
STOCHASTIC LOCAL SEARCH
FOUNDATIONS AND APPLICATIONS

Introduction:

Combinatorial Problems and Search

Holger H. Hoos & Thomas Stützle

Outline

1. Combinatorial Problems

2. Two Prototypical Combinatorial Problems

3. Computational Complexity

4. Search Paradigms

5. Stochastic Local Search

Stochastic Local Search: Foundations and Applications 2



Combinatorial Problems

Combinatorial problems arise in many areas
of computer science and application domains:

� finding shortest/cheapest round trips (TSP)

� finding models of propositional formulae (SAT)

� planning, scheduling, time-tabling

� internet data packet routing

� protein structure prediction

� combinatorial auctions winner determination

Stochastic Local Search: Foundations and Applications 3

Combinatorial problems involve finding a grouping,
ordering, or assignment of a discrete, finite set of objects
that satisfies given conditions.

Candidate solutions are combinations of solution components
that may be encountered during a solutions attempt
but need not satisfy all given conditions.

Solutions are candidate solutions that satisfy all given conditions.

Stochastic Local Search: Foundations and Applications 4



Example:

� Given: Set of points in the Euclidean plane

� Objective: Find the shortest round trip

Note:

� a round trip corresponds to a sequence of points
(= assignment of points to sequence positions)

� solution component: trip segment consisting of two points
that are visited one directly after the other

� candidate solution: round trip

� solution: round trip with minimal length

Stochastic Local Search: Foundations and Applications 5

Problem vs problem instance:

� Problem: Given any set of points X , find a shortest round trip

� Solution: Algorithm that finds shortest round trips for any X

� Problem instance: Given a specific set of points P, find a
shortest round trip

� Solution: Shortest round trip for P

Technically, problems can be formalised as sets of problem instances.

Stochastic Local Search: Foundations and Applications 6



Decision problems:

solutions = candidate solutions that satisfy given logical conditions

Example: The Graph Colouring Problem

� Given: Graph G and set of colours C

� Objective: Assign to all vertices of G a colour from C
such that two vertices connected by an edge
are never assigned the same colour

Stochastic Local Search: Foundations and Applications 7

Every decision problem has two variants:

� Search variant: Find a solution for given problem instance
(or determine that no solution exists)

� Decision variant: Determine whether solution
for given problem instance exists

Note: Search and decision variants are closely related;
algorithms for one can be used for solving the other.

Stochastic Local Search: Foundations and Applications 8



Optimisation problems:

� can be seen as generalisations of decision problems

� objective function f measures solution quality
(often defined on all candidate solutions)

� typical goal: find solution with optimal quality
minimisation problem: optimal quality = minimal value of f
maximisation problem: optimal quality = maximal value of f

Example:

Variant of the Graph Colouring Problem where the objective is
to find a valid colour assignment that uses a minimal number
of colours.

Note: Every minimisation problem can be formulated
as a maximisation problems and vice versa.

Stochastic Local Search: Foundations and Applications 9

Variants of optimisation problems:

� Search variant: Find a solution with optimal
objective function value for given problem instance

� Evaluation variant: Determine optimal objective function
value for given problem instance

Every optimisation problem has associated decision problems:

Given a problem instance and a fixed solution quality bound b,
find a solution with objective function value ≤ b (for minimisation
problems) or determine that no such solution exists.

Stochastic Local Search: Foundations and Applications 10



Many optimisation problems have an objective function
as well as logical conditions that solutions must satisfy.

A candidate solution is called feasible (or valid) iff it satisfies
the given logical conditions.

Note: Logical conditions can always be captured by
an objective function such that feasible candidate solutions
correspond to solutions of an associated decision problem
with a specific bound.

Stochastic Local Search: Foundations and Applications 11

Note:

� Algorithms for optimisation problems can be used to solve
associated decision problems

� Algorithms for decision problems can often be extended to
related optimisation problems.

� Caution: This does not always solve the given problem most
efficiently.

Stochastic Local Search: Foundations and Applications 12



Two Prototypical Combinatorial Problems

Studying conceptually simple problems facilitates
development, analysis and presentation of algorithms

Two prominent, conceptually simple problems:

� Finding satisfying variable assignments of
propositional formulae (SAT)
– prototypical decision problem

� Finding shortest round trips in graphs (TSP)
– prototypical optimisation problem

Stochastic Local Search: Foundations and Applications 13

SAT: A simple example

� Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

� Objective: Find an assignment of truth values to variables
x1, x2 that renders F true, or decide that no such assignment
exists.

