
1

Propositional Satisfiability and 
Constraint Satisfaction

Stochastic Local Search Application
Author: Holger H. Hoos, Thomas Stützle

Presented by: Suling Yang



2

Outline:

1. The Satisfiability Problem (SAT)
2. The GSAT Architecture
3. The WalkSAT Architecture
4. Dynamic Local Search Algorithms for 

SAT
5. Constraint Satisfaction Problems (CSP)
6. SLS Algorithms for CSPs



3

The SAT Problem

n To decide or search for a given 
propositional formula F, whether there 
exists an truth assignment (a model) to 
the variables in F under which F
evaluates to true.

n Conjunctive Normal Form (CNF) 
Representations and Transformations:
n ijnjmi
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Alternative Formulations of SAT (1)

n True: 1 ;  False: 0.
n Variables’ domain: {0,1}
n I(x) := x ;  I( x) := 1 – x.
n For ci=l1 v l2 v … v lk(i), 

I(ci)=I(l1 ) + I(l2 ) + … + I(lk(i) ).
n For ci=l1 ^l2 ^ … ^ lk(i), 

I(ci)=I(l1 ) * I(l2 ) * … * I(lk(i) ).
n A truth assignment satisfies ci if I(ci)≥1

¬
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Alternative Formulations of SAT (2)

n ui (F,a) := 1 if clause ci of F is unsatisfied under 
assignment a, and ui (F,a) := 0 otherwise.

n U (F,a) := Σi=1..mui (F,a).
n A model of F corresponds to a solution of

Subject to:
Which can be consider as a discrete constrained 

optimization problem.
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Polynomial Simplification of CNF Formulae

n Elimination of duplicate literals and clauses:
n E.g. 

n Elimination of tautological clauses:
n E.g. 

n Elimination of subsumed clauses:
n E.g. 

n Elimination of clauses containing pure literals:
n E.g.
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Complete Unit Propagation

n Unit Clause: a clause consisting of only 
a single literal.
n E.g. 

n Unit Resolution: 
n E.g.

n Complete Unit Propagation: repeat 
application of unit resolution until:
n No more unit clause, or
n Empty clause, or
n No more clauses.

)()( baa ∨¬∨

)()()( bbaa =∨¬∨
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Unary and Binary Failed Literal Reduction

n Unary failed literal reduction: If setting a 
variable x occurring in the given formula F 
to true makes F unsatisfiable, i.e. adding a 
unit clause c:=x to F resulting an empty 
clause, then add a unit clause            to F
yields a logically equivalent formula F’.
Then, we can apply complete unit 
propagation.

n Binary failed literal reduction works in the 
same way.

xc ¬=:
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Randomly Generated SAT Instance

n Random clause length model (also called 
fixed density model): 
n n variables and m clauses; each of 2n literals are 

chosen with fixed probability p.
n Fixed clause length model (also known as 

Uniform Random k-SAT):
n n variables, m clauses, and clause length k; k 

literals are chosen uniformly at random from 2n
literals, and check if it contains multiple copies of 
the same literal, or it is tautological.
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Random k-SAT Hardness and 
Solubility Phase Transition

n For a fixed number of variables n, when m is small, 
all formulae are underconstrained and therefore 
satisfiable; however, when increasing the number m
of clauses crossing some critical value m*, the 
probability of generating a satisfiable instance drops 
sharply to almost zero.

n This rapid change in solubility is called a phase 
transition.

n It’s empirically shown that problem instances from 
the phase transition region of Uniform Random 3-SAT 
tend to be hard.
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Practical Applications of SAT

n Bounded Model Checking (BMC)
n Binary Decision Diagrams (BDDs)
n Asynchronous circuit design

n Signal Transition Graphs (STGs)
n Complete State Coding (CSC) Problem

n Real-world spots scheduling problems
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Generalisations and Related Problems

n CSP
n Multi-Valued SAT (MVSAT)
n Pseudo-Boolean CSPs

n (unweighted) MAX-SAT
n weighted MAX-SAT
n Dynamic SAT (DynSAT)
n Propositional Validity Problem (VAL)
n Satisfiability Problem for Quantified Boolean 

