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Fundamental Search Space Properties

Simple properties of search space S :

� search space size #S

� number of (optimal) solutions #S ′, solution density #S ′/#S

� search space diameter diam(GN)
(= maximal distance between any two candidate solutions)

� distribution of solutions within the neighbourhood graph
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Example: Correlation between solution density and search
cost for GWSAT over set of hard Random-3-SAT instances:
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Search Landscapes

Given an SLS algorithm A and a problem instance π with
associated search space S(π), neighbourhood relation N(π) and
evaluation function g(π) : S �→ R, the search landscape of π, L(π),
is defined as L(π) := (S(π), N(π), g(π)).

A landscape L := (S , N, g) is . . .

� non-degenerate (or invertible), iff
∀s, s ′ ∈ S : [g(s) = g(s ′) =⇒ s = s ′];

� locally invertible, iff
∀r ∈ S : ∀s, s ′ ∈ N(r) ∪ {r} : [g(s) = g(s ′) =⇒ s = s ′];

� non-neutral, iff
∀s ∈ S : ∀s ′ ∈ N(s) : [g(s) = g(s ′) =⇒ s = s ′].
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Classification of search positions (according to evaluation
function values of direct neighbours):

position type > = <

SLMIN (strict local min) + 0 0
LMIN (local min) + + 0
IPLAT (interior plateau) 0 + 0
SLOPE + 0 +
LEDGE + + +
LMAX (local max) 0 + +
SLMAX (strict local max) 0 0 +

“+” = present, “0” absent; table entries refer to neighbours with larger

(“>”) , equal (“=”), and smaller (“<”) evaluation function values
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Example: Distribution of position types for hard
Random-3-SAT instances

instance avg sc SLMIN LMIN IPLAT
uf20-91/easy 13.05 0% 0.11% 0%
uf20-91/medium 83.25 < 0.01% 0.13% 0%
uf20-91/hard 563.94 < 0.01% 0.16% 0%

instance SLOPE LEDGE LMAX SLMAX
uf20-91/easy 0.59% 99.27% 0.04% < 0.01%
uf20-91/medium 0.31% 99.40% 0.06% < 0.01%
uf20-91/hard 0.56% 99.23% 0.05% < 0.01%

(based on exhaustive enumaration of search space;
sc refers to search cost for GWSAT)
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Example: Distribution of position types for hard
Random-3-SAT instances

instance avg sc SLMIN LMIN IPLAT
uf50-218/medium 615.25 0% 47.29% 0%
uf100-430/medium 3 410.45 0% 43.89% 0%
uf150-645/medium 10 231.89 0% 41.95% 0%

instance SLOPE LEDGE LMAX SLMAX
uf50-218/medium < 0.01% 52.71% 0% 0%
uf100-430/medium 0% 56.11% 0% 0%
uf150-645/medium 0% 58.05% 0% 0%

(based on sampling along GWSAT trajectories;
sc refers to search cost for GWSAT)
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Local Minima

Note: Local minima impede local search progress.

Simple measures related to local minima:

� number of local minima #lmin, local minima density
#lmin/#S

� distribution of local minima within the neighbourhood graph

Problem: Determining these measures typically requires
exhaustive enumeration of search space

Solutions: Approximations based on sampling or estimation from
other measures (such as autocorrelation measures, see below)
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Fitness-Distance Correlation (FDC)

Idea: Analyse (linear) correlation between solution quality (fitness)
and distance to (closest) optimal solution.

Measure for FDC: empirical correlation coefficient

rfdc :=
Ĉov(g , d)

σ̂(g) · σ̂(d)
,

where

Ĉov(g , d) :=
1

m − 1

m∑
i=1

(gi − ḡ)(di − d̄),

σ̂(g) :=

√√√√ 1

m − 1

m∑
i=1

(gi − ḡ)2, σ̂(d) :=

√√√√ 1

m − 1

m∑
i=1

(di − d̄)2

Note: rfdc depends on the given neighbourhood relation.
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Fitness Distance Plots:

Graphical representation of fitness–distance correlation;
distance from (closest) optimal solution vs relative solution quality.

Measuring FDC:

Sample locally optimal candidate solutions, as determined
by a (simple) SLS algorithm, e.g., iterative improvement.
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Example: FDC plot for TSPLIB instance rat783, based on
2500 local optima obtained from a 3-opt algorithm

2

2.5

3

3.5

4

4.5

5

120 140 160 180 200 220 240

distance to global optimum

pe
rc

en
ta

ge
 d

ev
ia

tio
n

fr
om

 o
pt

im
um

Stochastic Local Search: Foundations and Applications 12



Implications of FDC for SLS behaviour:

� High FDC (close to one):

� ‘Big valley’ structure of landscape provides guidance for
local search;

� high-quality local minima provide good starting points;

� search diversification: perturbation is better than restart;

� search initialisation: high quality starting points help;

� typical for TSP.

