
Scheduling Problems

General Idea of the Problem

● Allocation of Resources
● Allocation of Time Slots
● Constraints
● Optimisation

Definition of the Problem

● J = {J
1
, . . . , J

n
}

● M = {M
1
, . . . , M

m
}

● Schedule – Mapping of jobs to machines and
processing times

● The Schedule is subject to feasibility constraints
and optimisation objectives.

Schedule Constraints

● Each machine can only process one job at a time.
● Each job can only be processed by one machine

at any time.
● Once a machine has started processing a job, it

will continue running on that job until the job is
finished.

Classification of Problems

● Single-machine problems
● Multi-machine problems
● Single-stage problems
● Multi-stage problems

Other Concepts

● Processing time p
i

● Release dates r
i

● Due dates d
i

● Weights w
i

● Setup times t
ij

● Precedence constraints

Classification of Single Stage Multi-
Machine Problems

● Parallel Machine Problems
– Identical parallel machine problems

– Uniform parallel machine problems

– Unrelated parallel machine problems

Classification of Multi-Stage Multi-
Machine Problems

● Flow Shop Problems
● Open Shop Problems
● Job Shop Problems
● Group Shop Environment

Definitions

● Completion Time C
i
 is earliest time at which J

i
 is

completely processed.

● Lateness L
i
 := C

i
 – d

i

● Tardiness T
i
 := max{C

i
 – d

i
, 0}

● Earliness E
i
 := max{d

i
 – C

i
, 0}

Objective Functions

● Maximum Completion Time (makespan)

– C
max

 := max{C
1
 , . . . , C

n
}

● Sum of the (weighted) completion times

– ∑n

i=1
w

i
 * C

i

● Total Weighted Tardiness

– ∑n

i=1
w

i
 * T

i

Candidate Solutions

● Permutations or sequences of jobs
– Appropriate for many single-machine problems and

flow shop problems.

● M sequences, one for each machine
– Appropriate for parallel machine problems with release

and due dates.

Neighbourhood Relations

● Transpose neighbourhood N
t
: Two

permutations ø, ø' are transpose neighbours if,
and only if, one can be obtained from the other by
swapping the positions of two adjacent jobs.

Transpose Neighbourhood

Neighbourhood Relations

● Exchange neighbourhood N
e
: Two

 permutations

ø, ø' are 2-exchange neighbours if, and only if,
one can be obtained from the other by
exchanging two jobs at arbitrary positions.

Exchange Neighbourhood

Neighbourhood Relations

● Insertion neighbourhood N
i
: Two

 permutations

ø, ø' are insertion neighbours if, and only if, one
can be obtained from the other by removing a job
from one position and inserting it at another
position.

Insertion Neighbourhood

Single-Machine Maximum Lateness
Problem

● Given

– n jobs J
1
 , . . . , J

n

– n respective due dates d
1
 , . . . , d

n

● Goal
– Minimise maximum lateness

– L
max

 := max{L
1
 , . . . , L

n
}

Solution

● Sequence the jobs in non-decreasing order of
their due dates.

● Also known as the earliest due date (EDD) rule.
● Runs in O(n * log n) time.

● Also minimses the maximal tardiness T
max

Single Machine Total Weighted
Tardiness Problem

● Given
– n jobs that have to be processed on a single machine

– For each job J
i
, a processing time p

i
, a weight w

i
 and a

due date d
i
.

– All jobs become available for processing at time zero.

● Goal
– Find a schedule that that minimses the total weighted

tardiness ∑n

i=1
 w

i
* T

i

Construction Heuristics

● Earliest due date (EDD). Jobs are sequenced in
non-decreasing order of their due dates d

j
.

● Modified due date (MDD). Sequence jobs in
non-decreasing order of their modified due dates
mdd

j
 := max{C + p

j
, d

j
}, where C is the sum of

the processing times that have already been
sequenced.

Construction Heuristics cont.

● Apparent urgency (AU). Under this rule, jobs
are sequenced in non-decreasing order of their
apparent urgency au

j
:= (w

j
/ p

j
) * e -(max{dj – Cj , 0}) / kÞ.

Here, Þ denotes the average processing time of
the remaining jobs, k is a parameter, and
C

i
 := C + p

i
.

Iterative Best Improvement

● Iterative best improvement methods based on N
e

and N
i ,

IBI(N
e
) and IBI(N

i
).

● These can be combined in a 2-phase local search
algorithm that either performs first IBI(N

e
) and

then IBI(N
i
) or vice versa.

