze the empirical run�time behavior of iterated local search algorithms for the
TSP� In particular� we study RTDs for I�opt� I�opt� and ILK for the symmetric TSP and Ired��opt

for the ATSP� Since the run times needed to observe limiting behavior of the algorithms become rather
high for large TSP instances� we limited most part of the study to instances with less than 
��� cities�
For each instance� RTDs have been measured using 
�� independent runs of each algorithm and in
the plots always on the x�axis the run�time is indicated and on the y�axis the cumulative empirical
RTD is given�

The run�time distributions are given with respect to various bounds on the solution quality� In
addition to the empirical run�time distributions we plot the cumulative distribution function of an
exponential distribution 	indicated by f	x
 in the plots
 adjusted towards a run�time distribution
corresponding to high quality solutions� These particular exponential functions 	the distribution
function is given by f	x
 � 
 � e��x� x � �
 give valuable hints on possible improvements of an
algorithm�s performance� Recall that� based on a well�known theorem from probability theory� if a
given algorithm has an exponential RTD� then the probability of �nding a solution by running the
algorithm k times for time t is the same as when running the algorithm once for time k � t� Hence� if
the RTD is in fact an exponential� in the long run� such restarts will not a�ect the solution probability�
The plotted exponential distributions give an indication whether the algorithm can be improved by
restarting it from a new initial solution� This is the case if the empirical run�time distribution falls
below the plotted exponential� As we will see� for the ILS algorithms considered here� this occurs for
many of the instances�

To obtain these run�time distributions we limited the maximally allowed computation time on
the single instances to some upper CPU�time limit which was increased with increasing instance size�
In each case the computation times are chosen large enough to ensure that the algorithm shows
asymptotic performance and that the further increase of solution quality by allowing still longer
computation times should be negligibly small�

��� Operation counts

Actual run�time distributions may be obtained by directly measuring CPU�time or by using rep�
resentative operation counts as a more machine independent measure of an algorithm�s performance

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



� MIC��� � III Metaheuristics International Conference

�
�� A natural choice for a high�level operation count for the ILS algorithms applied here is given by
the number of times a local search is applied�� To establish the relation between CPU�time and local
search iterations� in Table ��
 we give the average CPU�time measured on a single ���MHz Pentium
II CPU and ���MB RAM under Redhat Linux ��� when running I�opt� I�opt� and Ired��opt for
������ iterations and ILK for 
���� iterations on the instances used in this study� The actual times
are averaged over � independent ILS runs on each instance� When measuring the run�time based on
operation counts� we will call the resulting distributions also run�length distributions 	RLDs
 in the
following�

For most of our experiments� we report actual CPU�times measured either on a single 
��MHz
UltraSparc I processor and 
��MB RAM or the ���MHz Pentium II processor on which the timings
in Table ��
 are based� Comparing the computation times on the two machines we found that the
Pentium II was roughly ��� times faster than the UltraSparc I processor�

Table ��
 � CPU
time taken for running I�opt� I�opt� and Ired��opt on a ���MHz Pentium II CPU for
������ iterations	 Run
times are averaged over � independent runs of the ILS algorithms	

I�opt

eil�� �	
� kroA��� �	�� lin��� �	�� u��� �	
� d��� �	�
 lin��� ��	��
pcb��� ��	�� rat��� ��	�� pr���� ��	�� pcb���� ��	�� d���� ��	�� fl���� ��	��

I�opt

d��� ��	
 lin��� ��	� pcb��� ��	� rat��� ���	� pr���� ���	� pcb���� ��
	

d���� ���	� fl���� ���	� pr���� ��
	� pcb���� �
�	� fl���� �
�	�

ILK

lin��� ���	� pcb��� ���	� att��� ���	�� rat��� ���	� pcb���� ���	� pr���� ���	��
reduced �	opt

ry��p ��	� ft�� ��	� kro���p �
	� ftv��� ��	� rbg��� ���	�

��� Run�time Distributions for Symmetric TSPs with Iterated ��opt

Figure ��
 shows the empirically observed RTDs for the I�opt algorithm on the instances four
TSPLIB instances d��
� lin��
� pcb���� and rat	
�� Except for instance d��
 I�opt could only
very rarely �nd the optimal solutions for these instances within reasonable run�time� Thus� we report
mainly RTDs which are obtained by imposing some weaker bounds on the solutions quality� In the
plots� the exponential distribution is �tted to the lower part of run�time distributions corresponding to
high quality solutions 	where high quality is here meant as high relative to I�opt
� As can be observed
in the plots� the exponential matches the lower part of the RTDs well� yet� for larger run�times the
RTDs fall strongly below the indicated exponential� Hence� the I�opt algorithm is severely a�ected
by stagnation behavior and by using restarts� the solution probability can be signi�cantly improved�
We will give a more detailed example of this stagnation behavior in the next section when examining
RTDs for I�opt�

��� Run�time Distributions for Symmetric TSPs with Iterated ��opt

Figure ��� shows the empirical run�time distributions for the four TSPLIB instances d��
� lin��
�
pcb���� and rat	
� are given in Figure ���� Additionally� exponential distributions which may indi�
cate stagnation behavior are approximated to RTDs for high�quality solutions�

�Note that our implementation choices for �	opt and �	opt were made in such a way that a very large number of
local search runs can be done in a given amount of CPU�time	 Other implementation choices may lead to a somewhat
more e
ective local search in terms of solution quality but may compromise the speed of the local search	 One example
of such a choice is the particular resetting strategy of the don�t look bits in I�opt and I�opt	

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference �

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

so
lu

tio
n 

pr
ob

ab
ili

ty

CPU-time

"opt"
"0.1%"

"0.25%"
f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

so
lu

tio
n 

pr
ob

ab
ili

ty

CPU-time

"0.25%"
"0.5%"

"2%"
f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

so
lu

tio
n 

pr
ob

ab
ili

ty

CPU-time

"0.25%"
"0.5%"
1.75%

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

so
lu

tio
n 

pr
ob

ab
ili

ty

CPU-time

"0.5%"
"0.75%"
"1.5%"

f(x)

Figure ��
 � Run
time distributions of iterated ��opt on four symmetric TSP instances	 RTDs are identi�ed
by the required solution quality �e	g	� opt means optimal solution is required�	 Given are the distributions for
d��� �upper left side�� lin��� �upper right side�� pcb��� �lower left side�� and rat	�� �lower right side�	 f�x�
indicates an exponential distribution	 See the text for more details	

From the empirical run�time distributions several conclusions can be drawn� One is that on all
instances it is rather easy to get within� ca� ���� or 
� 	in the case of pcb���
� of the optimum�
the empirical run�time distribution corresponding to one of these bounds are always the leftmost
ones in the plots� Yet� if higher accuracy is required� the algorithms su�er from stagnation behavior�
Consider� for example� instance pcb���� If we require a solution quality bound of ���� within the
global optimum� after only 
� seconds an empirical solution probability of ���� is obtained 	runs were
performed on the UltraSparc I processor
� Yet� in � of the 
�� trials the algorithm fails to reach
the required solution quality bound even after ��� seconds� A similar situation occurs for tighter
solution quality bounds� like when searching for optimal solutions� For pcb��� in some runs optimal
solutions can be found very fast� reaching a solution probability of ���� after �� seconds� but after ���
additional seconds the solution probability only reaches ������ Similar observations also apply to the
other instances� This stagnation behavior is especially striking on the instances lin��
� pcb���� and
rat	
�� On instance d��
 the run�time distribution for �nding the optimal solution is actually close
to an exponential distribution� although for larger run�times it is slightly less steep� Since I�opt has
shown a strong stagnation behavior on this latter instance� we may conclude that the more powerful
��opt local search is responsible for the better behavior on that instance�

�Note that� when restarting I�opt on this instance after �
 seconds� with �
 restarts �that is� �

 seconds� one would
estimate to obtain a solution probability of roughly 
	��� which is much larger than the empirically observed solution
probability of 
	�� without using restart	

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



� MIC��� � III Metaheuristics International Conference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

"opt"
"0.05%"

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

"opt"
"0.5%"

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

"opt"
"0.5%"

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500

"opt"
"0.1%"
"0.5%"

f(x)

Figure ��� � Run
time distributions of iterated ��opt on four symmetric TSP instances	 RTDs are identi�ed
by the required solution quality �e	g	� opt means optimal solution is required�	 Given are the distributions for
d��� �upper left side�� lin��� �upper right side�� pcb��� �lower left side�� and rat	�� �lower right side�	

��� Run�time Distributions for Symmetric TSPs with ILK

One could object that the observation of a stagnation behavior in general may be due to the choice
of the ��opt or ��opt local search algorithms which shows worse performance on the TSP than the
more sophisticated LK heuristic� To test this hypothesis we have ran the ILK heuristic on the same
instances used in the previous section� except the smallest one which was easily solved� The analysis
presented in this section is based on measuring run�length distributions 	RLDs
� where we use the
number of LK applications as operation counts�

Since ILK is known to be one of the best performing approximate algorithms for symmetric TSP
instances� we expect higher quality solutions to be obtained more frequently than with either ��opt or
��opt� This expectation is con�rmed by the empirical run�length distributions given in Figure �����

For the instances pcb��� and rat	
� the empirical probability of �nding an optimal solution is
signi�cantly higher than for I�opt� Instances pcb��� and rat	
� are solved in every trial to optimality
by the ILK algorithm� In particular� the run�length distribution of pcb��� can be closely �tted by a
modi�ed exponential distribution with distribution function G	x
 � maxf�� 
�e���x��x�g� where �x
adjusts for the fact that a certain minimal number of iterations have to be to performed to obtain a

�Instance lin��� is not shown here since it was solved to optimality in all runs	 On instance att��� I�opt showed
a similar strong stagnation behavior as ILK� yet the �nal solution probabilities for reaching the optimal solution were
signi�cantly lower	

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference �

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

LK applications

"0.25%"
"0.05%"

