STOCHASTIC LOCAL SEARCH FOUNDATIONS AND APPLICATIONS

Search Space Structure and SLS Performance

Holger H. Hoos & Thomas Stützle

Outline

- 1. Fundamental Search Space Properties
- 2. Search Landscapes and Local Minima
- 3. Fitness-Distance Correlation
- 4. Ruggedness
- 5. Barriers and Basins

Fundamental Search Space Properties

Simple properties of search space *S*:

- search space size #S
- number of (optimal) solutions #S', solution density #S'/#S
- search space diameter diam(G_N)
 (= maximal distance between any two candidate solutions)
- distribution of solutions within the neighbourhood graph

Stochastic Local Search: Foundations and Applications

Search Landscapes

Given an SLS algorithm A and a problem instance π with associated search space $S(\pi)$, neighbourhood relation $N(\pi)$ and evaluation function $g(\pi) : S \mapsto \mathbb{R}$, the *search landscape of* π , $L(\pi)$, is defined as $L(\pi) := (S(\pi), N(\pi), g(\pi))$.

A landscape L := (S, N, g) is ...

- non-degenerate (or invertible), iff $\forall s, s' \in S : [g(s) = g(s') \Longrightarrow s = s'];$
- ► *locally invertible*, iff $\forall r \in S : \forall s, s' \in N(r) \cup \{r\} : [g(s) = g(s') \Longrightarrow s = s'];$
- non-neutral, iff $\forall s \in S : \forall s' \in N(s) : [g(s) = g(s') \Longrightarrow s = s'].$

Stochastic Local Search: Foundations and Applications

Classification of search positions (according to evaluation function values of direct neighbours):

position type	>	=	<
SLMIN (strict local min)	+	0	0
LMIN (local min)	+	+	0
IPLAT (interior plateau)	0	+	0
SLOPE	+	0	+
LEDGE	+	+	+
LMAX (local max)	0	+	+
SLMAX (strict local max)	0	0	+

"+" = present, "0" absent; table entries refer to neighbours with larger (">"), equal ("="), and smaller ("<") evaluation function values

Example: Distribution of position types for hard Random-3-SAT instances

instance	avg sc	SLMIN	LMIN	IPLAT
uf20-91/easy	13.05	0%	0.11%	0%
uf20-91/medium	83.25	< 0.01%	0.13%	0%
uf20-91/hard	563.94	< 0.01%	0.16%	0%
instance	SLOPE	LEDGE	LMAX	SLMAX
uf20-91/easy	0.59%	99.27%	0.04%	< 0.01%
uf20-91/medium	0.31%	99.40%	0.06%	< 0.01%
uf20-91/hard	0.56%	99.23%	0.05%	< 0.01%

(based on exhaustive enumaration of search space; *sc* refers to search cost for GWSAT)

Stochastic Local Search: Foundations and Applications

Example: Distribution of position types for hard Random-3-SAT instances

instance	avg sc	SLMIN	LMIN	IPLAT
uf50-218/medium	615.25	0%	47.29%	0%
uf100-430/medium	3 410.45	0%	43.89%	0%
uf150-645/medium	10 231.89	0%	41.95%	0%
instance	SLOPE	LEDGE	LMAX	SLMAX
uf50-218/medium	< 0.01%	52.71%	0%	0%
uf100-430/medium	0%	56.11%	0%	0%
uf150-645/medium	0%	58.05%	0%	0%

(based on sampling along GWSAT trajectories; *sc* refers to search cost for GWSAT)

Local Minima

Note: Local minima impede local search progress.

Simple measures related to local minima:

- number of local minima #Imin, local minima density #Imin/#S
- distribution of local minima within the neighbourhood graph

Problem: Determining these measures typically requires exhaustive enumeration of search space

Solutions: Approximations based on sampling or estimation from other measures (such as autocorrelation measures, see below)

Stochastic Local Search: Foundations and Applications

Fitness-Distance Correlation (FDC)

Idea: Analyse (linear) correlation between solution quality (fitness) and distance to (closest) optimal solution.

Measure for FDC: empirical correlation coefficient

$$r_{fdc} := \frac{\widehat{Cov}(g,d)}{\widehat{\sigma}(g) \cdot \widehat{\sigma}(d)},$$

where

$$\widehat{Cov}(g,d) := \frac{1}{m-1} \sum_{i=1}^m (g_i - \overline{g})(d_i - \overline{d}),$$

$$\widehat{\sigma}(g) := \sqrt{\frac{1}{m-1}\sum_{i=1}^m (g_i - \overline{g})^2}, \quad \widehat{\sigma}(d) := \sqrt{\frac{1}{m-1}\sum_{i=1}^m (d_i - \overline{d})^2}$$

Note: *r*_{fdc} depends on the given neighbourhood relation.

Stochastic Local Search: Foundations and Applications

Fitness Distance Plots:

Graphical representation of fitness-distance correlation; distance from (closest) optimal solution *vs* relative solution quality.

Measuring FDC:

Sample locally optimal candidate solutions, as determined by a (simple) SLS algorithm, *e.g.*, iterative improvement.

Implications of FDC for SLS behaviour:

- High FDC (close to one):
 - 'Big valley' structure of landscape provides guidance for local search;
 - high-quality local minima provide good starting points;
 - search diversification: perturbation is better than restart;
 - search initialisation: high quality starting points help;
 - typical for TSP.
- FDC close to zero:
 - global structure of landscape does not provide guidance for local search;
 - indicative of harder problems, such as certain instance types of QAP (Quadratic Assignment Problem)

Stochastic Local Search: Foundations and Applications

13

Ruggedness

Idea: Rugged landscapes, *i.e.*, landscapes with with many local minima, are hard to seach.

Measures for landscape ruggedness:

- autocorrelation function [Weinberger, 1990; Stadler, 1995]
- correlation length [Stadler, 1995]
- autocorrelation coefficient [Angel & Zissimopoulos, 1997]

Empirical autocorrelation function r(i):

$$r(i) := \frac{1/(m-i) \cdot \sum_{k=1}^{m-i} (g_k - \bar{g}) \cdot (g_{k+i} - \bar{g})}{1/m \cdot \sum_{k=1}^{m} (g_k - \bar{g})^2}$$

Empirical autocorrelation coefficient (ACC) ξ :

$$\xi=1/(1-r(1))$$

Note: r(i) and ξ depend on the given neighbourhood relation.

Stochastic Local Search: Foundations and Applications

Implications of ACC on SLS behaviour:

- High ACC (close to one):
 - "smooth" landscape;
 - evaluation function values for neighbouring candidate solutions are close on average;
 - low local minima density;
 - problem typically relative easy for local search.
- Low ACC (close to zero):
 - very rugged landscape;
 - evaluation function values for neighbouring candidate solutions are almost uncorrelated;
 - high local minima density;
 - problem typically relatively hard for local search.

Measuring ACC:

- measure series g = (g₁,...,g_m) of evaluation function values along uninformed random walk;
- estimate ACC based on autocorrelation function on g, where distance is measured in search steps.

 \rightsquigarrow computationally cheap compared to, *e.g.*, FDC analysis.

Note: (Bounds on) ACC can be theoretically derived in many cases, including TSP with 2-exchange neighbourhood.

Stochastic Local Search: Foundations and Applications

Plateaus

Intuition: Plateaus, *i.e.*, 'flat' regions in the search landscape, can impede search progress due to lack of guidance by the evaluation function.

Definition

- *region:* connected subgraph of G_N .
- ▶ border of region R: set of s ∈ S with direct neighbours that are not contained in R (border positions).

Definition (continued)

- plateau region: region in which all positions have the same level, *i.e.*, evaluation function value, *l*.
- plateau: maximally extended plateau region,
 i.e., plateau region in which no border position has any direct neighbours at the plateau level *I*.
- exit of plateau region R: direct neighbour s of a border position of R with lower level than plateau level I.
- open / closed plateau: plateau with / without exits.

Measures of plateau structure:

- *plateau diameter* = diameter of corresponding subgraph of G_N
- plateau width = maximal distance of any plateau position to the respective closest border position
- plateau branching factor = fraction of neighbours of a plateau position that are also on the plateau.
- number of exits, exit density
- distribution of exits within a plateau, exit distance distribution (in particular: avg./max distance to closest exit)

Some plateau structure results for SAT:

- Plateaus typically don't have an interiour, *i.e.*, almost every position is on the border.
- The diameter of plateaus, particularly at higher levels, is comparable to the diameter of search space. (In particular: plateaus tend to span large parts of the search space, but are quite well connected internall.)
- For open plateaus, exits tend to be clustered, but the average exit distance is typically relatively small.

Stochastic Local Search: Foundations and Applications

21

Barriers and Basins

- ▶ positions s, s' are mutually accessible at level I iff there is a path connecting s' and s in the neighbourhood graph that visits only positions t with g(t) ≤ I
- The barrier level between positions s, s' is the lowest level l at which s' and s' are mutually accessible.
- Basin below position s = set of search positions s' at level g(s') < g(s) such that s and s' are mutually accessible at level g(s).

- A gradient walk from position s to s' is a possible trajectory of iterative best improvement (= gradient descent) from s to s'.
- The gradient basin of position s is the sets of all positions s' such that there is a gradient walk from s' to s.

Stochastic Local Search: Foundations and Applications

Barries trees and plateau connection graphs

- Barrier trees and plateau connection graphs are based on collapsing positions on the same plateau or in the same basin into 'macro positions' and illustrate connections between these regions.
- This type of search space analysis can give much deeper insights into SLS behaviour and problem hardness than global measures, such as FDC or ACC.
- This type of analysis is computationally expensive and requires enumeration of large parts of the search space.