Formulae (QSAT)
n #SAT
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The GSAT Architecture

n SLS algorithms for SAT
n 1-exchange neighbourhood
n Evaluation function g(F,a) maps each variable 

assignment a to the number of clauses of the 
given formula F unsatisfied under a

n Model m (solution) of F : g(F,m)=0
n Iterative improvement methods
n Differ primarily in underlying variable 

selection method
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The Basic GSAT Algorithm
procedure GSAT(F, maxTries, maxSteps)

input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
x := randomly selected variable flipping that minimizes the 

number of unsatisfied clauses;
a := a with x flipped;

end
end
return ‘no solution found’

end GSAT
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Basic GSAT (1)
n Underlying search procedure: simple best-

improvement procedure
n Variable selection method: a variable that results in 

maximal decrease in the number of unsatisfied 
clauses

n Tie breaking method: randomly selected according to 
a uniform distribution

n Escaping local minima method: static restart 
mechanism

n Termination method: a model is found, or maxTries
sequences of maxSteps variable flips have been 
performed without finding a model

n Evaluation method: change in #unsatisfied clauses
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Basic GSAT (2)

n For any fixed number of restarts, GSAT 
is essentially incomplete, and severe 
stagnation behaviour is observed on 
most SAT instances

n Outperformed the best systematic 
search algorithms for SAT



17

GSAT with Random Walk (GWSAT)

n Underlying search strategy: randomised best-
improvement method – incorporate conflict-directed 
random walk steps with probability wp

n Escaping from a local minima method (1): with 
probability wp>0, this algorithm allows arbitrarily 
long sequences of random walk steps; this implies 
that from arbitrary assignment, a model can be 
reached with a positive, bounded probability

n Escaping from a local minima method (2): static 
restart mechanism
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The GWSAT Algorithm
procedure GSAT(F, maxTries, maxSteps)

input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
x := randomly selected variable flipping that minimizes the 

number of unsatisfied clauses with probability 1-wp; 
otherwise, choose a variable from an unsatisfied clause.

a := a with x flipped;
end

end
return ‘no solution found’

end GSAT
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GSAT with Random Walk (GWSAT) (2)

n Outperforms basic GSAT
n Probabilistically approximately complete 

(PAC) 
n Does not suffer from stagnation 

behaviour with sufficiently high noise 
setting, and shows exponential RTDs

n For low noise settings, stagnation 
behaviour is frequently observed
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GSAT with Tabu Search (GSAT/Tabu)

n Underlying search strategy: tabu search
n After a variable x has been flipped, it cannot be flipped back 

within the next tt steps
n Efficient implementation

n For sufficient high tt settings, GSAT/Tabu does not 
suffer from stagnation behaviour, and for hard 
problem instances, it shows exponential RTDS.

n It’s not clear whether GSAT/Tabu with fixed cutoff 
parameter maxSteps has the PAC property.

n Using instance-specific optimised tabu tenure settings 
for GSAT/Tabu, it typically performs significantly 
better than GWSAT.
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HSAT and HWSAT

n When in a search step there are several 
variables with identical score, HSAT always 
selects the least recently flipped variable.

n Although HSAT outperforms basic GSAT, it’s 
more likely to get stuck in local minima.

n HWSAT: HSAT extended with random walk 
mechanism.

n HWSAT has PAC property.