"opt"
f(x)

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

LK applications

"0.25%"
"0.1%"

"opt"
f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

LK applications

"opt"
f(x)

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

No. LK applications

"0.25%"
"0.15%"
"0.1%"

"opt"
f(x)

Figure ��� � Run
length distributions of ILK on four symmetric TSP instances	 RTDs are identi�ed by the
required solution quality �e	g	� opt means optimal solution is required�	 Given are the distributions for pcb���
�upper left side�� att
�� �upper right side�� rat	�� �lower left side�� and pr���� �lower right side�	

reasonable chance of �nding the optimal solution�� In general� it appears that this particular instance
is easily solved using the LK heuristic� but it is �relatively hard� to solve when using ��opt or ��opt
	compare the run�time distribution of ILK to that of iterated ��opt in Figure ���
� On instance rat	
��
ILK again falls slightly below the exponential distribution� which indicates stagnation behavior and
suggests that the algorithm�s performance could possibly be further improved� On the other two
instances att��� and pr���� again the stagnation behavior is clearly visible�

��� Run�time Distributions for ATSPs with Iterated reduced ��opt

The run�time distributions for the ATSP instances shown in Figure ��� con�rm the �ndings on
the symmetric instances� On the ATSP instances the stagnation behavior of iterated reduced ��opt

appears to be even more severe� Often� the optimal solution is obtained very early in a run or� with
a few exceptions� is not found at all within the given computation time� Surprisingly� also on the
smallest instance ry�
p with only �� nodes� the algorithm shows stagnation behavior� however� with
larger run�time it appears that all runs could be terminated successfully�

Interestingly� despite its size� instance rbg���� with ��� cities the largest ATSP instance of

�The curve in that plot has been �tted with the C	 Grammes implementation of the Marquart�Levenberg algorithm
available in gnuplot	 The �tted parameters are �x � ����� and � � 
�

���	

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



�
 MIC��� � III Metaheuristics International Conference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

CPU-time

"1%"
"opt"

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

CPU-time

"0.5%"
"0.1%"

"opt"

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

CPU-time

"2.5%"
"2%"
"1%"
"opt"

f(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

CPU-time

"2%"
"0.5%"

"opt"
f(x)

Figure ��� � Run
time distributions of iterated reduced ��opt on four ATSP instances	 RTDs are identi�ed by
the required solution quality �e	g	� opt means optimal solution is required�	 Given are the run
time distributions
for ry��p �upper left side�� ft	� �upper right side�� kro���p �lower left side� and ftv�	� �lower right side�	

TSPLIB� is easily solved if the acceptance criterion BetterEqual	s� s��
 is used� In this case an optimal
solution is found� on average� in �� seconds or ���� local search applications� with the maximally
required run�time to solve this instance being roughly 
�� seconds� The same instance could only
be solved in ��� of the runs with maximally 
��� seconds if the acceptance criterion Better	s� s��

is used� In Figure ��� we have plotted the run�time distributions for these two acceptance criteria�
Such signi�cant di�erences between these two acceptance criteria could only be observed on the four
ATSP instances rbg���� rbg��
� rbg���� and rbg���� Considering this fact� in the later experimental
investigation we used the acceptance criterion BetterEqual	s� s��
 for all ATSP instances�

��� Observations from the Run�Time Distributions

A general conclusion from the RTD�based analysis of ILS algorithms is that these algorithms tend
to quickly �nd good solutions to symmetric as well as asymmetric TSPs� But if very high solution
quality is required� one could observe using the RTD�plots that the ILS algorithms su�er from search
stagnation which severly compromises ILS performance� The empirical RTDs are� in fact� in nearly all
cases less steep than an exponential distribution which well approximates the run�time distribution in
the lower part � and therefore the algorithm can be improved 	in the simplest case
 by introducing
occasional restarts after a �xed number of iterations 	cuto� time
� By restarting the algorithm after
an appropriately determined cuto� time� one actually forces the ILS algorithm�s solution probabilty

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference ��

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

CPU-time

"BetterEqual-opt"
"Better-opt"

f(x)
g(x)

Figure ��� � Run
time distributions for instance rbg��� using iterated reduced ��opt	 Given are two run
time
distribution� one using acceptance criterion BetterEqual �s� s���� the other using Better �s� s���	 Additionally two
exponential distributions approximate each of the two empirical RTDs �indicated by f�x� and g�x��	

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

so
lu

tio
n 

pr
ob

ab
ili

ty

CPU time

"ILS-standard: 0.25%"
"ILS-restart: 0.25%"

f(x)