General SAT Problem (search variant):

� Given: Formula F in propositional logic

� Objective: Find an assignment of truth values to variables in F
that renders F true, or decide that no such assignment exists.

Stochastic Local Search: Foundations and Applications 14



Definition:

� Formula in propositional logic: well-formed string that may
contain

� propositional variables x1, x2, . . . , xn;
� truth values � (‘true’), ⊥ (‘false’);
� operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
� parentheses (for operator nesting).

� Model (or satisfying assignment) of a formula F : Assignment
of truth values to the variables in F under which F becomes
true (under the usual interpretation of the logical operators)

� Formula F is satisfiable iff there exists at least one model of
F , unsatisfiable otherwise.

Stochastic Local Search: Foundations and Applications 15

Definition:

� A formula is in conjunctive normal form (CNF) iff it is of the
form

m∧

i=1

k(i)∨

j=1

lij = (l11 ∨ . . . ∨ l1k(1)) . . . ∧ (lm1 ∨ . . . ∨ lmk(m))

where each literal lij is a propositional variable or its negation.
The disjunctions (li1 ∨ . . . ∨ lik(i)) are called clauses.

� A formula is in k-CNF iff it is in CNF and all clauses contain
exactly k literals (i.e., for all i , k(i) = k).

Note: For every propositional formula, there is an equivalent
formula in 3-CNF.

Stochastic Local Search: Foundations and Applications 16



Concise definition of SAT:

� Given: Formula F in propositional logic.

� Objective: Decide whether F is satisfiable.

Note:

� In many cases, the restriction of SAT to CNF formulae
is considered.

� The restriction of SAT to k-CNF formulae is called k-SAT.

Stochastic Local Search: Foundations and Applications 17

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

� F is in CNF.

� Is F satisfiable?
Yes, e.g., x1 := x2 := �, x3 := x4 := x5 := ⊥ is a model of F .
Yes, e.g., x1 := x2 := �, x3 := x4 := x5 := ⊥ is a model of F .

Stochastic Local Search: Foundations and Applications 18



TSP: A simple example

Bonifaccio

Gibraltar

Europe

Africa

AsiaStromboli

Zakinthos

Ithaca

Corfu

Taormina

Djerba

Malea

Troy

Maronia

Messina

Circeo

Favignana

Ustica

Birzebbuga

Stochastic Local Search: Foundations and Applications 19

Definition:

� Hamiltonian cycle in graph G := (V , E ):
cyclic path that visits every vertex of G exactly once
(except start/end point).

� Weight of path p := (u1, . . . , uk) in edge-weighted graph
G := (V , E , w): total weight of all edges on p, i.e.:

w(p) :=
k−1∑

i=1

w((ui , ui+1))

Stochastic Local Search: Foundations and Applications 20



The Travelling Salesman Problem (TSP)

� Given: Directed, edge-weighted graph G .

� Objective: Find a minimal-weight Hamiltonian cycle in G .

Types of TSP instances:

� Symmetric: For all edges (v , v ′) of the given graph G , (v ′, v)
is also in G , and w((v , v ′)) = w((v ′, v)).
Otherwise: asymmetric.

� Euclidean: Vertices = points in a Euclidean space,
weight function = Euclidean distance metric.

� Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.

Stochastic Local Search: Foundations and Applications 21

Computational Complexity

Fundamental question:

How hard is a given computational problems to solve?

Important concepts:

� Time complexity of a problem Π: Computation time
required for solving a given instance π of Π
using the most efficient algorithm for Π.

� Worst-case time complexity: Time complexity in the
worst case over all problem instances of a given size,
typically measured as a function of instance size,
neglecting constants and lower-order terms
(‘O(...)’ and ‘Θ(...)’ notations).

Stochastic Local Search: Foundations and Applications 22



Important concepts (continued):

� NP: Class of problems that can be solved in polynomial time
by a nondeterministic machine.

Note: nondeterministic �= randomised; non-deterministic
machines are idealised models of computation that have
the ability to make perfect guesses.

� NP-complete: Among the most difficult problems in NP;
believed to have at least exponential time-complexity for any
realistic machine or programming model.

