CPSC 532D - MODULE 13:

RANDOMISED TREE SEARCH

Holger H. Hoos

Department of Computer Science
University of British Columbia
Canada

Learning Goals

- Understand motivation and concepts of randomised systematic search (RSS) and stochastic tree search (STS).
- Understand randomisation and restart mechanisms for RSS.
- Know about characteristic RSS behaviour, in particular "heavy-tailed" run-time and search cost distributions.

Motivation & Background

Observation:

Typical deterministic systematic search algorithms perform abysmally bad on certain problem instances.

Intuitive Explanation:

Incorrect heuristic choices early in the search process can force search process to fully explore large parts of the search tree.

Erradic (left) vs. Stable (right) Estimation of Mean Run-Time

Randomisation & Restart:

- Randomisation of heuristic choices allows correct choices to be made against (incorrect) heuristic guidance.
- *Restart mechanism* helps to overcome stagnation (similar to restart in SLS)

Stochastic Tree Search (STS)

Key ideas:

- Modify systematic search algorithm using randomisation and restart.
- Restart replaces backtracking.

Note:

- Resulting algorithms are probabilistically approximately complete (PAC), but *not* complete. (Why?)
- Idea is closely related to Iterated Construction Search (ICS)

Example: Isamp [Crawford & Baker, 1994]

- STS algorithm for SAT, derived from (high-performance)
 David Putnam (DP) variant
- restarts search whenever assignment cannot be further expanded (contradiction)
- random choice of variable and value to assign at each step
- uses unit propagation (like DP)
- shown to perform well (compared to high-performance SLS / systematic search algorithms) on certain types of SAT encoded-scheduling problems (with many solutions)

Variants of STS / STS Algorithms:

- Greedy Adaptive Randomised Search Procedures (GRASP)
- Heuristic-Biased Stochastic Sampling (HSBS) [Bresina, 1996]
- Adaptive Probing [Ruml, 2001]

• ...

Randomised Systematic Search (RSS)

Key ideas:

- Modify systematic search algorithm using randomisation and restart.
- Use backtracking and iteratively increasing restart cutoff to maintain completeness.

(First proposed and investigated by Carla Gomes *et al.*)

Example: Randomised Davis-Putnam (DP) Algorithm for SAT

- *randomise* selection of variable to be instantiated next and/or order of instantiations (with truth values)
- restart search (from root of search tree) after fixed number θ of choices/backtracks

Preserve completeness by ...

- keeping track of previous choices along search path ensures complete exploration of tree for sufficienty high θ
- iteratively increasing search cutoff θ allows full tree search after fixed, instance-dependent number of iterations

Randomisation of Heuristic Choices

Note: Most systematic search alg extend partial candidate solutions based on heuristic function; ties are broken deterministically.

Key idea: Randomise tie-breaking

Problem: Good heuristics rarely produce ties.

Solution: Randomise over *heuristically equivalent choices*; two choices are heuristically equivalent iff their scores are within H% of the highest score (over all choices); parameter H controls degree of randomisation.

Characteristic Behaviour of RSS

Empirical Observations:

- Distribution of search cost for deterministic systematic search over certain sets of randomly generated problem instances has very high variance, erradic mean.
 - (Due to rare outlier instances with extremely high search cost.)
- Same type of "heavy-tailed" distribution is encountered when measuring RTDs for RSS on individual instances.

(Hypothesised) Reason:

Outliers in search cost and run-time distributions are caused by incorrect heuristic choices early in the search (often depending on syntactic aspects of problem instances, such as order of variable appearance in a CNF formula)

Consequence:

Using restart mechanism reduces variance in run-time of RSS, and decreases mean (by eliminating extremely long runs) for individual instances as well as random instance distributions
→ increased efficiency and robustness

(This result can be analytically proven for any situation in which the RTD of a given algorithm shows search stagnation, *i.e.*, falls below an exponential distribution fitted from the left.)

Polynomial Decay in the Right Tail

Definition: A probability distribution with CDF F(x) shows polynomial decay in the right tail iff

$$\lim_{x \to \infty} (1 - F(x)) / Cx^{-\alpha} = 1, \quad x > 0$$

for some constants $C > 0, 2 > \alpha > 0$.

Equivalently:

$$1 - F(x) \sim Cx^{-\alpha}, \quad x > 0$$

for some constants $C > 0, 2 > \alpha > 0$.

These distributions are often called "heavy-tailed".

Graphical Characterisation:

In log-log plot of 1 - F(x), right tail asymptotically approaches a straight line for $x \to \infty$.

(The slope of that line provides estimate for α .)

Note:

For RTD with cdf F(x), $1 - F(x) = Pr\{RT > x\}$ (failure probability for cutoff x).

Distribution types that *don't* show polynomial decay in right tail:

- Normal (Gaussian) distribution
- Exponential distribution
- Weibull distribution

• ...

(In fact, all of these show expontial decay in the right tail.)

Distribution types that do show polynomial decay in right tail:

• Pareto distribution, CDF:

$$F(x) = 1 - 1/x^{\alpha}$$

• Cauchy distribution, PDF:

$$f(x) = 1/\pi \cdot \gamma/(\gamma^2 + (x - \delta)^2)$$

• Lèvy distribution, PDF:

$$f(x) = \sqrt{\gamma/(2\pi)} \cdot (x - \delta)^{-3/2} \cdot e^{-\gamma/(2(x - \delta))}$$

Such "heavy-tailed" distributions have been used for empirically modelling a range of phenomenae, including certain properties of random walks and traffic in communication networks.