Figure ��� � Example of improvements by using restart	 Given is the run
time distribution for reaching a
solution within �	��� of the optimum on instance att
�� for I�opt �indicated by ILS
standard� and an ILS
algorithm using restart after an appropriately chosen cuto� time �indicated by ILS
restart�	 The improved ILS
algorithm is able to follow the exponential distribution �indicated by f�x�� which approximates ILS
standard�s
RTD in the left part	 See text for more details	

distribution to follow the exponential distributions� This fact is exempli�ed in Figure ��� for an I�opt

algorithm applied to instance att����

Our investigation of the run�time distribution also shows that the more e�ective is the local search
algorithm� the less is a�ected the ILS algorithm from the stagnation behavior� For example� the
I�opt algorithm showed a very strong stagnation behavior on instance d��
 when trying to �nd the
optimal solution� while I�opt�s RTD followed reasonably well an exponential distribution� On the
larger pcb��� instance both� I�opt and I�opt� were severely a�ected by the stagnation behavior�
while ILK could solve this instance rather easily� Yet� when applied to larger instances� ILK again
shows stagnation behavior and could be considerably improved� Hence� one possible conclusion from
these observations is that the ILS algorithms will � when applied to non�trivial instances � show
stagnation behavior from a speci�c instance size� This instance size depends on the e�ectiveness of

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



�� MIC��� � III Metaheuristics International Conference

the local search algorithm�

In summary� the run�time distributions arising from the application of ILS algorithms to the
TSP suggest that these algorithms can be further improved� In the following we will present several
possibilities how such improvements can be achieved� followed by an empirical investigation of these
new ILS variants�

� Improvements of ILS Algorithms for the TSP

In this section we will present two improved ILS algorithms for the TSP and then give results from
an extensive experimental comparison of these algorithms�

��� Improved ILS algorithms

One conclusion from the observed stagnation behavior of ILS is that additional diversi�cation
features are needed to increase ILS�s performance� There are two particular ways to increase the
diversi�cation in ILS algorithms� A �rst possibility is to use acceptance criteria which allow moves
to worse solutions or� as proposed before� one may restart the algorithm� A second possibility is to
increase the strength of the solution modi�cations implemented by Modify� for the TSP this can be
done by cutting the current tour at more than four points� as it is done in the doublebridge move� or
vary the strenght of the solution modi�cations as it is also proposed in basic Variable Neighborhood
Search 	basic VNS
 ����

Here� we propose and experimentally investigate two improved ILS variants based on the �rst
possibility which is also directly motivated by our RTD�based analysis of ILS behavior�

����a Soft Restarts

As argued before� the simplest strategy to avoid stagnation behavior is to restart the algorithm
from new initial solutions after some prede�ned cuto� value� Yet� optimal cuto� values may depend
strongly on the particular TSP instance� A better idea appears to be best to relate the restart to
the search progress and to apply soft cuto� criteria� In particular� we restart the ILS algorithm if no
improved solution could be found for ir iterations� where ir is a parameter� The soft restart criterion
is based on the assumption that after ir iterations without improvement the algorithm is stuck and
that additional diversi�cation 	implemented by restarting the algorithm from a new initial solution

is needed to escape from there� The restart of the algorithm can be easily modeled by the acceptance
criterion called Restart	s� s��� history
 	the history component indicates that the use of soft restarts
can be interpreted as a very simple use of the search history
� Let ilast be the last iteration in which a
better solution has been found and i be the iteration counter� Then Restart	s� s��� history
 is de�ned
as

Restart	s� s��� history
 �

�����
����

s�� if f	s��
 � f	s


s��� if f	s��
 � f	s
 and i� ilast � ir

s otherwise�

	�



where s��� can be a randomly generated new initial solution�

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference ��

����b Fitness�Distance Diversi�cation�based ILS

A disadvantage of restarting ILS from new initial solutions is that previously obtained high quality
solutions are lost� Additionally� ILS algorithms need some initialization time tinit� which will increase
with increasing instance size� for �nding very high quality solutions� Hence� with each restart a CPU�
time tinit is wasted� To avoid these disadvantages� a better choice may be to use a more directed
diversi�cation when the ILS algorithm is supposed to be stuck� Consequently� we propose a new
method to escape from the current search space region� Our goal will be to �nd a good quality

solution beyond a certain minimal distance from the current search point without using restart � In
fact there are two objectives to be taken into account to �nd such a solution� The �rst is to generate
a distant solution� the second is that this solution should be of reasonable quality�

We implemented this idea as follows� Let sc be the solution from which we want to escape and
the distance between solutions is measured as the number of di�erent edges� Then the following steps
are repeated until we have found a solution beyond a minimal distance dmin from sc�

	

 Generate an initial population of p copies of sc�

	�
 To each solution� �rst apply Modify followed by an application of LocalSearch�

	�
 Choose the best q of the p solutions� 
 � q � p� as candidate solutions�

	�
 Let s be the candidate solution with maximal distance to sc

	�
 If the distance between s and sc is smaller than dmin� then repeat at 	�
� otherwise return the
candidate solution at maximal distance�

The single steps are motivated by the following considerations� The second objective 	�nd a good
quality solution
 is attained by keeping only the q best of the p candidate solutions� The �rst objective
	�nd a solution beyond a minimal distance to sc
 is achieved by choosing a candidate solution with
maximal distance from sc� The steps are then iterated until a solution s� is found for which the
distance requirement dmin is satis�ed� In fact� we stop this process if we have not found a solution s�

beyond the required minimal distance after a maximal number of iterations 	here ��
 through these
steps�

��� Experimental Analysis

This section presents the results of an experimental comparison of three ILS algorithms� the stan�
dard ILS algorithm used for the run�time analysis� the ILS algorithm using soft restarts 	referred
to as ILS�restart
� and the ILS algorithm with �tness�distance based diversi�cation 	referred to as
ILS�FDD
� In ILS�restart and ILS�FDD a restart 	diversi�cation
 is initiated if for ir iterations no
improved solution is found� where ir � � � n for I�opt� ir � n for I�opt� and �nally ir � 
��n for
ILK� n is the number of cities of a TSP instance� For ILS�FDD we use p � ��� q � 
� 	parameters
were chosen in an ad hoc manner without �ne�tuning
� Since an appropriate value for dmin may be
instance dependent� we estimate dmin by the average distance davg between 
�� 	�� when applying
LK
 locally optimal solutions and then setting alternatingly dmin � 
�� � davg and dmin � 
�� � davg� In
ILS�FDD diversi�cation is always applied to the best solution found since the start of the algorithm
	only when using LK this is done every second diversi�cation
� This choice is motivated by results
on the TSP search space analysis where it was shown that the better a solution� the closer it is on
average to a global optimum ����

The computational results are given in Table ��� to Table ��� for the ILS algorithms based ��opt�
��opt� and LK� respectively and in Table ��� for the ILS application to the ATSP� In each table are

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



�� MIC��� � III Metaheuristics International Conference

Table ��� � Comparison of I�opt� ILS
restart� and ILS
FDD on symmetric TSPs	 For each instance �the
number in the instance identi�er is the problem size�� we report how often the known optimal solution is
found in a given number of runs �nopt�no	 trials�� the average percentage deviation from the optimum� the
average CPU
time tavg to �nd the best solution in a run� and the maximally allowed computation time tmax	
The algorithms were run on a ���MHz Pentium II CPU with 
�� MB RAM running Redhat Linux	

Instance opt
ILS �	opt

nopt avg tavg

ILS�Restart
nopt avg tavg

ILS�FDD
nopt avg tavg

tmax

eil�� ��� �
��

 
	�� � 
�� �

��

 
	
 
	� �

��

 
	
 
	� �

kroA��� ����� �

��

 
	
 � 
�� �

��

 
	
 � 
�� �

��

 
	
 
	� �

lin��� ����� �

��

 
	
 � 
�� �

��

 
	
 � 
�� �

��

 
	
 
	� �

u��� ��
�
 �

��

 
	
 �	� �

��

 
	
 
	� �

��

 
	
 
	� �

d��� ����
 ����

 
	
�� ��	� �

��

 
	
 ��	� �

��

 
	
 �	� ��

lin��� ��
�� ���

 
	�
 ��	� ����

 
	�� ��	� ����

 
	

� ��	� ��

pcb��� �
��� ���

 
	�� ���	� 
��

 
	�� ���	� ���

 
	�� ���	� �


rat��� ��
� 
��

 
	�� ���	� 
��

 
	�
 ���	
 
��

 
	�� ���	� �


pr���� ���
�� 
��� 
	�� ���	� 
��� 
	�� ��
	� 
��� 
	�� ���	� ��


pcb���� ����� 
��� �	�
 ���	� 
��� 
	�
 ���	� 
��� 
	�� ���	� ��


d���� �
�
� 
��� 
	�� ���	� 
��� 
	�� ���	� 
��� 
	�� ���	� ��


fl��� ����� 
��� 
	�� ���	� 
��� 
	�� ����	
 
��� 
	
� ����	� ��



given the number of optimal solutions found by an algorithm in a given number of independent trials�
the average percentage deviation from the optimum and the average run�time to �nd the best solution
in each trial� Additionally� we indicate the maximal run�time tmax allowed for an algorithm� tmax was
chosen in roughly such a way that larger instances are also given increasing run�time�

In general� the experimental results show that the performance of all ILS algorithms can signif�
icantly be improved with respect to solution quality� With the two ILS extensions the frequency of
�nding optimal solutions is strongly increased and the average solution quality improves considerably�
The only exception are the results obtained with ILS�restart using ��opt on the instances rat	
� and
pr����� Since at least instance rat	
� has shown apparent stagnation behavior in Figure ��
 when
using I�opt� most probably the parameter ir was chosen too low� Yet� notice that also for these two
instances ILS�FDD signi�cantly improves over standard I�opt� Similarly� when applying I�opt� for
rat	
� the frequency of �nding the optimum is lower with ILS�restart than with I�opt� Regarding
the ATSPs� all instances showing stagnation behavior are well solved already by using ILS�restart 	see
Table ���
 and therefore we did not apply ILS�FDD on these instances since apparently they do not
provide a real challenge�

The relative performance of the three ILS algorithms depends strongly on the instance size� In
particular� for small problems ILS�restart and ILS�FDD perform very similarly to standard ILS if the
latter does not show any or only very weak stagnation behavior 	notice that I�opt shows very strong
stagnation behavior on instance eil�� which is the smallest instance we tested
� Yet� with increasing
instance size the performance improvement obtained with ILS�restart and ILS�FDD becomes very
obvious�

Similarly� the performance advantage of ILS�FDD over ILS�restart becomes more marked for larger
instances� ILS�FDD shows on all instances with more than ��� cities either better average performance
and a higher frequency of �nding the optimal solution or� if both algorithms �nd the optimal solution
in all runs� a much lower average run�time� It should also be noted that the performance of ILS�
FDD using ��opt local search is particularly good on instances which are known to be hard for other
algorithms� This is the case for fl��		 and fl�	�� which are highly clustered 	as shown in Figure ��

on the right side
� On such instances also ILS�restart performs surprisingly good� This is probably
due to the fact that these instances contain deep local minima from which the ILS algorithm has
strong problems to escape but which are overcome by restarting the algorithm from a new initial

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference ��

Table ��� � Comparison of I�opt� ILS
restart� and ILS
FDD on symmetric TSPs	 For each instance �the
number in the instance identi�er is the problem size�� we report how often the known optimal solution is
found in a given number of runs �nopt�no	 trials�� the average percentage deviation from the optimum� the
average CPU
time tavg to �nd the best solution in a run� and the maximally allowed computation time tmax	
The algorithms were run on a ���MHz Pentium II CPU with 
�� MB RAM running Redhat Linux	

Instance opt
ILS �	opt

nopt average tavg

ILS�Restart
nopt average tavg

ILS�FDD
nopt average tavg

tmax

d��� ����
 �

��

 
	
 �	� �

��

 
	
 
	� �

��

 
	
 �	� ��

lin��� ��
�� ����

 
	�
 ��	� �

��

 
	
 �	� �

��

 
	
 ��	� ��

pcb��� �
��� ����

 
	�� ��	� �

��

 
	
 ��	� �

��

 
	
 �
	� �


att��� ����� ����

 
	
�� ��	� ����

 
	

�� ���	� ����

 
	

� �
�	� �


rat��� ��
� ����

 
	
�� ���	� ����

 
	
�� ���	� �

��

 
	
 ���	� �


pr���� ���
�� ����� 
	�� ���	� ����� 
	
 ���	� ����� 
	
 �
�	� ��


pcb���� ����� 
��� 
	�� ���	� 
��� 
	
�
 ��
	� ����� 
	
�� ���	� ��


d���� �
�
� ���� 
	�� ���	� ����� 
	
�� ��
	� ����� 
	
 ���	� ��


fl��� ����� ���� 
	�� ���	� ����� 
	



� ���	� ����� 
	
 ���	� ��


pr���� ���
�� 
��
 
	�� ����	� 
��
 
	�� �

�	� ���
 
	
�� ��
�	� ��


pcb���� ������ 
��
 
	�� ����	� 
��
 
	�
 ����	� 
��
 
	
�� ����	� ��


fl���� ����� ���
 
	�� ��
�	� ���
 
	

�� �
�
	� ���
 
	


� ��
�	� ��



Table ��� � Comparison of ILK� ILS
restart� and ILS
FDD on symmetric TSPs	 For each instance� we report
how often the known optimal solution is found in a given number of trials �nopt�no	 trials�� the average
percentage deviation from the optimum� the average number of LK applications iavg to �nd the best solution
in a run� and the maximally allowed number of LK applications	

Instance opt
ILK

nopt average iavg

ILS�Restart
nopt average iavg

ILS�FDD
nopt average iavg

tmax

lin��� ��
�� ����� 
	
 ���	� ����� 
	
 ���	� �

��

 
	
 �

	� �



pcb��� �
��� ����� 
	
 ���	� ����� 
	
 ���	� ����� 
	
 ���	� �



att��� ����� ����� 
	
�� ����	� ����� 
	
 ����	� ����� 
	
 ����	� �




rat��� ��
� ����� 
	
� �
��	� ����� 
	
 ����	� ����� 
	
 ����	� �




pcb���� ����� ���
 
	

�� �
��	� ���
 
	

�� ��
�	
 ���
 
	


� ����	� �




pr���� ���
�� ���
 
	�� �
���	� 
��
 
	
�� ����	� ���
 
	
�� ��
��	� ��




Table ��� � Comparison of Ired��opt and ILS
restart on ATSPs	 For each instance� we report how often the
known optimal solution is found in a given number of trials �nopt�no	 trials�� the average percentage deviation
from the optimum� the average CPU
time tavg to �nd the best solution in a run� and the maximally allowed
computation time tmax	 The algorithms were run on a ���MHz UltraSparc I CPU with ��� MB RAM running
Solaris �	�	

Instance opt
ILS �	opt

nopt average tavg

ILS�Restart
nopt average tavg

tmax

ry��p ����� ����

 
	
� ��	� ����� 
	
 �	� ��

ft�� ����� ����� 
	
�� �	� ����� 
	
 �	� �


kro���p ����
 ����� 
	
�� ��	� ����� 
	
 ��	� �


ftv��� ���� ����� 
	�
 ��	� ����� 
	
 ��	� �


rbg��� ���
 ����� 
	
 ��	� ����� 
	
 ��	� �



solution� Also note that on these instances it appears preferable to run ��opt� since the run�time of
LK increases dramatically 	see also the more detailed discussion in �

�
� while ��opt is not a�ected
by this phenomenon�

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



�� MIC��� � III Metaheuristics International Conference

Recently� several high performing new approaches and improved implementations of known ap�
proaches have been presented for the TSP� Among these algorithms we �nd the genetic local search
approach of Merz and Freisleben �
�� 
��� a new genetic local search approach using a repair�based
crossover operator and brood selection by Walters ����� a specialized local search algorithm for the
TSP called Iterative Partial Transcription 	ITP
 by M�obius et�al� ��
�� and the ILS approach by
Katayama and Narisha �
�� which uses a newly designed solution modi�cation mechanism inspired
by genetic algorithms� The improved ILS algorithms and� in particular� ILS�FDD compare very well
to these approaches� When comparing algorithms using only ��opt local search� ILS�FDD compares
favorably to Walter�s GA 	that algorithm is run on a ���MHz Pentium II CPU
� ILS�FDD achieves�
in general� higher accuracy results at� for some instances� lower run�times� ILS�FDD with ��opt

also compares well with the so far best performance results obtained by Merz and Freisleben with
their genetic local search approach� In �
�� they report average times for �nding optimal solutions on
instances lin��

pcb���
att���
rat	
� in ��� ��� 
�
� and �
 seconds� respectively on a ���MHz
Pentium II CPU running Solaris 	averages are taken over �� runs
� We obtained the same solution
quality 	except att��� on which � of 
�� runs did not yield the optimum
 at slightly larger run�times
on the two larger instances� Yet� we strongly believe that by using a faster LK implementation like
Johnson�s� Merz�s or the code by Applegate� Cook� Bixby and Chvatal� the performance of ILS�FDD
can be further strongly increased� Also� note that the only other approach which matches the results
of ILS�FDD on the strongly clustered instances fl��		 and fl�	�� is the ITP algorithm� Yet� our
approach has the advantage of being an easy implementable extension of an I�opt algorithm� When
using LK local search� we obtained very high accuracy results for all the instances tested� comparable
or better than the results reported in other researches� Still� the computation times of the LK could
be signi�cantly improved by using one of the previously mentioned more �ne�tuned implementations�
All in all� our computational results show that ILS and� in particular� the proposed ILS extensions
are highly competitive with more complex algorithms for the TSP�

� Conclusions

In this paper� we presented a novel method for the systematic empirical analysis of local search
algorithms based on run�time distributions� While this methodology has been previously successfully
applied to combinatorial decision problems� such as SAT ���� here� we use it for investigating and
improving the behavior of Iterated Local Search algorithms for the well�known Traveling Salesman
Problem�

Our RTD�based analysis revealed that ILS algorithms for the TSP often show stagnation behavior�
such that from some point in the search process� relatively little progress is made with respect to �nding
higher quality solutions� This phenomenon is observed not only for relatively simple ILS algorithms
based on ��opt and ��opt local search� but also for the more complex ILK algorithm� one of the best
performing approximate algorithms for large symmetric TSP instances� as well as for ILS algorithms
for the asymmetric TSP� Based on this observation� we proposed improved variants of ILS algorithms
for the TSP� In an experimental analysis we veri�ed that our strategies to overcome stagnation behavior
are e�ective and that the modi�ed algorithms show a signi�cantly improved performance�

These results demonstrate� that the RTD�based approach provides a good basis for analyzing
and improving the performance of Iterated Local Search Algorithms in particular� and other meta�
heuristics in general� We expect that by systematically applying this methodology to other algorithms
and problem domains� further new insights into the behavior of meta�heuristics for hard combinatorial
problems can be obtained which will facilitate the development of new� improved algorithms and their
successful application�

PUC�Rio Angra dos Reis� Brazil� July ������ ����



MIC��� � III Metaheuristics International Conference ��

Acknowledgements

We would like to thank Olivier Martin for making available his ILK implementation and for helpful
comments on this work� This work was in part supported by a Marie Curie Fellowship awarded
to Thomas St�utzle 	CEC�TMR Contract No� ERB���
GT������
 and a Postdoctoral Fellowship
awarded by the University of British Columbia to Holger H� Hoos�

Bibliography

��� R	K	 Ahuja and J	B	 Orlin	 Use of Representative Operation Counts in Computational Testing of Algo

rithms	 INFORMS Journal on Computing� ��
��
���

�� ����	

��� E	B	 Baum	 Iterated Descent� A Better Algorithm for Local Search in Combinatorial Optimization
Problems	 Manuscript� ����	

�
� J	L	 Bentley	 Fast Algorithms for Geometric Traveling Salesman Problems	 ORSA Journal on Computing�
�����
������� ����	

��� K	D	 Boese	 Models for Iterative Global Optimization	 PhD thesis� University of California� Computer
Science Department� Los Angeles� ����	