Performance Comparison

An ACO Algorithm for the SMTWTP

● The ACS-BSD algorithm was developed by
Besten, Stützle, and Dorigo.

● Pheromone values t
ij
 are associated with each

assignment of a job J
j
 to a sequence position i.

● During the construction phase, each ant builds
candidate solutions, by iteratively adding jobs
that are not yet in the sequence.

ACS-BSD cont.

● The job to be appended next is based on the
pheromone values t

ij
 and heuristic values n

ij
.

● If TF > 0.3 then n
ij
 : = 1/au

j
 else n

ij
 := 1/mdd

j
.

● Given a current partial sequence of length i -1, for
position i the ant selects with probability q the
best choice as indicated by the combination of
pheromone trails and the heuristic information,
while with probability 1 – q, it performs a
probabilistically biased exploration.

ACS-BSD cont.

● ACS-BSD uses a candidate list, from which in
each construction step the job to be added to the
current partial sequence is chosen.

● The candidate list is built by scanning the current
incumbent solution and adding all jobs that are
found in the incumbent solution but not in the
current partial sequence. This process is stopped
when the candidate list has reached a maximum
length.

ACS-BSD cont.

● ACS-BSD uses a heterogeneous colony of ants,
where each of the two 2-phase local search
algorithms is applied by one half of the ants.

● There are two forms of pheromone updates.

Iterated Dynasearch

● ILS-CPV developed by Congram, Potts and van
de Velde.

● Dynasearch – performs complex iterative
improvement steps that are assembled from a set
of mutually independent, simple search steps.

● Simple steps are based on the standard exchange
neighbourhood, N

e
.

Iterated Dynasearch cont.

● Performs iterative best improvement in the
neighbourhood consisting of the sequences
reachable from the current candidate sequence by
any set of independent improving exchange steps.

● ILS-CPV starts from an initial candidate solution
generated by the AU construction heuristic.

● Uses dynasearch as its subsidiary local search
procedure.

Iterated Dynasearch cont.
Perturbation

● The perturbation phase consists of six random
exchange steps.

● The resulting sequence is scanned and any
adjacent non-late jobs that are not in EDD order
are transposed.

● After 100 iterations of ILS, any adjacent non-late
jobs in EDD order are transposed with probability
1/3, unless this would result in one of the jobs
becoming late.

Iterated Dynasearch cont.
Backtracking

● For l ILS iterations each new local minimum is
accepted regardless of quality. This corresponds
to a random walk phase of the iterated local
search process.

● If in these l iterations the incumbent candidate
solution, s, has not been improved the random
walk phase starts again from s.

Iterated Dynasearch cont.
Improvements

● An enhancement of ILS-CPV is in the dynasearch
algorithm to use simple search steps based on the
insertion neighbourhood N

i
, as components for

complex dynasearch steps.

Flow Shop Scheduling

● The order in which a job passes through the
machines is the same for all jobs.

● All jobs are available at time zero.
● Each operation is to be performed on a specific

machine.
● Each machine can process at most one job at a

time.
● Each job can be processed by at most one

machine at a time.

Flow Shop Scheduling - Buffers

● If the buffers are queues that operate on the first
come – first serve principle the jobs pass through
all machines in the same order. These are known
as permutation flow shop problems.

● If changes in the sequence in which jobs are
processed are allowed, the flow shop problem
becomes much harder.

Permutation Flow Shop Problems
(PFSP)

● Capacity of the buffer between machines is
unlimited.

● The optimisation objective is to minimise the
completion time of the last job.

Formal Definition

● A set of m machines M
1
 , . . . , M

m

● A set of n jobs J
1
 , . . . , J

n
where each job consists

of m operations o
i1
 , . . . , o

im
 that have to be

performed on machines M
1
 , . . . , M

m
in that

order, with processing time p
ij
for operation o

ij
.

● The objective is to find a sequence that minimises
the makespan.

Iterated Local Search for the PFSP

● ILS-S-PFSP initializes the search with the NEH
heuristic.

● The NEH is an insertion heuristic

● It first computes for each job J
i
 the sum p

i
 of the

processing times of its operations, and then orders
the jobs according to non-increasing p

i
.

● Then the jobs are considered in this order for
inclusion into a partial sequence; at each step the
next job is inserted into the position where it
leads to a minimum increase in the makespan.

Iterated Local Search for the PFSP
cont.

● ILS-S-PFSP uses a modified iterative first
improvement as its local search.