Some Properties of Distributions with "Heavy" Right Tails

- $2 > \alpha > 1$: finite mean, infinite variance
- $1 \ge \alpha > 0$: infinite mean, infinte variance (e.g., Cauchy, Lèvy distributions)

Parameter α is also called *index of stability*.

Note: Actual RTDs allways have finite mean and variance. (Why?)

RTDs of Satz-Rand on two SAT-encoded Logistics Planning instances

RTDs of Satz-Rand on two SAT-encoded Logistics Planning instances (right tails)

RTD for Satz-Rand on merged Random-3-SAT instance effect of sample size

Polynomial Decay in the Left Tail

(Analogous to polynomial decay in the right tail)

Definition: A probability distribution with CDF F(x) shows polynomial decay in the left tail iff

$$\lim_{x \to 0} F(x)/Cx^{\alpha} = 1, \quad x > 0$$

for some constants $C > 0, \alpha > 0$.

Graphical Characterisation: In log-log plot, left tail asymptotically approaches a straight line for $x \to 0$.

Weibull Distributions

Generalisation of exponential distribution.

Cumulative distribution function (CDF):

$$wd[m, \beta](x) = W(x, m, \beta) = 1 - 2^{-(x/m)^{\beta}}$$

Parameters:

- m: median
- β : controls the variation coefficient (stdddev/mean).

Fact (provable):

All Weibull distributions have polynomial decay in the left tail.

Left tails of Weibull distributions $W(x,m,\beta)$ for different values of shape parameter β

GED Mixtures Characterise RSS Behaviour

Generalised Exponential Distributions (GEDs)

Generalisation of exponential distribution, originally developped for characterising typical RTDs of SLS algorithms.

Cumulative distribution function (CDF):

$$ged[m, \gamma, \delta](x) = wd[m, 1 + (\gamma/x)^{\delta}](x) = 1 - 2^{-(x/m)^{1+(\gamma/x)^{\delta}}}$$

Facts (provable):

- The right tail of any GED asymptotically approaches that of an exponential distribution.
- The left tail of any GED with $\gamma > 0$ does *not* show polynomial decay.

Mixtures of Generalised Exponential Distributions

Cumulative distribution function (CDF):

$$\sum_{i=1}^{\nu} c_i \cdot ged[m_i, \gamma_i, \delta_i](x)$$

(Developped and used for characterisation of irregular RTDs for SLS algorithms.)

Facts (provable):

- The right tail of any finite GED mixture asymptotically approaches that of an exponential distribution.
- The left tail of any GED with $\gamma > 0$ does *not* show polynomial decay.
- GED mixtures with an *infinite* number of components can have polynomial decay in their right tails.

RTD for Satz-Rand on merged Random-3-SAT instance appproximation with GED mixture (right tail)

RTD for Satz-Rand on merged Random-3-SAT instance appproximation with GED mixture (entire distribution)

Empirical Results:

- GED mixtures with a small number of components yield very good approximations of the RTDs observed for Randomised Systematic Search algorithms.
- Different from previously used "heavy-tailed" distributions (such as Pareto or Lèvy), these approximations capture the entire distribution.
- GED mixtures appear to provide a unified model for characterising the run-time behaviour (RTDs) of RSS and SLS algorithms.
- Results on the effectiveness of restart still apply.

Pros and Cons of RSS Algorithms

Pros:

- increased robustness, in particular when using suitably tuned noise and restart strategies
- simple, generic extension of systematic search
- resulting algorithms typically still complete
- potential for easy parallelisation

Cons:

- highly stochastic behaviour
- difficult to analyse theoretically / empirically
- parameter tuning often difficult,
 but critical for obtaining good performance

Summary

- Stochastic tree search and randomised systematic search are two relatively new and little studied classes of stochastic search algorithms.
- There is limited evidence that randomisation and restart techniques can improve the robustness of systematic search behaviour.
- An increasing number of state-of-the-art systematic search algorithms (especially for SAT) use randomisation & restart.
- Many issues surrounding stochastic tree search, randomised systematic search, and "heavy-tailed" behaviour are not fully understood and need further research.

Important Concepts:

- stochastic tree search (STS)
- randomised systematic search (RSS)
- heuristic equivalence
- polynomial decay ("heavy-tailed") distributions
- completeness preserving restart strategies for RSS
- mixtures of (generalised) exponential distributions

Further Readings

- J.M. Crawford and A.B. Baker: Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems. Proc. of the AAAI-94, pp. 1092–1097, 1994.
- J.L. Bresina. Heuristic-biased stochastic sampling. Proc. of AAAI-96, pp. 271-278, 1996.
- Work by Carla Gomes *et al.*, in particular:
 - C. Gomes, B. Selman, H. Kautz: Boosting combinatorial search through randomization. Proc. AAAI-98, pp. 431–437, 1998.
 - C. Gomes, B. Selman, N. Crato, H. Kautz: Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems. Journal of Automated Reasoning, 2000.

- H.H. Hoos: Heavy-Tailed Behaviour in Randomised Systematic Search Algorithms for SAT? Technical Report TR-99-16.
 Department of Computer Science, University of British Columbia, 1999.
- Work by Wheeler Ruml, in particular:
 - W. Ruml: Stochastic Tree Search: Where to Put the Randomness? Proc. of IJCAI-01 Workshop on Stochastic Search Algorithms, 2001.
 - W. Ruml: Incomplete tree search using adaptive probing.
 Proc. of IJCAI-01, 2001.