� FDC close to zero:

� global structure of landscape does not provide guidance for
local search;

� indicative of harder problems, such as certain instance types of
QAP (Quadratic Assignment Problem)
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Ruggedness

Idea: Rugged landscapes, i.e., landscapes with with many local
minima, are hard to seach.

Measures for landscape ruggedness:

� autocorrelation function [Weinberger, 1990; Stadler, 1995]

� correlation length [Stadler, 1995]

� autocorrelation coefficient [Angel & Zissimopoulos, 1997]
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Empirical autocorrelation function r(i):

r(i) :=
1/(m − i) · ∑m−i

k=1(gk − ḡ) · (gk+i − ḡ)

1/m · ∑m
k=1(gk − ḡ)2

Empirical autocorrelation coefficient (ACC) ξ:

ξ = 1/(1 − r(1))

Note: r(i) and ξ depend on the given neighbourhood relation.
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Implications of ACC on SLS behaviour:

� High ACC (close to one):

� “smooth” landscape;

� evaluation function values for neighbouring candidate solutions
are close on average;

� low local minima density;

� problem typically relative easy for local search.

� Low ACC (close to zero):

� very rugged landscape;

� evaluation function values for neighbouring candidate solutions
are almost uncorrelated;

� high local minima density;

� problem typically relatively hard for local search.
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Measuring ACC:

� measure series g = (g1, . . . , gm) of evaluation function values
along uninformed random walk;

� estimate ACC based on autocorrelation function on g,
where distance is measured in search steps.

� computationally cheap compared to, e.g., FDC analysis.

Note: (Bounds on) ACC can be theoretically derived in many
cases, including TSP with 2-exchange neighbourhood.
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Plateaus

Intuition: Plateaus, i.e., ‘flat’ regions in the search landscape,
can impede search progress due to lack of guidance by the
evaluation function.

Definition (1)

� region: connected subgraph of GN .

� border of region R: set of s ∈ S with direct neighbours
that are not contained in R (border positions).
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Definition (continued)

� plateau region: region in which all positions have
the same level, i.e., evaluation function value, l .

� plateau: maximally extended plateau region,
i.e., plateau region in which no border position has any
direct neighbours at the plateau level l .

� exit of plateau region R: direct neighbour s of a border
position of R with lower level than plateau level l .

� open / closed plateau: plateau with / without exits.
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Measures of plateau structure:

� plateau diameter = diameter of corresponding subgraph of GN

� plateau width = maximal distance of any plateau position to
the respective closest border position

� plateau branching factor = fraction of neighbours of a plateau
position that are also on the plateau.

� number of exits, exit density

� distribution of exits within a plateau, exit distance distribution
(in particular: avg./max distance to closest exit)
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Some plateau structure results for SAT:

� Plateaus typically don’t have an interiour, i.e., almost every
position is on the border.

� The diameter of plateaus, particularly at higher levels, is
comparable to the diameter of search space. (In particular:
plateaus tend to span large parts of the search space, but are
quite well connected internall.)

� For open plateaus, exits tend to be clustered, but the average
exit distance is typically relatively small.
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Barriers and Basins

� positions s, s ′ are mutually accessible at level l
iff there is a path connecting s ′ and s in the neighbourhood
graph that visits only positions t with g(t) ≤ l

� The barrier level between positions s, s ′

is the lowest level l at which s ′ and s ′ are mutually accessible.

� Basin below position s = set of search positions s ′ at level
g(s ′) < g(s) such that s and s ′ are mutually accessible at
level g(s).
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� A gradient walk from position s to s ′ is a possible trajectory of
iterative best improvement (= gradient descent) from s to s ′.

� The gradient basin of position s is the sets of all positions s ′

such that there is a gradient walk from s ′ to s.
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Barries trees and plateau connection graphs

� Barrier trees and plateau connection graphs are based on
collapsing positions on the same plateau or in the same basin
into ‘macro positions’ and illustrate connections between
these regions.

� This type of search space analysis can give much deeper
insights into SLS behaviour and problem hardness than global
measures, such as FDC or ACC.

� This type of analysis is computationally expensive and requires
enumeration of large parts of the search space.
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Example: Search space structure (plateau connection graph)
of easy Random 3-SAT instance
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Example: Search space structure (plateau connection graph)
of hard Random 3-SAT instance
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