22

The WalkSAT Architecture
n Based on 2-stage variable selection process focused 

on the variables occurring in currently unsatisfied 
clauses:
n 1st stage: A clause c that is unsatisfied under the current 

assignment is selected uniformly at random.
n 2nd stage: one of the variables appearing in c is then flipped 

to obtain the new assignment.
n Dynamically determined subset of the GSAT 

neighbourhood relation – substantially reduced 
effective neighbourhood size

n Same random search initialisation and static random 
restart as GSAT
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The WalkSAT Architecture
procedure WalkSAT(F, maxTries, maxSteps, slc)

input: CNF formula F, positive integers maxTries and maxSteps, heuristic 
function slc

output: model of F or ‘no solution found’
for try := 1 to maxTries do

a := randomly chosen assignment of the variables in formula F;
for step := 1 to maxSteps do

if a satisfies F then return a end
c := randomly selected clause unsatisfied under a;
x := variable selected from c according to heuristic function slc;
a := a with x flipped;

end
end
return ‘no solution found’

end WalkSAT
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WalkSAT/SKC
n 1ST WalkSAT algorithm
n The scoring function scoreb(x): counts the number of 

currently satisfied clauses that will be broken –
become unsatisfied – by flipping a given variable x.

n Variable selection scheme:
n Zero damage step: if there is a variable with scoreb(x)=0 in 

the clause selected in stage 1, this variable is flipped.
n Greedy step: if no such variable exists, with a certain 

probability 1-p, the variable with minimal score value is 
selected.

n Random walk step: with probability p (noise setting), one of 
the variables from c is selected uniformly at random.
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WalkSAT/SKC (2)
n PAC property when applied to 2-SAT; unknown in 

general case.
n In practice, WalkSAT/SKC with sufficiently high noise 

setting does not appear to suffer from any stagnation 
behaviour, and its runtime behaviour is characterized 
by exponential RTDs.

n Stagnation behaviour is observed for low noise 
settings.

n With optimised noise setting, WalkSAT/SKC 
probabilistically dominates GWSAT in terms of the 
number of variable flips, but not HWSATor
GSAT/Tabu; in terms of CPU times, it’s always 
outperforms all GSAT variants.
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WalkSAT with Tabu Search 
(WalkSAT/Tabu)
n Similar as WalkSAT/SKC; additionally enforces a tabu

tenure of tt steps for each flipped variable.
n If the selected clause c does not allow a zero damage step, 

WalkSAT/Tabu picks the one with the highest score of all 
the variables occurring in c that are not tabu. 

n null-flip: all variables appearing in c are tabu, in which 
case no variable is flipped.

n WalkSAT/Tabu with fixed maxTries parameter has been 
shown to be essentially incomplete.

n With sufficient high tabu tenure settings, WalkSAT/Tabu’s
run-time behaviour is characterised by exponential RTDs; 
but there are cases in which extreme stagnation 
behaviour is observed.

n Typically, WalkSAT/Tabu performs significantly better than 
WalkSAT/SKC.
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Novelty

n Uses a history-based variable selection 
mechanism; based on variable’s age: 
the number of local search steps that 
have been performed since a variable 
was last flipped.

n Uses the same scoring function as GSAT.
n Variable selection scheme:
n If the variable with the highest score 
does not have minimal age among 
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Novelty+

n By extending Novelty with conflict-directed random 
walk analogously to GWSAT, the essential 
incompleteness as well as the empirically observed 
stagnation behaviour can be overcome.

n With probability 1-wp, Novelty+ selects the variable 
to be flipped according to the standard Novelty 
mechanism; otherwise, performs a random walk step.

n Novelty+ is provably PAC for wp>0 and shows 
exponential RTDs for sufficiently high setting of the 
primary noise parameter p.
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R-Novelty and R-Novelty+

n R-Novelty’s variable selection strategy is even more 
deterministic than Novelty’s.

n Diversification mechanism: Every 100 steps, a 
variable is randomly chosen from the selected clause 
and flipped – still not sufficient -> R-Novelty is 
essentially incomplete for fixed maxTries.

n Analogous to Novelty+, R-Novelty with a random walk 
mechanism leads to R-Novelty+.

n R-Novelty+ is provably PAC for wp>0 and shows 
exponential RTDs for sufficiently high noise setting.

n Do not reach the performance of R-Novelty+.
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WalkSAT with Adaptive Noise
n Low noise settings leads to stagnation behaviour, 

while high noise setting maxSteps has typically little 
or no impact on the behaviour of algorithm, since the 
corresponding RTDs are closely approximated by 
exponential distributions.