� NP-hard: At least as difficult as the most difficult problems
in NP, but possibly not in NP (i.e., may have even worse
complexity than NP-complete problems).

Stochastic Local Search: Foundations and Applications 23

Many combinatorial problems are hard:

� SAT for general propositional formulae is NP-complete.

� SAT for 3-CNF is NP-complete.

� TSP is NP-hard, the associated decision problem (for any
solution quality) is NP-complete.

� The same holds for Euclidean TSP instances.

� The Graph Colouring Problem is NP-complete.

� Many scheduling and timetabling problems are NP-hard.

Stochastic Local Search: Foundations and Applications 24



But: Some combinatorial problems can be solved efficiently:

� Shortest Path Problem (Dijkstra’s algorithm);

� 2-SAT (linear time algorithm);

� many special cases of TSP, e.g., Euclidean instances
where all vertices lie on a circle;

� sequence alignment problems (dynamic programming).

Stochastic Local Search: Foundations and Applications 25

Practically solving hard combinatorial problems:

� Subclasses can often be solved efficiently
(e.g., 2-SAT);

� Average-case vs worst-case complexity
(e.g. Simplex Algorithm for linear optimisation);

� Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

� Randomised computation is often practically
(and possibly theoretically) more efficient;

� Asymptotic bounds vs true complexity:
constants matter!

Stochastic Local Search: Foundations and Applications 26



Example: Polynomial vs exponential growth

10−10

10−5

1

105

1010

1015

1020

0 200
400

600
800

1 000
1 200

1 400
1 600

1 800
2 000

ru
n-

tim
e

instance size n

10−6
• 2n/25

10 • n4

Stochastic Local Search: Foundations and Applications 27

Example: Impact of constants

10−20

1

1020

1040

1060

1080

10100

10120

10140

10160

0 50 100 150 200 250 300 350 400 450 500

ru
n-

tim
e

instance size n

10−6
• 2n/25

10−6
• 2n

Stochastic Local Search: Foundations and Applications 28



Search Paradigms

Solving combinatorial problems through search:

� iteratively generate and evaluate candidate solutions

� decision problems: evaluation = test if solution

� optimisation problems: evaluation = check objective
function value

� evaluating candidate solutions is typically
computationally much cheaper than finding
(optimal) solutions

Stochastic Local Search: Foundations and Applications 29

Perturbative search

� search space = complete candidate solutions

� search step = modification of one or more solution
components

Example: SAT

� search space = complete variable assignments

� search step = modification of truth values for one or more
variables

Stochastic Local Search: Foundations and Applications 30



Constructive search (aka construction heuristics)

� search space = partial candidate solutions

� search step = extension with one or more solution components

Example: Nearest Neighbour Heuristic (NNH) for TSP

� start with single vertex (chosen uniformly at random)

� in each step, follow minimal-weight edge to yet unvisited,
next vertex

� complete Hamiltonian cycle by adding initial vertex to end
of path

Note: NNH typically does not find very high quality solutions,
but it is often and successfully used in combination with
perturbative search methods.

Stochastic Local Search: Foundations and Applications 31

Systematic search:

� traverse search space for given problem instance in a
systematic manner

� complete: guaranteed to eventually find (optimal) solution,
or to determine that no solution exists

Local Search:

� start at some position in search space

� iteratively move from position to neighbouring position

� typically incomplete: not guaranteed to eventually find
(optimal) solutions, cannot determine insolubility with
certainty

Stochastic Local Search: Foundations and Applications 32



Example: Uninformed random walk for SAT

procedure URW-for-SAT(F , maxSteps)
input: propositional formula F , integer maxSteps
output: model of F or ∅
choose assignment a of truth values to all variables in F

uniformly at random;
steps := 0;
while not((a satisfies F ) and (steps < maxSteps)) do

randomly select variable x in F ;
change value of x in a;
steps := steps+1;

end
if a satisfies F then

return a
else

return ∅
end

end URW-for-SAT

Stochastic Local Search: Foundations and Applications 33

Local search �= perturbative search:

� Construction heuristics can be seen as local search methods
e.g., the Nearest Neighbour Heuristic for TSP.

Note: Many high-performance local search algorithms
combine constructive and perturbative search.

� Perturbative search can provide the basis for systematic
search methods.

