
STOCHASTIC LOCAL SEARCH
FOUNDATIONS AND APPLICATIONS

Generalised Local Search Machines

Holger H. Hoos & Thomas Stützle

Outline

1. The Basic GLSM Model

2. State, Transition and Machine Types

3. Modelling SLS Methods Using GLSMs

4. Extensions of the Basic GLSM Model

Stochastic Local Search: Foundations and Applications 2

The Basic GLSM Model

Many high-performance SLS methods are based on combinations
of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

� lower level: execution of underlying simple search strategies

� higher level: activation of and transition between lower-level
search strategies.

Key idea underlying Generalised Local Search Machines:
Explicitly represent higher-level search control mechanism
in the form of a finite state machine.

Stochastic Local Search: Foundations and Applications 3

Example: Simple 3-state GLSM (1)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

� States z0, z1, z2 represent simple search strategies,
such as Random Picking (for initialisation), Iterative
Best Improvement and Uninformed Random Walk.

� PROB(p) refers to a probabilistic state transition with
probability p after each search step.

Stochastic Local Search: Foundations and Applications 4

Generalised Local Search Machines (GLSMs)

� States ∼= simple search strategies.

� State transitions ∼= search control.

� GLSM M starts in initial state.

� In each iteration:

� M executes one search step associated with
its current state z ;

� M selects a new state (which may be the same as z)
in a nondeterministic manner.

� M terminates when a given termination criterion
is satisfied.

Stochastic Local Search: Foundations and Applications 5

Formal definition of a GLSM

A Generalised Local Search Machine is defined as a tuple
M := (Z , z0,M,m0, ∆, σZ , σ∆, τZ , τ∆) where:

� Z is a set of states;

� z0 ∈ Z is the initial state;

� M is a set of memory states (as in SLS definition);

� m0 is the initial memory state (as in SLS definition);

� ∆ ⊆ Z × Z is the transition relation;

� σZ and σ∆ are sets of state types and transition types;

� τZ : Z �→ σZ and τ∆ : ∆ �→ σ∆ associate every state z
and transition (z , z ′) with a state type σZ (z) and
transition type τ∆((z , z ′)), respectively.

Stochastic Local Search: Foundations and Applications 6

Example: Simple 3-state GLSM (formal definition)

Z2Z0 Z1
PROB(1)

PROB(1–p1) PROB(1–p2)

PROB(p1)

PROB(p2)

� Z := {z0, z1, z2}; z0 = initial machine state

� no memory (M := {m0}; m0 = initial and only memory state)

� ∆ := {(z0, z1), (z1, z2), (z1, z1), (z2, z1), (z2, z2)}
� σZ := {z0, z1, z2}
� σ∆ := {PROB(p) | p ∈ {1, p1, p2, 1 − p1, 1 − p2}}
� τZ (zi) := zi , i ∈ {0, 1, 2}
� τ∆((z0, z1)) := PROB(1), τ∆((z1, z2)) := PROB(p1), . . .

Stochastic Local Search: Foundations and Applications 7

Example: Simple 3-state GLSM (semantics)

� Start in initial state z0, memory state m0 (never changes).

� Perform one search step according to search strategy
associated with state type z0 (e.g., random picking).

� With probability 1, switch to state z1.

� Perform one search step according to state z1;
switch to state z2 with probability p1,
otherwise, remain in state z1.

� In state z2, perform one search step according to z2;
switch back to state z1 with probability p2,
otherwise, remain in state z2.

� After one z0 step (initialisation), repeatedly and
nondeterministically switch between phases of z1 and z2 steps
until termination criterion is satisfied.

Stochastic Local Search: Foundations and Applications 8

Note:

� States types formally represent (subsidiary) search strategies,
whose definition is not part of the GLSM definition.

� Transition types formally represent mechanisms used for
switching between GLSM states.

� Multiple states / transitions can have the same type.

� σZ , σ∆ should include only state and transition types that
are actually used in given GLSM (‘no junk’).

� Not all states in Z may actually be reachable when running
a given GLSM.

� Termination condition is not explicitly captured GLSM model,
but considered part of the execution environment.

Stochastic Local Search: Foundations and Applications 9

GLSM Semantics

Behaviour of a GLSM is specified by machine definition +
run-time environment comprising specifications of

� state types,

� transition types;

� problem instance to be solved,

� search space,

� solution set,

� neighbhourhood relations for subsidiary SLS algorithms;

� termination predicate for overall search process.

Stochastic Local Search: Foundations and Applications 10

Run GLSM M:

set current machine state to z0; set current memory state to m0;

While termination criterion is not satisfied:

|| perform search step according to type of current machine state;
|| this results in a new search position
|||| select new machine state according to types of transitions
|| from current machine state, possibly depending on
|| search position and current memory state; this may
� change the current memory state

Stochastic Local Search: Foundations and Applications 11

Note:

� The current search position is only changed by the subsidiary
search strategies associated with states, not as side-effect of
machine state transitions.

� The machine state and memory state are only changed by
state-transitions, not as side-effect of search steps.
(Memory state is viewed as part of higher-level search control.)

� The operation of M is uniquely characterised by the evolution
of machine state, memory state and search position over time.

Stochastic Local Search: Foundations and Applications 12

GLSMs are factored representations of SLS strategies:

� Given GLSM represents the way in which initialisation and
step function of a hybrid SLS method are composed from
respective functions of subsidiary component SLS methods.

� When modelling hybrid SLS methods using GLSMs,
subsidiary SLS methods should be as simple and pure
as possible, leaving search control to be represented
explicitly at the GLSM level.

� Initialisation is modelled using GLSM states
(advantage: simplicity and uniformity of model).

� Termination of subsidiary search strategies are often
reflected in conditional transitions leaving respective
GLSM states.

Stochastic Local Search: Foundations and Applications 13

State, Transition and Machine Types

In order to completely specify the search method represented
by a given GLSM, we need to define:

� the GLSM model (states, transitions, . . .);

� the search method associated with each state type, i.e.,
step functions for the respective subsidiary SLS methods;

� the semantics of each transition type, i.e., under which
conditions respective transitions are executed,
and how they effect the memory state.

Stochastic Local Search: Foundations and Applications 14

State types

� State type semantics are often most conveniently specified
procedurally (see algorithm outlines for ‘simple SLS methods’
from Chaper 2).

� initialising state type = state type τ for which search position
after one τ step is independ of search position before step.

initialising state = state of initialising type.

� parametric state type = state type τ whose semantics
depends on memory state.

parametric state = state of parametric type.

Stochastic Local Search: Foundations and Applications 15

Transitions types (1)

� Unconditional deterministic transitions – type DET:

� executed always and independently of memory state
or search position;

� every GLSM state can have at most one outgoing DET
transition;

� frequently used for leaving initialising states.

� Conditional probabilistic transitions – type PROB(p):

� executed with probability p, independently of memory state
or search position;

� probabilities of PROB transitions leaving any given state must
sum to one.

Stochastic Local Search: Foundations and Applications 16

Note:

� DET transitions are a special case of PROB transitions.

� Given GLSM M any state that can be reached from initial
state z0 by following a chain of PROB(p) transitions with
p > 0 with eventually be reached with arbitrarily high
probability in any sufficiently long run of M.

� In any state z with a PROB(p) self-transition (z , z) with
p > 0, the number of GLSM steps before leaving z is
distributed geometrically with mean and variance 1/p.

Stochastic Local Search: Foundations and Applications 17

Transitions types (2)

� Conditional probabilistic transitions – type CPROB(C , p):

� executed with probability proportional to p iff condition
predicate C is satisfied;

� all CPROB transitions from the current GLSM state whose
condition predicates are not satisfied are blocked, i.e., cannot
be executed.

Note:

� Special cases of CPROB(C , p) transitions:

� PROB(p) transitions;
� conditional deterministic transitions, type CDET(C).

� Condition predicates should be efficiently computable
(ideally: ≤ linear time w.r.t. size of given problem instance).

Stochastic Local Search: Foundations and Applications 18

Commonly used simple condition predicates:

� always true

count(k) total number of GLSM steps ≥ k
countm(k) total number of GLSM steps modulo k = 0

scount(k) number of GLSM steps in current state ≥ k
scountm(k) number of GLSM steps in current state modulo k = 0

lmin current candidate solution is a local minimum w.r.t.
the given neighbourhood relation

evalf(y) current evaluation function value ≤ y

noimpr(k) incumbent candidate solution has not been improved
within the last k steps

All based on local information; can also be used in negated form.

Stochastic Local Search: Foundations and Applications 19

Transition actions:

� Associated with individual transitions; provide mechanism
for modifying current memory states.

� Performed whenever GLSM executes respective transition.

� Modify memory state only, cannot modify GLSM state or
search position.

� Have read-only access to search position and can hence
be used, e.g., to memorise current candidate solution.

� Can be added to any of the previously defined transition types.

Stochastic Local Search: Foundations and Applications 20

Machine types:

Capture structure of search control mechanism, obtained from
abstracting from state and transition types of GLSMs.

� 1-state machines:

� simplest machine type, single initialising state only;

� realises iterated sampling processes, such as
Uninformed Random Picking.

� 1-state+init machines:

� one initialising + one working state;

� good model for many simple SLS methods.

Stochastic Local Search: Foundations and Applications 21

� sequential 1-state machines:

Z0 Z1

� visit initialising state z0 only on once.

� alternating 1-state+init machines:

Z1Z0

� may visit initialising state z0 multiple times;

� good model for simple SLS methods with restart mechanism.

Stochastic Local Search: Foundations and Applications 22

� 2-state+init sequential machines:

� one initialising state (visited only once), two working states;

Z0 Z1 Z2

� any search trajectory can be partitioned into three phases:
one initialisation step, a sequence of z1 steps and
a sequence of z2 steps.

Stochastic Local Search: Foundations and Applications 23

� 2-state+init alternating machines:

� one initialising state, two working states;

� arbitrary transitions between any states are possible.

Z1

Z2

Z0

Stochastic Local Search: Foundations and Applications 24

Generalisations:

� k-state+init sequential machines:

� one initialising state (visited only once), k working states;

� every search trajectory consists of 1+k phases.

� k-state+init alternating machines:

� one initialising state, k working states;

� arbitrary transitions between states;

� may have multiple initialising states (e.g., to realise
alternative restart mechanisms).

Stochastic Local Search: Foundations and Applications 25

Modellig SLS Methods Using GLSMs

Uninformed Picking and Uninformed Random Walk

RP

DET

RP RW
DET

DET

procedure step-RP(π, s)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

s ′ := selectRandom(S);
return s ′

end step-RP

procedure step-RW(π, s)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

s ′ := selectRandom(N(s));
return s ′

end step-RW

Stochastic Local Search: Foundations and Applications 26

Uninformed Random Walk with Random Restart

RWRP

DET

CDET(R)

CDET(not R)

R = restart predicate, e.g., countm(k)

Stochastic Local Search: Foundations and Applications 27

Iterative Best Improvement with Random Restart

BIRP
DET

CDET(R)

CDET(not R)

procedure step-BI(π, s)
input: problem instance π ∈ Π, candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

g∗ := min{g(s ′) | s ′ ∈ N(s)};
s ′ := selectRandom({s ′ ∈ N(s) | g(s ′) = g∗});
return s ′

end step-BI

Stochastic Local Search: Foundations and Applications 28

Randomised Iterative Best Improvement with Random Restart

BI

RW

PROB(1–p)CDET(R)

PROB(p)

CDET(R)

CPROB(not R,1–p)

C
P

R
O

B
(n

ot
 R

,p
)

CPROB(not R,p)

C
P

R
O

B
(n

ot
 R

,1
–p

)

RP

Stochastic Local Search: Foundations and Applications 29

Simulated Annealing

RP SA(T)
DET : T:=T0

DET : T:=update(T)

� Note the use of transition actions and memory for
temperature T .

� The parametric state SA(T) implements probabilistic
improvement steps for given temperature T .

� The initial temperature T0 and function update implement
the annealing schedule.

Stochastic Local Search: Foundations and Applications 30

Iterated Local Search (1)

LS

AC(t)

RP PSLS
CDET(CL): t:=pos

DET: t:=pos

CDET(not CL) CDET(not CP) CDET(CP)

DET

CDET(not CL)

CDET(CL)

� The acceptance criterion is modelled as a state type,
since it affects the search position.

� Note the use of transition actions for memorising the current
candidate solution (pos) at the end of each local search phase.

� Condition predicates CP and CL determine the end of
perturbation and local search phases, respectively;
in many ILS algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 31

Iterated Local Search (2)

LS

AC(t)

RP PSLS
CDET(CL): t:=pos

DET: t:=pos

CDET(not CL) CDET(not CP) CDET(CP)

DET

CDET(not CL)

CDET(CL)

procedure step-AC(π, s, t)
input: problem instance π ∈ Π,

candidate solution s ∈ S(π)
output: candidate solution s ∈ S(π)

if C(π, s, t) then
return s

else
return t

end
end step-AC

Stochastic Local Search: Foundations and Applications 32

Ant Colony Optimisation (1)

� General approach for modelling population-based SLS
methods, such as ACO, as GLSMs:

Define search positions as sets of candidate solutions; search
steps manipulate some or all elements of these sets.

Example: In this view, Iterative Improvement (II) applied to
a population sp in each step performs one II step on each
candidate solution from sp that is not already a local
minimum.

(Alternative approaches exist.)

� Pheromone levels are represented by memory states and are
initialised and updated by means of transition actions.

Stochastic Local Search: Foundations and Applications 33

Ant Colony Optimisation (2)

CS

Cl

LS

CDET(CC)

DET

CDET(not CL)

CDET(CL):
updateTrails

initTrails

CDET(not CC)

� The condition predicate CC determines the end of the
construction phase.

� The condition predicate CL determines the end of the
local search phase; in many ACO algorithms, CL := lmin.

Stochastic Local Search: Foundations and Applications 34

Extensions of the Basic GLSM Model

The basic GLSM model can be generalised and extended in
various rather straightforward ways, such as:

� Co-operative GLSM models

� Learning GLSM models

� Evolutionary GLSM models

� Continuous GLSM models

Note: So far, these extensions remain mostly unexplored
— lots of opportunities for interesting research!

Stochastic Local Search: Foundations and Applications 35

Co-operative GLSM models

� Key idea: Apply multiple GLSMs simultanously to the same
problem instance

� Naturally captures population-based SLS approaches.

� Homogeneous co-operative GLSM models:
Population of identical GLSMs; equivalent to performing
multiple independent runs of the respective SLS method.

� Heterogenous co-operative GLSM models:
Population of different GLSMs; model algorithm portfolios.

Stochastic Local Search: Foundations and Applications 36

Co-operative GLSM models with communication

� GLSMs in population exchange information about their
search trajectories, e.g., via message passing or
blackboard mechanism.

� Communication can be modelled via shared memory state or
special transition actions (e.g., send, receive).

� These models are naturally suited for representing
population-based algorithms that use communication between
individual search agents, such as ACO.

Stochastic Local Search: Foundations and Applications 37

Learning via dynamic transition probabilities

� Key idea: In a GLSM with probabilistic transitions, let
transition probabilities evolve over time to adaptively optimise
search control strategy.

� Can build on concepts from learning automata theory.

� Single-instance learning:
Optimise control strategy on one problem instance during
search process.

� Multi-instance learning:
Adapt control strategies to features common to a class of
problem instances.

� Transition probabilities can be adapted via external
mechanism or via specialised transition actions.

Stochastic Local Search: Foundations and Applications 38

Evolutionary GLSM models

� Key idea: Achieve learning/adaptation in co-operative
GLSM models by varying number or type of individual GLSMs
over time.

� Distinction between single- and multi-instance learning as
before; similar mechanisms for controlling adaptation process.

� Can easily model, for example, self-optimising portfolios of
SLS algorithms.

� Further extensions:

� support mutation / recombination operations on GLSMs;

� additionally support learning in individual GLSMs
� evolving ensembles of dynamic GLSMs;

� include communication between GLSMs in population.

Stochastic Local Search: Foundations and Applications 39

Continuous GLSM models

� Note: Many previously discussed hybrid SLS methods can be
extended to continuous optimisation problems and give rise to
high-performance algorithms for solving these.

� The main feature of the GLSM model, namely its clear
distinction between lower-level, simple search strategies and
higher-level search control, equally applies to continuous
SLS algorithms.

� Key idea: Model complex continuous SLS methods by using
continuous optimisation procedures as subsidiary local search
strategies.

Note: The GLSM model is well-suited for modelling algorithms
for hybrid combinatorial problems that involve discrete as well as
continuous solution components.

Stochastic Local Search: Foundations and Applications 40