n Finding the optimal noise setting is typically rather 
difficult; it appear to depend on the given problem 
instance. 

n Adaptive WalkSAT use high noise values only when 
they are needed to escape from stagnation situations.
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Dynamic Local Search 
Algorithms for SAT
n Most DLS algorithms are based on variants of GSAT 

as their underlying local search procedure.
n The penalty associated with clause c, clp(c), is 

updated in each iteration.
n Evaluation function: 

n Another representation:
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GSAT with Clause Weights
n Weights associated with clauses are initially set to one; 

before each restart, the weights of all currently unsatisfied 
clauses are increased by one.

n Underlying local search procedure: a variant of basic GSAT 
that use the modified evaluation function.

n Different from other DLS methods: begins each local search 
phase from a randomly selected variable assignment.

n Performs substantially better than basic GSAT on some 
instances; with GWSAT as underlying local search 
procedure, further performance improvements can be 
achieved.

n Breakout method: performs weight updates whenever a 
local minimum of the modified evaluation function is 
encountered. With tabu: the most recently visited variable 
assignments
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Methods using Rapid Weight 
adjustments
n Benefit from discovering which clauses are most 

difficult to satisfy relative to recent assignments.
n WGSAT: uses the same weight initialisation and 

update procedure as GSAT with Clause Weights, but 
performs only a single GSAT step before updating the 
clause weights.

n UGSAT: uses a best-improvement local search 
strategy, but restricts the neighbourhood to the set 
of variables appearing in currently unsatisfied clauses.

n WGSAT with Decay: uniformly decaying all clause 
weights in each weight update phase before the 
weights of the currently unsatisfied clauses are 
increased.
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Guided Local Search (GLS)
n GLS for SAT (GLSSAT): from the set of variables that 

lead to a strict decrease in the total penalty of 
unsatisfied clauses (if no such variable exists, then 
from those that do not cause an increase in the 
evaluation function), the one whose last flip has 
occurred least recently is flipped.

n Performs a complete pass of unit propagation before 
search begins.

n The penalties of all clauses with maximal utilities are 
incremented by one after each local search phase.

n GLSSAT2: all clause penalties are multiplied by a 
factor of 0.8 after every 200 penalty updates.
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Discrete Lagrangian Method 
(DLM)

n Basic DLM: underlying local search procedure is 
based on GSAT/Tabu with clause weights.

n Terminates when the number of neighbouring
assignments with larger or equal evaluation 
function value exceeds a give threshold.

n Bound the range of clause penalties.
n Perform a complete pass of unit propagation.
n DLM-99-SAT: uses temporary clause penalties.
n DLM-2000-SAT: long-term memory mechanism
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Exponentiated Subgradient
Algorithm (ESG)

n Underlying local search procedure: best improvement 
search method (simple variant of GSAT).

n Variable selection: appear in currently unsatisfied 
clauses and whose flip leads to a maximal reduction 
in the total weight of unsatisfied clauses.

n Scaling stage: weights of all clauses are multiplied by 
a factor depending on their satisfaction status. 

n Smoothing stage: all clause weights are smoothed 
using the formula

n The weight update steps are computationally much 
more expensive than the weighted search steps.

wcclwcclw ⋅−+⋅= )1()(:)( ρρ
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Scaling and Probabilistic 
Smoothing (SAPS)
n Scaling stage is restricted to the weights of currently 

unsatisfied clauses, and smoothing is only performed 
with a certain probability.

n By applying the expensive smoothing operation only 
occasionally, the time complexity of the weight 
update procedure can be substantially reduced.

n Compared to ESG, SAPS typically requires a similar 
number of variable flips for finding a model of a 
given formula, but in terms of time performance it is 
significantly superior to ESG, DLM-2000-SAT, and 
best known WalkSAT variants; but SAPS does not 
reach the performance of Novelty+ for some cases.
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Constraint Satisfaction 
Problems (CSP)
n An instance of the CSP is defined by a set of 

variables, a set of possible values (or domain) for 
each variable, and a set of constraining conditions 
(constraints) involving one or more of the variables.

n The CSP is to decide for a given CSP instance 
whether all variables can be assigned values from 
their respective domains such that all constraints are 
simultaneously satisfied.

n P is a finite discrete CSP instance if and only if all 
variables in P have discrete and finite domains.

n CSP instances for which at least one solution exists 
are also called  consistent, while instances that do 
not have any solutions are called inconsistent.
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Encoding CSP instances into 
SAT

n Sparse encoding (unary transform or direct 
encoding):

n Compact encoding (binary transform or log 
encoding).
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CSP Simplification and Local 
Consistency Techniques

n Local consistency techniques can 
reduce the effective domains of CSP 
variables by eliminating values that 
cannot occur in any solution.

n Arc consistency
n Path consistency
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Prominent Benchmark 
Instances for the CSP

n Uniform Random Binary CSP
n Graph colouring Problem
n Quasigroup Completion Problem
n n-Queen Problem
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SLS Algorithms for CSPs

n Categorized into three types: 
n SLS algorithms for SAT applied to SAT-

encoded CSP instances
n Generalisations of SLS algorithms for SAT
n Native SLS algorithms for CSPs
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“Encode and Solve as SAT”
approach

n It allows the use of highly optimised
and efficiently implemented “of-the-
shelf” SAT solvers.

n Inability of standard SAT algorithms to 
exploit the structure present in given 
CSP instances.
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Pseudo-Boolean CSP and 
WSAT(PB)
n Pseudo-Boolean CSP, or (Linear) Pseudo-Boolean 

Programming, have Boolean values for each variables.
n WSAT(PB) is based on direct generalisation of WalkSAT

architecture to Pseudo-Boolean CSP.
n The evaluation function is based on the notion of the 

net integer distance of a constraint from being satisfied.
n Randomly selects a constraint, and flips the variable in 

the constraint that leads to largest decrease in the 
evaluation function; if no such variable, choose the 
least recent flipped one with probability wp; otherwise, 
choose the one with minimal increase in the evaluation 
function.

n Use simple tabu mechanism.
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WalkSAT Algorithms for Many-
Valued SAT
n Non-Boolean SAT: non-Boolean literal is of 

the form z/v or ~z/v, where z is a variable 
and v a value from the domain of z.

n A variable flip corresponds to assigning a 
different value to a non-Boolean variable such 
that the literal selected in the corresponding 
search step, and hence the clause in which it 
appears becomes satisfied.

n MV-WalkSAT solves a variant of many-valued 
SAT that is slightly richer than the non-
Boolean CNF formulae underlying NB-SAT.
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Min Conflicts Heuristic (MCH) 
and Variants
n MCH iteratively modifies the assignment of a 

single variable in order to minimise the 
number of violated constraints.
n Variable initialisation: uniformly at random
n Variable selection: uniformly at random from the 

conflict set, which is the set of all variables that 
appear in a constraint that is unsatisfied under the 
current assignment.

n Value selection: the number of unsatisfied 
constraints (conflicts) is minimised.

n MCH is essentially incomplete.
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WMCH and TMCH

n WMCH is a variant of MCH that uses a 
random walk mechanism analogous to 
GWSAT.

n WMCH is PAC for noise setting >0. 
n TMCH is MCH extended with a tabu

search mechanism.
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A Tabu Search for CSPs
n TS-GH by Galinier and Hao:

n Amongst all pairs (x,v’) such that variable x appears in a 
currently violated constraint and v’ is any value from the 
domain of x, TS-GH chooses the one that leads to a maximal 
decrease in the number of violated constraints.

n Augmented with the same tabu mechanism used in TMCH.

n When computing evaluation function values, TS-GH 
uses incremental updating technique analogous to 
the one is used by GSAT.

n Empirical studies suggest that when applied to the 
conventional CSP, TS-GH generally achieves better 
performance than any of the MCH variants.
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Further Readings and Related 
Work

n Covers some additional SLS algorithms 
for SAT and CSP problems.

n Page 306 of the text.