Stochastic Local Search: Foundations and Applications 34



Tree search

� Combination of constructive search and backtracking, i.e.,
revisiting of choice points after construction of complete
candidate solutions.

� Performs systematic search over constructions.

� Complete, but visiting all candidate solutions
becomes rapidly infeasible with growing size of problem
instances.

Stochastic Local Search: Foundations and Applications 35

Example: NNH + Backtracking

� Construct complete candidate round trip using NNH.

� Backtrack to most recent choice point with unexplored
alternatives.

� Complete tour using NNH (possibly creating new choice
points).

� Recursively iterate backtracking and completion.

Stochastic Local Search: Foundations and Applications 36



Efficiency of tree search can be substantially improved
by pruning choices that cannot lead to (optimal) solutions.

Example: Branch & bound / A∗ search for TSP

� Compute lower bound on length of completion of given
partial round trip.

� Terminate search on branch if length of current partial
round trip + lower bound on length of completion exceeds
length of shortest complete round trip found so far.

Stochastic Local Search: Foundations and Applications 37

Variations on simple backtracking:

� Dynamical selection of solution components
in construction or choice points in backtracking.

� Backtracking to other than most recent choice points
(back-jumping).

� Randomisation of construction method or
selection of choice points in backtracking
� randomised systematic search.

Stochastic Local Search: Foundations and Applications 38



Systematic vs Local Search:

� Completeness: Advantage of systematic search, but not
always relevant, e.g., when existence of solutions is
guaranteed by construction or in real-time situations.

� Any-time property: Positive correlation between run-time
and solution quality or probability; typically more readily
achieved by local search.

� Complementarity: Local and systematic search can be
fruitfully combined, e.g., by using local search for finding
solutions whose optimality is proven using systematic search.

Stochastic Local Search: Foundations and Applications 39

Systematic search is often better suited when ...

� proofs of insolubility or optimality are required;

� time constraints are not critical;

� problem-specific knowledge can be expoited.

Local search is often better suited when ...

� reasonably good solutions are required within a short time;

� parallel processing is used;

� problem-specific knowledge is rather limited.

Stochastic Local Search: Foundations and Applications 40



Stochastic Local Search

Many prominent local search algorithms use randomised choices in
generating and modifying candidate solutions.

These stochastic local search (SLS) algorithms are one of the most
successful and widely used approaches for solving hard
combinatorial problems.

Some well-known SLS methods and algorithms:

� Evolutionary Algorithms

� Simulated Annealing

� Lin-Kernighan Algorithm for TSP

Stochastic Local Search: Foundations and Applications 41

Stochastic local search — global view

c

s

� vertices: candidate solutions
(search positions)

� edges: connect neighbouring
positions

� s: (optimal) solution

� c: current search position

Stochastic Local Search: Foundations and Applications 42



Stochastic local search — local view

Next search position is selected from local neighbourhood
based on local information, e.g., heuristic values.

Stochastic Local Search: Foundations and Applications 43

Definition: Stochastic Local Search Algorithm (1)

For given problem instance π:

� search space S(π)
(e.g., for SAT: set of all complete truth assignments
to propositional variables)

� solution set S ′(π) ⊆ S(π)
(e.g., for SAT: models of given formula)

� neighbourhood relation N(π) ⊆ S(π) × S(π)
(e.g., for SAT: neighbouring variable assignments differ
in the truth value of exactly one variable)

Stochastic Local Search: Foundations and Applications 44



Definition: Stochastic Local Search Algorithm (2)

� set of memory states M(π)
(may consist of a single state, for SLS algorithms that
do not use memory)

� initialisation function init : ∅ 	→ D(S(π) × M(π))
(specifies probability distribution over initial search positions
and memory states)

� step function step : S(π) × M(π) 	→ D(S(π) × M(π))
(maps each search position and memory state onto
probability distribution over subsequent, neighbouring
search positions and memory states)

� termination predicate terminate : S(π) × M(π) 	→ D({�,⊥})
(determines the termination probability for each
search position and memory state)

Stochastic Local Search: Foundations and Applications 45

procedure SLS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s, m) := init(π);

while not terminate(π, s, m) do
(s, m) := step(π, s, m);

end

if s ∈ S ′(π) then
return s

else
return ∅

end
end SLS-Decision

Stochastic Local Search: Foundations and Applications 46



procedure SLS-Minimisation(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s, m) := init(π′);
ŝ := s;
while not terminate(π′, s, m) do

(s, m) := step(π′, s, m);
if f (π′, s) < f (π′, ŝ) then

ŝ := s;
end

end
if ŝ ∈ S ′(π′) then

return ŝ
else

return ∅
end

end SLS-Minimisation

Stochastic Local Search: Foundations and Applications 47

Note:

� Procedural versions of init, step and terminate implement
sampling from respective probability distributions.

� Memory state m can consist of multiple independent
attributes, i.e., M(π) := M1 × M2 × . . . × Ml(π).

� SLS algorithms realise Markov processes:
behaviour in any search state (s, m) depends only
on current position s and (limited) memory m.

Stochastic Local Search: Foundations and Applications 48



Example: Uninformed random walk for SAT (1)

� search space S: set of all truth assignments to variables
in given formula F

� solution set S ′: set of all models of F

� neighbourhood relation N: 1-flip neighbourhood, i.e.,
assignments are neighbours under N iff they differ in
the truth value of exactly one variable

� memory: not used, i.e., M := {0}

Stochastic Local Search: Foundations and Applications 49

Example: Uninformed random walk for SAT (continued)

� initialisation: uniform random choice from S , i.e.,
init()(a′, m) := 1/#S for all assignments a′ and
memory states m

� step function: uniform random choice from current
neighbourhood, i.e., step(a, m)(a′, m) := 1/#N(a)
for all assignments a and memory states m,
where N(a) := {a′ ∈ S | N(a, a′)} is the set of
all neighbours of a.

� termination: when model is found, i.e.,
terminate(a, m)(�) := 1 if a is a model of F , and 0 otherwise.

Stochastic Local Search: Foundations and Applications 50



Definition:

� neighbourhood (set) of candidate solution s:
N(s) := {s ′ ∈ S | N(s, s ′)}

� neighbourhood graph of problem instance π:
GN(π) := (S(π), N(π))

Note: Diameter of GN = worst-case lower bound for number of
search steps required for reaching (optimal) solutions

Example:

SAT instance with n variables, 1-flip neighbourhood:
GN = n-dimensional hypercube; diameter of GN = n.

Stochastic Local Search: Foundations and Applications 51

Definition:

k-exchange neighbourhood: candidate solutions s, s ′ are
neighbours iff s differs from s ′ in at most k solution components

Examples:

� 1-flip neighbourhood for SAT
(solution components = single variable assignments)

� 2-exchange neighbourhood for TSP
(solution components = edges in given graph)

Stochastic Local Search: Foundations and Applications 52



Search steps in the 2-exchange neighbourhood for the TSP

u4 u3

u1 u2

u4 u3

u1 u2

2-exchange

Stochastic Local Search: Foundations and Applications 53

Definition:

� Search step (or move): pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., N(s, s ′) and
step(s, m)(s ′, m′) > 0 for some memory states m, m′ ∈ M.

� Search trajectory: finite sequence of search positions
(s0, s1, . . . , sk) such that (si−1, si ) is a search step
for any i ∈ {1, . . . , k} and the probability of initialising
the search at s0 is greater zero, i.e., init(s0, m) > 0
for some memory state m ∈ M.

� Search strategy: specified by init and step function; to some
extent independent of problem instance and
other components of SLS algorithm.

Stochastic Local Search: Foundations and Applications 54



Uninformed Random Picking

� N := S × S

� does not use memory

� init, step: uniform random choice from S ,
i.e., for all s, s ′ ∈ S , init(s) := step(s)(s ′) := 1/#S

Uninformed Random Walk

� does not use memory

� init: uniform random choice from S

� step: uniform random choice from current neighbourhood,
i.e., for all s, s ′ ∈ S , step(s)(s ′) := 1/#N(s) if N(s, s ′),
and 0 otherwise

Note: These uninformed SLS strategies are quite ineffective,
but play a role in combination with more directed search strategies.

Stochastic Local Search: Foundations and Applications 55

Evaluation function:

� function g(π) : S(π) 	→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;

� used for ranking or assessing neighbhours of current
search position to provide guidance to search process.

Evaluation vs objective functions:

� Evaluation function: part of SLS algorithm.

� Objective function: integral part of optimisation problem.

� Some SLS methods use evaluation functions different from
given objective function (e.g., dynamic local search).

Stochastic Local Search: Foundations and Applications 56



Iterative Improvement (II)

� does not use memory

� init: uniform random choice from S

� step: uniform random choice from improving neighbours,
i.e., step(s)(s ′) := 1/#I (s) if s ′ ∈ I (s), and 0 otherwise,
where I (s) := {s ′ ∈ S | N(s, s ′) ∧ g(s ′) < g(s)}

� terminates when no improving neighbour available
(to be revisited later)

� different variants through modifications of step function
(to be revisited later)

Note: II is also known as iterative descent or hill-climbing.

Stochastic Local Search: Foundations and Applications 57

Example: Iterative Improvement for SAT (1)

� search space S: set of all truth assignments to variables
in given formula F

� solution set S ′: set of all models of F

� neighbourhood relation N: 1-flip neighbourhood
(as in Uninformed Random Walk for SAT)

� memory: not used, i.e., M := {0}
� initialisation: uniform random choice from S , i.e.,

init()(a′) := 1/#S for all assignments a′

Stochastic Local Search: Foundations and Applications 58



Example: Iterative Improvement for SAT (continued)

� evaluation function: g(a) := number of clauses in F
that are unsatisfied under assignment a
(Note: g(a) = 0 iff a is a model of F .)

� step function: uniform random choice from improving
neighbours, i.e., step(a)(a′) := 1/#I (a) if s ′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N(a, a′) ∧ g(a′) < g(a)}

� termination: when no improving neighbour is available
i.e., terminate(a)(�) := 1 if I (a) = ∅, and 0 otherwise.

Stochastic Local Search: Foundations and Applications 59

Incremental updates (aka delta evaluations)

� Key idea: calculate effects of differences between
current search position s and neighbours s ′ on
evaluation function value.

� Evaluation function values often consist of independent
contributions of solution components; hence, g(s) can be
efficiently calculated from g(s ′) by differences between
s and s ′ in terms of solution components.

� Typically crucial for the efficient implementation of
II algorithms (and other SLS techniques).

Stochastic Local Search: Foundations and Applications 60



Example: Incremental updates for TSP

� solution components = edges of given graph G

� standard 2-exchange neighbhourhood, i.e., neighbouring
round trips p, p′ differ in two edges

� w(p′) := w(p) − edges in p but not in p′

+ edges in p′ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmethic operations for graph with n vertices)
for computing w(p′) from scratch.

Stochastic Local Search: Foundations and Applications 61

Definition:

� Local minimum: search position without improving neighbours
w.r.t. given evaluation function g and neighbourhood N,
i.e., position s ∈ S such that g(s) ≤ g(s ′) for all s ′ ∈ N(s).

� Strict local minimum: search position s ∈ S such that
g(s) < g(s ′) for all s ′ ∈ N(s).

� Local maxima and strict local maxima: defined analogously.

Stochastic Local Search: Foundations and Applications 62



Computational complexity of local search (1)

For a local search algorithm to be effective, search initialisation
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

� search initialisation

� any single search step, including computation of
any evaluation function value

For any problem in PLS . . .

� local optimality can be verified in polynomial time

� improving search steps can be computed in polynomial time

� but: finding local optima may require super-polynomial time

Note: All time-complexities are stated for deterministic machines.

Stochastic Local Search: Foundations and Applications 63

Computational complexity of local search (2)

PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:

� TSP with k-exchange neighbourhood with k > 3
is PLS-complete.

� TSP with 2- or 3-exchange neighbourhood is in PLS, but
PLS-completeness is unknown.

Stochastic Local Search: Foundations and Applications 64



Simple mechanisms for escaping from local optima:

� Restart: re-initialise search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialisation.)

� Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function
value, e.g., using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

Note: Neither of these mechanisms is guaranteed to always
escape effectively from local optima.

Stochastic Local Search: Foundations and Applications 65

Diversification vs Intensification

� Goal-directed and randomised components of SLS strategy
need to be balanced carefully.

� Intensification: aims to greedily increase solution quality or
probability, e.g., by exploiting the evaluation function.

� Diversification: aim to prevent search stagnation by preventing
search process from getting trapped in confined regions.

Examples:

� Iterative Improvement (II): intensification strategy.

� Uninformed Random Walk (URW): diversification strategy.

Balanced combination of intensification and diversification
mechanisms forms the basis for advanced SLS methods.

Stochastic Local Search: Foundations and Applications 66


