CPSC 532D - Stochastic Search Algorithms (Spring 2003)
Course Outline (subject to minor adjustments)
Part 1: Foundations and Basics
Module 1: Introduction
- Combinatorial Problems (SAT, TSP, etc.)
- Computational Complexity (P vs. NP, etc.)
- Search Paradigms (systematic vs. local search, etc.)
- Stochastic Local Search (definition, general issues, etc.)
Module 2: "Simple" SLS Algorithms
- Iterative Improvement and Variants
- Simulated Annealing
- Tabu Search
- Dynamic Local Search, Guided Local Search
Module 3: Hybrid SLS Algorithms
- Iterated Local Search
- Variable Neighbourhood Search
- Greedy Randomised Adaptive Search
- Adaptive Iterated Construction Search
Module 4: Population-based SLS Algorithms
- Ant Colony Optimisation
- Evolutionary Computation (Genetic Algorithms, etc.)
Module 5: Generalised Local Search Machines
- Motivation and Basic GLSM Model
- Machine, Transition, and State Types
- Modelling SLS Algorithms Using GLSMs
- Extensions of the Basic GLSM Model
Module 6: Empirical Analysis of Stochastic Search Algorithms
- Las Vegas Algorithms (LVAs)
- Run-time Distributions (RTDs)
- RTD-based Analysis of LVA Behaviour
- Characterising and Improving LVA Behaviour
- Pitfalls of Inadequate Methodology
Module 7: Search Space Analysis
- Fundamental Search Space Properties
- Global Measures of Search Space Structure
- Solutions and Local Minima
- Plateau Structure
Part 2: Applications
Module 8: SAT and Constraint Satisfaction
Module 9: MaxSAT and MaxCSP
Module 10: The Travelling Salesperson Problem
Module 11: Scheduling Problems
Module 12: Other Combinatorial Problems
- Graph Colouring
- Quadratic Assignment
- Set Covering
- Combinatorial Auctions
- DNA Code Design
Additional Topics (time permitting)
- Randomised Systematic Search
- Hybrids Search Techniques (Systematic + Local Search, etc.)
- Dynamic Problems
- Interactice Search Approaches
- SLS vs. MCMC
- SLS vs. Numeric Optimisation
Each module will take about one week. Modules consist of lectures
and discussions.
last update 02/11/19, hh