��� M	R	 Garey and D	S	 Johnson	 Computers and Intractability� A Guide to the Theory of NP�
Completeness	 Freeman� San Francisco� CA� ����	

��� P	 Hansen and N	 Mladenovi�c	 Variable Neighbourhood Search for the p
Median	 Technical Report Les
Cahiers du GERAD G
��

�� GERAD and �Ecole des Hautes �Etudes Commerciales� ����	

��� P	 Hansen and N	 Mladenovi�c	 An Introduction to Variable Neighborhood Search	 In S	 Voss� S	 Martello�
I	H	 Osman� and C	 Roucairol� editors� Meta�Heuristics� Advances and Trends in Local Search Paradigms
for Optimization� pages �

����	 Kluwer� Boston� ����	

��� H	H	 Hoos and T	 St�utzle	 Evaluating Las Vegas Algorithms � Pitfalls and Remedies	 In Proceedings
of the Fourteenth Conference on Uncertainty in Arti�cial Intelligence �UAI����� pages �
�����	 Morgan
Kaufmann Publishers� San Francisco� CA� ����	

��� H	H	 Hoos and T	 St�utzle	 Towards a Characterisation of the Behaviour of Stochastic Local Search
Algorithms for SAT	 Arti�cial Intelligence� ����	 To appear	

���� D	S	 Johnson	 Local Optimization and the Travelling Salesman Problem	 In Proc� �	th Colloquium on
Automata
 Languages
 and Programming� volume ��
 of LNCS� pages �������	 Springer Verlag� ����	

���� D	S	 Johnson and L	A	 McGeoch	 The Travelling Salesman Problem� A Case Study in Local Optimization	
In E	H	L	 Aarts and J	K	 Lenstra� editors� Local Search in Combinatorial Optimization� pages ����
��	
John Wiley � Sons� ����	

���� K	 Katayama and H	 Narihisa	 Iterated Local Search Approach using Genetic Transformation to the
Traveling Salesman Problem	 In Proceedings of GECCO���� pages 
���
��� ����	

��
� E	L	 Lawler� J	K	 Lenstra� A	H	G	 Rinnooy Kan� and D	B	 Shmoys	 The Travelling Salesman Problem	
John Wiley � Sons� ����	

���� S	 Lin and B	W	 Kernighan	 An E�ective Heuristic Algorithm for the Travelling Salesman Problem	
Operations Research� ����������� ���
	

���� O	 Martin and S	W	 Otto	 Partitoning of UnstructuredMeshes for Load Balancing	 Concurrency� Practice
and Experience� ��
�
�
��� ����	

���� O	 Martin and S	W	 Otto	 Combining Simulated Annealing with Local Search Heuristics	 Annals of
Operations Research� �
������� ����	

���� O	 Martin� S	W	 Otto� and E	W	 Felten	 Large
Step Markov Chains for the Traveling Salesman Problem	
Complex Systems� ��
������
��� ����	

���� P	 Merz and B	 Freisleben	 Genetic Local Search for the TSP� New Results	 In Proceedings of ICEC��	�
pages �������	 IEEE Press� ����	

���� P	 Merz and B	 Freisleben	 Fitness Landscapes and Memetic Algorithm Design	 In D	 Corne� M	 Dorigo�
and F	 Glover� editors� New Ideas in Optimization	 McGraw
Hill� ����	

Angra dos Reis� Brazil� July ������ Brazil PUC�Rio



�� MIC��� � III Metaheuristics International Conference

���� N	 Mladenovi�c and P	 Hansen	 Variable Neighborhood Search	 Computers � Operations Research�
������������� ����	

���� A	 M�obius� B	 Freisleben� P	 Merz� and M	 Schreiber	 Combinatorial Optimization by Iterative Partial
Transcription	 Physical Review E� ������ ����	

���� G	 Reinelt	 The Traveling Salesman� Computational Solutions for TSP Applications� volume ��� of
LNCS	 Springer Verlag� ����	

��
� A	 Rohe	 Parallele Heuristiken f�ur sehr gro�e Traveling Salesman Probleme	 Master�s thesis� Fachbereich
Mathematik� Universit�at Bonn� Bonn� Germany� ����	

���� T	 St�utzle	 Local Search Algorithms for Combinatorial Problems 
 Analysis
 Improvements
 and New
Applications	 PhD thesis� FB Informatik� TU Darmstadt� ����	

���� T	 Walters	 Repair and Brood Selection in the Traveling Salesman Problem	 In A	E	 Eiben� T	 B�ack�
M	 Schoenauer� and H	
P	 Schwefel� editors� Proc� of Parallel Problem Solving from Nature � PPSN V�
volume ���� of LNCS� pages ��
����	 Springer Verlag� ����	

���� C	 Young� D	S	 Johnson� D	R	 Karger� and M	D	 Smith	 Near
optimal Intraprocedural Branch Alignment	
In Proceedings ���	 Symp� on Programming Languages
 Design
 and Implementation� pages ��
���
�
����	

PUC�Rio Angra dos Reis� Brazil� July ������ ����


