
STOCHASTIC LOCAL SEARCH
FOUNDATIONS AND APPLICATIONS

SLS Methods: An Overview

Holger H. Hoos & Thomas Stützle

Outline

1. Iterative Improvement (Revisited)

2. ‘Simple’ SLS Methods

3. Hybrid SLS Methods

4. Population-based SLS Methods

Stochastic Local Search: Foundations and Applications 2

Iterative Improvement (Revisited)

Iterative Improvement (II):

determine initial candidate solution s
While s is not a local optimum:
|| choose a neighbour s ′ of s such that g(s ′) < g(s)
b s := s ′

Main Problem:
Stagnation in local optima of evaluation function g .

Stochastic Local Search: Foundations and Applications 3

Note:

I Local minima depend on g and neighbourhood relation, N.
I Larger neighbourhoods N(s) induce

I neighbhourhood graphs with smaller diameter;
I fewer local minima.

Ideal case: exact neighbourhood, i.e., neighbourhood relation
for which any local optimum is also guaranteed to be
a global optimum.

I Typically, exact neighbourhoods are too large to be searched
effectively (exponential in size of problem instance).

I But: exceptions exist, e.g., polynomially searchable
neighbourhood in Simplex Algorithm for linear programming.

Stochastic Local Search: Foundations and Applications 4

Trade-off:

I Using larger neighbourhoods can improve performance of II
(and other SLS methods).

I But: time required for determining improving search steps
increases with neighbhourhood size.

More general trade-off:

Effectiveness vs time complexity of search steps.

Stochastic Local Search: Foundations and Applications 5

Neighbourhood Pruning:

I Idea: Reduce size of neighbourhoods by exluding neighbours
that are likely (or guaranteed) not to yield improvements in g .

I Note: Crucial for large neighbourhoods, but can be also very
useful for small neighbourhoods (e.g., linear in instance size).

Stochastic Local Search: Foundations and Applications 6

Example: Candidate lists for the TSP

I Intuition: High-quality solutions likely include short edges.

I Candidate list of vertex v : list of v ’s nearest neighbours
(limited number), sorted according to increasing edge weights.

I Search steps (e.g., 2-exchange moves) always involve edges to
elements of candidate lists.

I Significant impact on performance of SLS algorithms
for the TSP.

Stochastic Local Search: Foundations and Applications 7

In II, various mechanisms (pivoting rules) can be used
for choosing improving neighbour in each step:

I Best Improvement (aka gradient descent, greedy
hill-climbing): Choose maximally improving neighbour,
i.e., randomly select from I ∗(s) := {s ′ ∈ N(s) | g(s ′) = g∗},
where g∗ := min{g(s ′) | s ′ ∈ N(s)}.

Note: Requires evaluation of all neighbours in each step.

I First Improvement: Evaluate neighbours in fixed order,
choose first improving step encountered.

Note: Can be much more efficient than Best Improvement;
order of evaluation can have significant impact on
performance.

Stochastic Local Search: Foundations and Applications 8

Example: Random-order first improvement for the TSP (1)

I Given: TSP instance G with vertices v1, v2, . . . , vn.

I search space: Hamiltonian cycles in G ;
use standard 2-exchange neighbourhood

I Initialisation:
search position := fixed canonical path (v1, v2, . . . , vn, v1)
P := random permutation of {1,2, . . . , n}

I Search steps: determined using first improvement
w.r.t. g(p) = weight of path p, evaluating neighbours
in order of P (does not change throughout search)

I Termination: when no improving search step possible
(local minimum)

Stochastic Local Search: Foundations and Applications 9

Example: Random-order first improvement for the TSP (2)

Empirical performance evaluation:

I Perform 1000 runs of algorithm on benchmark instance
pcb3038.

I Record relative solution quality (= percentage deviation from
known optimum) of final tour obtained in each run.

I Plot cumulative distribution function of relative solution
quality over all runs.

Stochastic Local Search: Foundations and Applications 10

Example: Random-order first improvement for the TSP (3)

Result: Substantial variability in solution quality between runs.

7 7.5 8 8.5

relative solution quality [%]

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

9 9.5 10 10.5

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Stochastic Local Search: Foundations and Applications 11

Variable Neighbourhood Descent

I Recall: Local minima are relative to neighbourhood relation.

I Key idea: To escape from local minimum of given
neighbourhood relation, switch to different neighbhourhood
relation.

I Use k neighbourhood relations N1, . . . ,Nk , (typically) ordered
according to increasing neighbourhood size.

I Always use smallest neighbourhood that facilitates improving
steps.

I Upon termination, candidate solution is locally optimal w.r.t.
all neighbourhoods

Stochastic Local Search: Foundations and Applications 12

Variable Neighbourhood Descent (VND):

determine initial candidate solution s
i := 1
Repeat:
|| choose a most improving neighbour s ′ of s in Ni
|| If g(s ′) < g(s):
|| s := s ′

|| i := 1
|| Else:
| i := i + 1

Until i > k

Stochastic Local Search: Foundations and Applications 13

Note:

I VND often performs substantially better than simple II
or II in large neighbourhoods [Hansen and Mladenović, 1999]

I Many variants exist that switch between neighbhourhoods
in different ways.

I More general framework for SLS algorithms that switch
between multiple neighbourhoods: Variable Neighbourhood
Search (VNS) [Mladenović and Hansen, 1997].

Stochastic Local Search: Foundations and Applications 14

Variable Depth Search

I Key idea: Complex steps in large neighbourhoods =
variable-length sequences of simple steps in small
neighbourhood.

I Use various feasibility restrictions on selection of simple search
steps to limit time complexity of constructing complex steps.

I Perform Iterative Improvement w.r.t. complex steps.

Stochastic Local Search: Foundations and Applications 15

Variable Depth Search (VDS):

determine initial candidate solution s
t̂ := s
While s is not locally optimal:
|| Repeat:
|| || select best feasible neighbour t
|| | If g(t) < g(t̂): t̂ := t
|| Until construction of complex step has been completed
b s := t̂

Stochastic Local Search: Foundations and Applications 16

Example: The Lin-Kernighan (LK) Algorithm for the TSP (1)

I Complex search steps correspond to sequences
of 2-exchange steps and are constructed from
sequences of Hamiltonian paths (= paths that visit
every node in given graph exactly once).

I δ-path: Hamiltonian path p + 1 edge connecting one end of p
to interior node of p (‘lasso’ structure):

u

a)

v

u

b)

vw

Stochastic Local Search: Foundations and Applications 17

Basic LK exchange step:

I Start with Hamiltonian path (u, . . . , v):

u

a)

v

I Obtain δ-path by adding an edge (v ,w):

u

b)

vw

I Break cycle by removing edge (w , v ′):

u

c)

vv'w

I Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (v ′, u):

u

c)

vv'w

Stochastic Local Search: Foundations and Applications 18

Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t∗ := s; set p := s

2. obtain δ-path p′ by replacing one edge in p

3. consider Hamiltonian cycle t obtained from p by
(uniquely) defined edge exchange

4. if w(t) < w(t∗) then set t∗ := t; p := p′; go to step 2

5. else accept t∗ as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps
that alternate between δ-paths and Hamiltonian cycles.

Stochastic Local Search: Foundations and Applications 19

Additional mechanisms used by LK algorithm:

I Tabu restriction: Any edge that has been added cannot be
removed and any edge that has been removed cannot be
added in the same LK step.

Note: This limits the number of simple steps in a complex
LK step.

I Limited form of backtracking ensures that local minimum
found by the algorithm is optimal w.r.t. standard 3-exchange
neighbhourhood

I (For further details, see book and/or module on TSP.)

Stochastic Local Search: Foundations and Applications 20

Note:

Variable depth search algorithms have been very successful
for other problems, including:

I the Graph Partitioning Problem [Kernigan and Lin, 1970];

I the Unconstrained Binary Quadratic Programming Problem
[Merz and Freisleben, 2002];

I the Generalised Assignment Problem [Yagiura et al., 1999].

Stochastic Local Search: Foundations and Applications 21

Dynasearch (1)

I Iterative improvement method based on building complex
search steps from combinations of simple search steps.

I Simple search steps constituting any given complex step
are required to be mutually independent,
i.e., do not interfere with each other w.r.t. effect on
evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

u1 ui ui+1 uj uj+1 uk uk+1 ul ul+1 un un+1

Therefore: Overall effect of complex search step = sum of
effects of constituting simple steps; complex search steps
maintain feasibility of candidate solutions.

Stochastic Local Search: Foundations and Applications 22

Dynasearch (2)

I Key idea: Efficiently find optimal combination of mutually
independent simple search steps using Dynamic Programming.

I Successful applications to various combinatorial optimisation
problems, including:

I the TSP and the Linear Ordering Problem [Congram, 2000]

I the Single Machine Total Weighted Tardiness Problem
(scheduling) [Congram et al., 2002]

Stochastic Local Search: Foundations and Applications 23

‘Simple’ SLS Methods

Goal:

Effectively escape from local minima of given evaluation function.

General approach:

For fixed neighbourhood, use step function that permits
worsening search steps.

Specific methods:

I Randomised Iterative Improvement
I Probabilistic Iterative Improvement
I Simulated Annealing
I Tabu Search
I Dynamic Local Search

Stochastic Local Search: Foundations and Applications 24

Randomised Iterative Improvement

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomised Iterative Improvement (RII):

determine initial candidate solution s
While termination condition is not satisfied:
|| With probability wp:
|| choose a neighbour s ′ of s uniformly at random
|| Otherwise:
|| choose a neighbour s ′ of s such that g(s ′) < g(s) or,
|| if no such s ′ exists, choose s ′ such that g(s ′) is minimal
b s := s ′

Stochastic Local Search: Foundations and Applications 25

Note:

I No need to terminate search when local minimum is
encountered

Instead: Bound number of search steps or CPU time
from beginning of search or after last improvement.

I Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

I A variant of RII has successfully been applied to SAT
(GWSAT algorithm), but generally, RII is often outperformed
by more complex SLS methods.

Stochastic Local Search: Foundations and Applications 26

Example: Randomised Iterative Best Improvement for SAT

procedure GUWSAT(F , wp, maxSteps)
input: propositional formula F , probability wp, integer maxSteps
output: model of F or ∅
choose assignment a of truth values to all variables in F

uniformly at random;
steps := 0;
while not(a satisfies F) and (steps < maxSteps) do

with probability wp do
select x uniformly at random from set of all variables in F ;

otherwise
select x uniformly at random from {x ′ | x ′ is a variable in F and

changing value of x ′ in a max. decreases number of unsat. clauses};
change value of x in a;
steps := steps+1;

end
if a satisfies F then return a
else return ∅
end

end GUWSAT

Stochastic Local Search: Foundations and Applications 27

Note:

I A variant of GUWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.

I Generally, RII is often outperformed by more complex
SLS methods.

Stochastic Local Search: Foundations and Applications 28

Probabilistic Iterative Improvement

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realisation:

I Function p(g , s): determines probability distribution
over neighbours of s based on their values under
evaluation function g .

I Let step(s)(s ′) := p(g , s)(s ′).

Note:

I Behaviour of PII crucially depends on choice of p.

I II and RII are special cases of PII.

Stochastic Local Search: Foundations and Applications 29

Example: Metropolis PII for the TSP (1)

I Search space: set of all Hamiltonian cycles in given graph G .

I Solution set: same as search space (i.e., all candidate
solutions are considered feasible).

I Neighbourhood relation: reflexive variant of 2-exchange
neighbourhood relation (includes s in N(s), i.e., allows for
steps that do not change search position).

Stochastic Local Search: Foundations and Applications 30

Example: Metropolis PII for the TSP (2)

I Initialisation: pick Hamiltonian cycle uniformly at random.

I Step function: implemented as 2-stage process:

1. select neighbour s ′ ∈ N(s) uniformly at random;

2. accept as new search position with probability:

p(T , s, s ′) :=


1 if f (s ′) ≤ f (s)

exp(f (s)−f (s′)
T) otherwise

(Metropolis condition), where temperature parameter T
controls likelihood of accepting worsening steps.

I Termination: upon exceeding given bound on run-time.

Stochastic Local Search: Foundations and Applications 31

Simulated Annealing

Key idea: Vary temperature parameter, i.e., probability of
accepting worsening moves, in Probabilistic Iterative Improvement
according to annealing schedule (aka cooling schedule).

Inspired by physical annealing process:

I candidate solutions ∼= states of physical system

I evaluation function ∼= thermodynamic energy

I globally optimal solutions ∼= ground states

I parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect
ground states are achieved by very slow lowering of temperature.

Stochastic Local Search: Foundations and Applications 32

Simulated Annealing (SA):

determine initial candidate solution s
set initial temperature T according to annealing schedule
While termination condition is not satisfied:
|| probabilistically choose a neighbour s ′ of s
|| using proposal mechanism
|| If s ′ satisfies probabilistic acceptance criterion (depending on T):
|| s := s ′

b update T according to annealing schedule

Stochastic Local Search: Foundations and Applications 33

Note:

I 2-stage step function based on
I proposal mechanism (often uniform random choice from N(s))
I acceptance criterion (often Metropolis condition)

I Annealing schedule (function mapping run-time t onto
temperature T (t)):

I initial temperature T0

(may depend on properties of given problem instance)
I temperature update scheme

(e.g., geometric cooling: T := α · T)
I number of search steps to be performed at each temperature

(often multiple of neighbourhood size)

I Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps.

Stochastic Local Search: Foundations and Applications 34

Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

I proposal mechanism: uniform random choice from
2-exchange neighbourhood;

I acceptance criterion: Metropolis condition (always accept
improving steps, accept worsening steps with probability
exp [(f (s)− f (s ′))/T]);

I annealing schedule: geometric cooling T := 0.95 · T with
n · (n − 1) steps at each temperature (n = number of vertices
in given graph), T0 chosen such that 97% of proposed steps
are accepted;

I termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Stochastic Local Search: Foundations and Applications 35

Improvements:

I neighbourhood pruning (e.g., candidate lists for TSP)

I greedy initialisation (e.g., by using NNH for the TSP)

I low temperature starts (to prevent good initial
candidate solutions from being too easily destroyed
by worsening steps)

I look-up tables for acceptance probabilities:

instead of computing exponential function exp(∆/T)
for each step with ∆ := f (s)− f (s ′) (expensive!),

use precomputed table for range of argument values ∆/T .

Stochastic Local Search: Foundations and Applications 36

‘Convergence’ result for SA:

Under certain conditions (extremely slow cooling),
any sufficiently long trajectory of SA is guaranteed to end in
an optimal solution [Geman and Geman, 1984; Hajek, 1998].

Note:

I Practical relevance for combinatorial problem solving
is very limited (impractical nature of necessary conditions)

I In combinatorial problem solving, ending in optimal solution
is typically unimportant, but finding optimal solution
during the search is (even if it is encountered only once)!

Stochastic Local Search: Foundations and Applications 37

Tabu Search

Key idea: Use aspects of search history (memory) to escape from
local minima.

Simple Tabu Search:

I Associate tabu attributes with candidate solutions or
solution components.

I Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Stochastic Local Search: Foundations and Applications 38

Tabu Search (TS):

determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbours of s
|| choose a best improving candidate solution s ′ in N ′

|||| update tabu attributes based on s ′

b s := s ′

Stochastic Local Search: Foundations and Applications 39

Note:

I Non-tabu search positions in N(s) are called
admissible neighbours of s.

I After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).

I Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).

Stochastic Local Search: Foundations and Applications 40

Example: Tabu Search for SAT – GSAT/Tabu (1)

I Search space: set of all truth assignments for propositional
variables in given CNF formula F .

I Solution set: models of F .

I Use 1-flip neighbourhood relation, i.e., two truth
assignments are neighbours iff they differ in the truth value
assigned to one variable.

I Memory: Associate tabu status (Boolean value) with each
variable in F .

Stochastic Local Search: Foundations and Applications 41

Example: Tabu Search for SAT – GSAT/Tabu (2)

I Initialisation: random picking, i.e., select uniformly at
random from set of all truth assignments.

I Search steps:
I variables are tabu iff they have been changed

in the last tt steps;
I neighbouring assignments are admissible iff they

can be reached by changing the value of a non-tabu variable
or have fewer unsatisfied clauses than the best assignment
seen so far (aspiration criterion);

I choose uniformly at random admissible assignment
with minimal number of unsatisfied clauses.

I Termination: upon finding model of F or after given bound
on number of search steps has been reached.

Stochastic Local Search: Foundations and Applications 42

Note:

I GSAT/Tabu used to be state of the art for SAT solving.

I Crucial for efficient implementation:

I keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;

I efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu iff
it − itx < tt, where it = current search step number.

Stochastic Local Search: Foundations and Applications 43

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

I tt too low ⇒ search stagnates due to inability to escape
from local minima;

I tt too high ⇒ search becomes ineffective due to overly
restricted search path (admissible neighbourhoods too small)

Advanced TS methods:

I Robust Tabu Search [Taillard, 1991]:

repeatedly choose tt from given interval;

also: force specific steps that have not been made for a long time.

I Reactive Tabu Search [Battiti and Tecchiolli, 1994]:

dynamically adjust tt during search;

also: use escape mechanism to overcome stagnation.

Stochastic Local Search: Foundations and Applications 44

Further improvements can be achieved by using intermediate-term
or long-term memory to achieve additional intensification or
diversification.

Examples:

I Occasionally backtrack to elite candidate solutions, i.e.,
high-quality search positions encountered earlier in the search;
when doing this, all associated tabu attributes are cleared.

I Freeze certain solution components and keep them fixed
for long periods of the search.

I Occasionally force rarely used solution components to be
introduced into current candidate solution.

I Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

Stochastic Local Search: Foundations and Applications 45

Tabu search algorithms algorithms are state of the art
for solving many combinatorial problems, including:

I SAT and MAX-SAT

I the Constraint Satisfaction Problem (CSP)

I many scheduling problems

Crucial factors in many applications:

I choice of neighbourhood relation

I efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

Stochastic Local Search: Foundations and Applications 46

Dynamic Local Search

I Key Idea: Modify the evaluation function whenever
a local optimum is encountered in such a way that
further improvement steps become possible.

I Associate penalty weights (penalties) with solution
components; these determine impact of components on
evaluation function value.

I Perform Iterative Improvement; when in local minimum,
increase penalties of some solution components
until improving steps become available.

Stochastic Local Search: Foundations and Applications 47

Dynamic Local Search (DLS):

determine initial candidate solution s
initialise penalties
While termination criterion is not satisfied:
|| compute modified evaluation function g ′ from g
|| based on penalties
|||| perform subsidiary local search on s
|| using evaluation function g ′

||b update penalties based on s

Stochastic Local Search: Foundations and Applications 48

Dynamic Local Search (continued)

I Modified evaluation function:

g ′(π, s) := g(π, s) +
∑

i∈SC(π′,s) penalty(i),

where SC (π′, s) = set of solution components
of problem instance π′ used in candidate solution s.

I Penalty initialisation: For all i : penalty(i) := 0.

I Penalty update in local minimum s: Typically involves
penalty increase of some or all solution components of s;
often also occasional penalty decrease or penalty smoothing.

I Subsidiary local search: Often Iterative Improvement.

Stochastic Local Search: Foundations and Applications 49

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.

B: Only increase penalties of solution components that are
least likely to occur in (optimal) solutions.

Implementation of B:
[Voudouris and Tsang, 1995]

Only increase penalties of solution components i with
maximal utility:

util(s ′, i) :=
fi (π, s ′)

1 + penalty(i)

where fi (π, s ′) = solution quality contribution of i in s ′.

Stochastic Local Search: Foundations and Applications 50

Example: Guided Local Search (GLS) for the TSP
[Voudouris and Tsang 1995; 1999]

I Given: TSP instance G

I Search space: Hamiltonian cycles in G with n vertices;
use standard 2-exchange neighbourhood;
solution components = edges of G ;
f (G , p) := w(p); fe(G , p) := w(e);

I Penalty initialisation: Set all edge penalties to zero.

I Subsidiary local search: Iterative First Improvement.

I Penalty update: Increment penalties for all edges with
maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

Stochastic Local Search: Foundations and Applications 51

Earlier, closely related methods:

I Breakout Method [Morris, 1993]

I GENET [Davenport et al., 1994]

I Clause weighting methods for SAT
[Selman and Kautz, 1993; Cha and Iwama, 1996; Frank, 1997]

Dynamic local search algorithms are state of the art
for many problems, including:

I SAT [Hutter et al., 2002]

I MAX-SAT [Tompkins and Hoos, 2003]

I MAX-CLIQUE [Pullan et al., to appear]

Stochastic Local Search: Foundations and Applications 52

Hybrid SLS Methods

Combination of ‘simple’ SLS methods often yields
substantial performance improvements.

Simple examples:

I Commonly used restart mechanisms can be seen
as hybridisations with Uninformed Random Picking

I Iterative Improvement + Uninformed Random Walk
= Randomised Iterative Improvement

Stochastic Local Search: Foundations and Applications 53

Iterated Local Search

Key Idea: Use two types of SLS steps:

I subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

I perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs
intensification behaviour.

Stochastic Local Search: Foundations and Applications 54

Iterated Local Search (ILS):

determine initial candidate solution s
perform subsidiary local search on s
While termination criterion is not satisfied:
|| r := s
|| perform perturbation on s
|| perform subsidiary local search on s
|||| based on acceptance criterion,
b keep s or revert to s := r

Stochastic Local Search: Foundations and Applications 55

Note:

I Subsidiary local search results in a local minimum.

I ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

I Perturbation phase and acceptance criterion may use aspects
of search history (i.e., limited memory).

I In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to
complement each other well.

Stochastic Local Search: Foundations and Applications 56

Subsidiary local search: (1)

I More effective subsidiary local search procedures lead to
better ILS performance.

Example: 2-opt vs 3-opt vs LK for TSP.

I Often, subsidiary local search = iterative improvement,
but more sophisticated SLS methods can be used.
(e.g., Tabu Search).

Stochastic Local Search: Foundations and Applications 57

Perturbation mechanism: (1)

I Needs to be chosen such that its effect cannot be easily
undone by subsequent local search phase.
(Often achieved by search steps larger neighbourhood.)

Example: local search = 3-opt, perturbation = 4-exchange
steps in ILS for TSP.

I A perturbation phase may consist of one or more
perturbation steps.

Stochastic Local Search: Foundations and Applications 58

Perturbation mechanism (continued):

I Weak perturbation ⇒ short subsequent local search phase;
but: risk of revisiting current local minimum.

I Strong perturbation ⇒ more effective escape from local
minima; but: may have similar drawbacks as random restart.

I Advanced ILS algorithms may change nature and/or strength
of perturbation adaptively during search.

Stochastic Local Search: Foundations and Applications 59

Acceptance criteria: (1)

I Always accept the better of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local
optima reached by subsidiary local search.

I Always accept the more recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima
reached by subsidiary local search.

I Intermediate behaviour: select between the two candidate
solutions based on the Metropolis criterion (e.g., used in
Large Step Markov Chains [Martin et al., 1991].

I Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

Stochastic Local Search: Foundations and Applications 60

Example: Iterated Local Search for the TSP (1)

I Given: TSP instance G .

I Search space: Hamiltonian cycles in G ;
use 4-exchange neighbourhood.

I Subsidiary local search:
Lin-Kernighan variable depth search algorithm

Stochastic Local Search: Foundations and Applications 61

Example: Iterated Local Search for the TSP (2)

I Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge

move

A

BC

D

Note:
I Cannot be directly reversed by a sequence of 2-exchange steps

as performed by ”usual” LK implementations.
I Empirically shown to be effective independent of instance size.

Stochastic Local Search: Foundations and Applications 62

Example: Iterated Local Search for the TSP (3)

I Acceptance criterion: Always return the better of the two
given candidate round trips.

Note:

I This ILS algorithm for the TSP is known as Iterated
Lin-Kernighan (ILK) Algorithm.

I Although ILK is structurally rather simple, an efficient
implementation was shown to achieve excellent performance
[Johnson and McGeoch, 1997].

Stochastic Local Search: Foundations and Applications 63

Iterated local search algorithms . . .

I are typically rather easy to implement (given existing
implementation of subsidiary simple SLS algorithms);

I achieve state-of-the-art performance on many
combinatorial problems, including the TSP.

There are many SLS approaches that are closely related
to ILS, including:

I Large Step Markov Chains [Martin et al., 1991]

I Chained Local Search [Martin and Otto, 1996]

I Variants of Variable Neighbourhood Search (VNS)
[Hansen and Mladenovic̀, 2002]

Stochastic Local Search: Foundations and Applications 64

Greedy Randomised Adaptive Search Procedures

Key Idea: Combine randomised constructive search with
subsequent perturbative local search.

Motivation:

I Candidate solutions obtained from construction heuristics can
often be substantially improved by perturbative local search.

I Perturbative local search methods typically often require
substantially fewer steps to reach high-quality solutions
when initialised using greedy constructive search rather than
random picking.

I By iterating cycles of constructive + perturbative search,
further performance improvements can be achieved.

Stochastic Local Search: Foundations and Applications 65

Greedy Randomised “Adaptive” Search Procedure (GRASP):

While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary greedy randomised constructive search
||b perform subsidiary local search on s

Note:

Randomisation in constructive search ensures that a large number
of good starting points for subsidiary local search is obtained.

Stochastic Local Search: Foundations and Applications 66

Restricted candidate lists (RCLs)

I Each step of constructive search adds a solution component
selected uniformly at random from a restricted candidate list
(RCL).

I RCLs are constructed in each step usig a heuristic function h.

I RCLs based on cardinality restriction comprise the k
best-ranked solution components. (k is a parameter
of the algorithm.)

I RCLs based on value restriction comprise all solution
components l for which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

Stochastic Local Search: Foundations and Applications 67

Note:

I Constructive search in GRASP is ‘adaptive’:
Heuristic value of solution component to be added to
given partial candidate solution r may depend on
solution components present in r .

I Variants of GRASP without perturbative local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with perturbative local search.

Stochastic Local Search: Foundations and Applications 68

Example: GRASP for SAT [Resende and Feo, 1996]

I Given: CNF formula F over variables x1, . . . , xn

I Subsidiary constructive search:

I start from empty variable assignment

I in each step, add one atomic assignment (i.e., assignment of
a truth value to a currently unassigned variable)

I heuristic function h(i , v) := number of clauses that
become satisfied as a consequence of assigning xi := v

I RCLs based on cardinality restriction (contain fixed number k
of atomic assignments with largest heuristic values)

I Subsidiary local search:

I iterative best improvement using 1-flip neighbourhood

I terminates when model has been found or given number of
steps has been exceeded

Stochastic Local Search: Foundations and Applications 69

GRASP has been applied to many combinatorial problems,
including:

I SAT, MAX-SAT

I the Quadratic Assignment Problem

I various scheduling problems

Extensions and improvements of GRASP:

I reactive GRASP (e.g., dynamic adaptation of α
during search)

I combinations of GRASP with Tabu Search and other
SLS methods

Stochastic Local Search: Foundations and Applications 70

Adaptive Iterated Construction Search

Key Idea: Alternate construction and perturbative local search
phases as in GRASP, exploiting experience gained during the
search process.

Realisation:

I Associate weights with possible decisions made during
constructive search.

I Initialise all weights to some small value τ0 at beginning of
search process.

I After every cycle (= constructive + perturbative local search
phase), update weights based on solution quality and solution
components of current candidate solution.

Stochastic Local Search: Foundations and Applications 71

Adaptive Iterated Construction Search (AICS):

initialise weights

While termination criterion is not satisfied:
|| generate candidate solution s using
|| subsidiary randomised constructive search
|||| perform subsidiary local search on s
||b adapt weights based on s

Stochastic Local Search: Foundations and Applications 72

Subsidiary constructive search:

I The solution component to be added in each step of
constructive search is based on weights and
heuristic function h.

I h can be standard heuristic function as, e.g., used by
greedy construction heuristics, GRASP or tree search.

I It is often useful to design solution component selection in
constructive search such that any solution component may be
chosen (at least with some small probability) irrespective of
its weight and heuristic value.

Stochastic Local Search: Foundations and Applications 73

Subsidiary perturbative local search:

I As in GRASP, perturbative local search phase is typically
important for achieving good performance.

I Can be based on Iterative Improvement or more advanced SLS
method (the latter often results in better performance).

I Tradeoff between computation time used in construction
phase vs local search phase (typically optimised empirically,
depends on problem domain).

Stochastic Local Search: Foundations and Applications 74

Weight updating mechanism:

I Typical mechanism: increase weights of all solution
components contained in candidate solution obtained from
local search.

I Can also use aspects of search history; e.g., current incumbent
candidate solution can be used as basis for
weight update for additional intensification.

Stochastic Local Search: Foundations and Applications 75

Example: A simple AICS algorithm for the TSP (1)

(Based on Ant System for the TSP [Dorigo et al., 1991].)

I Search space and solution set as usual (all Hamiltonian cycles
in given graph G).

I Associate weight τij with each edge (i , j) in G .

I Use heuristic values ηij := 1/w((i , j)).

I Initialise all weights to a small value τ0 (parameter).

I Constructive search starts with randomly chosen vertex
and iteratively extends partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]α · [ηij]β

Stochastic Local Search: Foundations and Applications 76

Example: A simple AICS algorithm for the TSP (2)

I Subsidiary local search = iterative improvement based on
standard 2-exchange neighbourhood (until local minimum
is reached).

I Weight update according to

τij := (1− ρ) · τij + ∆(i , j , s ′)

where ∆(i , j , s ′) := 1/f (s ′), if edge (i , j) is contained in
the cycle represented by s ′, and 0 otherwise.

I Criterion for weight increase is based on intuition that edges
contained in short round trips should be preferably used in
subsequent constructions.

Stochastic Local Search: Foundations and Applications 77

Adaptive Iterated Construction Search . . .

I models recent variants of constructive search, including:
I stochastic tree search [Bresina, 1996],
I Squeeky Wheel Optimisation [Joslin and Clements, 1999],
I Adaptive Probing [Ruml, 2001];

I is a special case of Ant Colony Optimisation (which can be
seen as population-based variant of AICS);

I has not (yet) been widely used as a general SLS technique.

Stochastic Local Search: Foundations and Applications 78

Population-based SLS Methods

SLS methods discussed so far manipulate one candidate solution of
given problem instance in each search step.

Straightforward extension: Use population (i.e., set) of
candidate solutions instead.

Note:

I The use of populations provides a generic way to achieve
search diversification.

I Population-based SLS methods fit into the general definition
from Chapter 1 by treating sets of candidate solutions as
search positions.

Stochastic Local Search: Foundations and Applications 79

Ant Colony Optimisation (1)

Key idea: Can be seen as population-based extension of AICS
where population of agents – (artificial) ants – communicate via
common memory – (simulated) pheromone trails.

Inspired by foraging behaviour of real ants:

I Ants often communicate via chemicals known as pheromones,
which are deposited on the ground in the form of trails.
(This is a form of stigmergy: indirect communication via
manipulation of a common environment.)

I Pheromone trails provide the basis for (stochastic)
trail-following behaviour underlying, e.g., the collective
ability to find shortest paths between a food source and
the nest.

Stochastic Local Search: Foundations and Applications 80

Ant Colony Optimisation (2)

Application to combinatorial problems:
[Dorigo et al. 1991, 1996]

I Ants iteratively construct candidate solutions.

I Solution construction is probabilistically biased by
pheromone trail information, heuristic information and
partial candidate solution of each ant.

I Pheromone trails are modified during the search process
to reflect collective experience.

Stochastic Local Search: Foundations and Applications 81

Ant Colony Optimisation (ACO):

initialise pheromone trails

While termination criterion is not satisfied:
|| generate population sp of candidate solutions
|| using subsidiary randomised constructive search
|||| perform subsidiary local search on sp
||b update pheromone trails based on sp

Stochastic Local Search: Foundations and Applications 82

Note:

I In each cycle, each ant creates one candidate solution
using a constructive search procedure.

I Subsidiary local search is applied to individual candidate
solutions. (Some ACO algorithms do not use a subsidiary
local search procedure.)

I All pheromone trails are initialised to the same value, τ0.

I Pheromone update typically comprises uniform decrease of
all trail levels (evaporation) and increase of some trail levels
based on candidate solutions obtained from construction +
local search.

I Termination criterion can include conditions on make-up of
current population, e.g., variation in solution quality or
distance between individual candidate solutions.

Stochastic Local Search: Foundations and Applications 83

Example: A simple ACO algorithm for the TSP (1)

(Variant of Ant System for the TSP [Dorigo et al., 1991; 1996].)

I Search space and solution set as usual (all Hamiltonian cycles
in given graph G).

I Associate pheromone trails τij with each edge (i , j) in G .

I Use heuristic values ηij := 1/w((i , j)).

I Initialise all weights to a small value τ0 (parameter).

I Constructive search: Each ant starts with randomly chosen
vertex and iteratively extends partial round trip φ by selecting
vertex not contained in φ with probability

[τij]
α · [ηij]

β∑
l∈N′(i)[τil]α · [ηij]β

Stochastic Local Search: Foundations and Applications 84

Example: A simple ACO algorithm for the TSP (2)

I Subsidiary local search: Perform iterative improvement
based on standard 2-exchange neighbourhood on each
candidate solution in population (until local minimum is
reached).

I Update pheromone trail levels according to

τij := (1− ρ) · τij +
∑

s′∈sp′

∆(i , j , s ′)

where ∆(i , j , s ′) := 1/f (s ′) if edge (i , j) is contained in
the cycle represented by s ′, and 0 otherwise.

Motivation: Edges belonging to highest-quality candidate
solutions and/or that have been used by many ants should be
preferably used in subsequent constructions.

Stochastic Local Search: Foundations and Applications 85

Example: A simple ACO algorithm for the TSP (3)

I Termination: After fixed number of cycles
(= construction + local search phases).

Note:

I Ants can be seen as walking along edges of given graph
(using memory to ensure their tours correspond to
Hamiltonian cycles) and depositing pheromone to reinforce
edges of tours.

I Original Ant System did not include subsidiary local search
procedure (leading to worse performance compared to
the algorithm presented here)

Stochastic Local Search: Foundations and Applications 86

Enhancements:

I use of look-ahead in construction phase;

I pheromone updates during construction phase;

I bounds on range and smoothing of pheromone levels.

Advanced ACO methods:

I Ant Colony System [Dorigo and Gambardella, 1997]

I MAX −MIN Ant System [Stützle and Hoos, 1997; 2000]

I the ANTS Algorithm [Maniezzo, 1999]

Stochastic Local Search: Foundations and Applications 87

Ant Colony Optimisation . . .

I has been applied very successfully to a wide range of
combinatorial problems, including

I the Open Shop Scheduling Problem,

I the Sequential Ordering Problem, and

I the Shortest Common Supersequence Problem;

I underlies new high-performance algorithms for dynamic
optimisation problems, such as routing in telecommunications
networks [Di Caro and Dorigo, 1998].

Stochastic Local Search: Foundations and Applications 88

Note:

A general algorithmic framework for solving static and dynamic
combinatorial problems using ACO techniques is provided by the
ACO metaheuristic [Dorigo and Di Caro, 1999; Dorigo et al., 1999].

For further details on Ant Colony Optimisation, see the book by Dorigo and

Stützle [2004].

Stochastic Local Search: Foundations and Applications 89

Evolutionary Algorithms

Key idea: Iteratively apply genetic operators mutation,
recombination, selection to a population of candidate solutions.

Inspired by simple model of biological evolution:

I Mutation introduces random variation in the genetic material
of individuals.

I Recombination of genetic material during sexual reproduction
produces offspring that combines features inherited from both
parents.

I Differences in evolutionary fitness lead selection of genetic
traits (‘survival of the fittest’).

Stochastic Local Search: Foundations and Applications 90

Evolutionary Algorithm (EA):

determine initial population sp

While termination criterion is not satisfied:
|| generate set spr of new candidate solutions
|| by recombination
||||
|||| generate set spm of new candidate solutions
|| from spr and sp by mutation
||||
|||| select new population sp from
b candidate solutions in sp, spr , and spm

Stochastic Local Search: Foundations and Applications 91

Problem: Pure evolutionary algorithms often lack
capability of sufficient search intensification.

Solution: Apply subsidiary local search after initialisation,
mutation and recombination.

⇒ Memetic Algorithms (aka Genetic Local Search)

Stochastic Local Search: Foundations and Applications 92

Memetic Algorithm (MA):

determine initial population sp

perform subsidiary local search on sp

While termination criterion is not satisfied:
|| generate set spr of new candidate solutions
|| by recombination
|||| perform subsidiary local search on spr
|||| generate set spm of new candidate solutions
|| from spr and sp by mutation
|||| perform subsidiary local search on spm
|||| select new population sp from
b candidate solutions in sp, spr , and spm

Stochastic Local Search: Foundations and Applications 93

Initialisation

I Often: independent, uninformed random picking from
given search space.

I But: can also use multiple runs of construction heuristic.

Recombination

I Typically repeatedly selects a set of parents from current
population and generates offspring candidate solutions from
these by means of recombination operator.

I Recombination operators are generally based on linear
representation of candidate solutions and piece together
offspring from fragments of parents.

Stochastic Local Search: Foundations and Applications 94

Example: One-point binary crossover operator

Given two parent candidate solutions x1x2 . . . xn and y1y2 . . . yn:

1. choose index i from set {2, . . . , n} uniformly at random;

2. define offspring as x1 . . . xi−1yi . . . yn and y1 . . . yi−1xi . . . xn.

0 1 1 0 1 1 1 0 Parent 1

cut

Parent 2

Offspring 1

Offspring 2

1 0 0 0 1 0 1 0

0 1 1 0 1 0 1 0

1 0 0 0 1 1 1 0

Stochastic Local Search: Foundations and Applications 95

Mutation

I Goal: Introduce relatively small perturbations in candidate
solutions in current population + offspring obtained from
recombination.

I Typically, perturbations are applied stochastically and
independently to each candidate solution; amount of
perturbation is controlled by mutation rate.

I Can also use subsidiary selection function to determine subset
of candidate solutions to which mutation is applied.

I In the past, the role of mutation (as compared to
recombination) in high-performance evolutionary algorithms
has been often underestimated [Bäck, 1996].

Stochastic Local Search: Foundations and Applications 96

Selection (1)

I Determines population for next cycle (generation) of the
algorithm by selecting individual candidate solutions from
current population + new candidate solutions obtained from
recombination, mutation (+ subsidiary local search).

I Goal: Obtain population of high-quality solutions while
maintaining population diversity.

I Selection is based on evaluation function (fitness) of
candidate solutions such that better candidate solutions have
a higher chance of ‘surviving’ the selection process.

Stochastic Local Search: Foundations and Applications 97

Selection (2)

I Many selection schemes involve probabilistic choices, e.g.,
roulette wheel selection, where the probability of selecting any
candidate solution s is proportional to its fitness value, g(s).

I It is often beneficial to use elitist selection strategies, which
ensure that the best candidate solutions are always selected.

Subsidiary local search

I Often useful and necessary for obtaining high-quality
candidate solutions.

I Typically consists of selecting some or all individuals in
the given population and applying an iterative improvement
procedure to each element of this set independently.

Stochastic Local Search: Foundations and Applications 98

Example: A memetic algorithm for SAT (1)

I Search space: set of all truth assignments for propositional
variables in given CNF formula F ; solution set: models of F ;
use 1-flip neighbourhood relation; evaluation function:
number of unsatisfied clauses in F .

I Note: truth assignments can be naturally represented as bit
strings.

I Use population of k truth assignments; initialise by
(independent) Uninformed Random Picking.

Stochastic Local Search: Foundations and Applications 99

Example: A memetic algorithm for SAT (2)

I Recombination: Add offspring from n/2 (independent)
one-point binary crossovers on pairs of randomly selected
assignments from population to current population
(n = number of variables in F).

I Mutation: Flip µ randomly chosen bits of each assignment
in current population (mutation rate µ: parameter of
the algorithm); this corresponds to µ steps of Uninformed
Random Walk; mutated individuals are added to current
population.

I Selection: Selects the k best assignments from current
population (simple elitist selection mechanism).

Stochastic Local Search: Foundations and Applications 100

Example: A memetic algorithm for SAT (3)

I Subsidiary local search: Applied after initialisation,
recombination and mutation; performs iterative best
improvement search on each individual assignment
independently until local minimum is reached.

I Termination: upon finding model of F or after bound on
number of cycles (generations) is reached.

Note: This algorithm does not reach state-of-the-art performance,
but many variations are possible (few of which have been explored).

Stochastic Local Search: Foundations and Applications 101

Types of evolutionary algorithms (1)

I Genetic Algorithms (GAs) [Holland, 1975; Goldberg, 1989]:

I have been applied to a very broad range of (mostly discrete)
combinatorial problems;

I often encode candidate solutions as bit strings of fixed length,
which is now known to be disadvantagous for combinatorial
problems such as the TSP.

Note: There are some interesting theoretical results for GAs
(e.g., Schema Theorem), but – as for SA – their practical
relevance is rather limited.

Stochastic Local Search: Foundations and Applications 102

Types of evolutionary algorithms (2)

I Evolution Strategies [Rechenberg, 1973; Schwefel, 1981]:

I orginally developed for (continuous) numerical optimisation
problems;

I operate on more natural representations of candidate solutions;

I use self-adaptation of perturbation strength achieved by
mutation;

I typically use elitist deterministic selection.

I Evolutionary Programming [Fogel et al., 1966]:

I similar to Evolution Strategies (developed independently),
but typically does not make use of recombination and uses
stochastic selection based on tournament mechanisms.

Stochastic Local Search: Foundations and Applications 103

	Outline
	Iterative Improvement (Revisited)
	`Simple' SLS Methods
	Hybrid SLS Methods
	Population-based SLS Methods