● First a random permutation of the job indices is
generated.

● Then, in each step the next index i from this
permutation is selected and all possibilities for
inserting job ø(i) are examined.

● When a an improving sequence is found job ø(i)
is inserted at the sequence position that leads to
the maximal reduction in makespan.

Iterated Local Search for the PFSP
cont. Perturbations and Acceptance

Criterion
● The perturbation for ILS-S-PFSP consists of two

random steps in N
t
, followed by one random step

in N
e
 with the additional restriction that

|i-j| <= max{n/5, 30}, where i and j are the
positions of the two jobs exchanged in the N

e

step, and n is the number of jobs.
● The acceptance criterion used is based on the

Metropolis condition with a constant temperature
value T := p/15, where p is the average
processing time over all operations.

Critical Paths

● In a schedule for the PFSP, some operations
cannot be delayed without increasing the
makespan of a sequence. Operations for which
this is true are called critical, while all other
operations are called slack.

Critical Paths

Motivation for Critical Blocks

● Consider a critical path in a candidate sequence ø
with K critical blocks. Let m(B

i
) be the machine

associated with the critical block B
i
and let I

i
be

the set of jobs that are internal to critical block B
i

(1 <= i <= K). If m(B
1
) = M

1
, include job ø(1) in

I
1
, and if

m(B

K
) = M

m
, include job ø(n) in I

K
.

Then no reordering of the jobs in any of the sets I
i

can improve the makespan of ø.

Tabu Search for PFSP

● TS-NS-PFSP is based on the insertion
neighbourhood N

i
 , but it makes strong use of the

block properties in order to restrict the size of the
effectively searched local neighbourhoods. The
resulting neighbourhood relation is N

i

NS.

● Uses the NEH heuristic for generating an initial
sequence.

● In each search step, a best-improving non-tabu
neighbour of the current sequence is selected.
Also uses a complex aspiration criterion.

Tabu Search for PFSP cont. Tabu
Status

● If a neighbouring candidate solution is obtained
from ø by removing a job at position i and
inserting it at position j > i, the pair (ø(i), ø(i+1))
is added to the tabu list; if i < j, then the pair
(ø(i+1), ø(i)) is added.

● Given a candidate solution ø' , a search step that
moves a job from position k to position l > k is
declared tabu if, and only if, at least one pair of
jobs (ø'(j), ø'(k)), j = k+1, . . . , l is in the tabu list,
and vice versa for l < k.

Tabu Search for PFSP cont. Local
Search

● Builds a set RM. The elements of RM are the best
neighbouring sequences in N

i

NS for each job ø(i),

i = 1, . . . , n.
● Next a set RM' is built which consists of all the

neighbours that are not tabu or whose tabu status
is overridden by the aspiration criterion.

● Then TS-NS-PFSP selects the best sequence in
RM' to replace the current candidate solution.

Tabu Search for PFSP cont.
Aspiration Criterion

● A schedule ø' is aspired if, and only if, it
improves over the best makespan obtained in any
iteration directly preceeding or directly
succeeding an iteration in which the same
makespan as that of the current schedule was
achieved.

Tabu Search for PFSP cont.
Backtracking

● Each time the incumbent candidate solution is
improved, TS-NS-PFSP stores the tabu list TL
associated with the new incumbent solution as
well as its set of admissible neighbours.

● The backtracking mechanism is triggered when
for a given number of iterations after search
initialisation or after the most recent backtracking
step no improvement in the incumbent solution
has been found.

Group Shop Problems - Definition

● Set of machines M := {M
1
, . . . , M

m
}

● Set of jobs J := {J
1
, . . . , J

n
}, where each job J

i

consists of m operations o
i1
 , . . . , o

im
 and a

processing time for p
ij
for each operation o

ij
.

● The operations of each job do not have to be
performed in the canonical order o

i1
 , . . . , o

im
.

Group Shop Problems – Definition
cont.

● Precedence constraints are given by a means of a
partition of the set {o

i1
 , . . . , o

im
} in the form of a

set of groups Gi = {g
i1
, . . . , g

il(i)
} and a canonical

total order g
i1
 < g

i2
 < . . . < g

il(i)
 between those

groups.
● All operations of the first group have to be

processed before all operations of the second
group, etc., but the order in which the operations
within the same group are performed is not
restricted.

Special Cases of the GSP

● Job Shop Problem (JSP) – There exists a total
order of all the operations belonging to each job.
Each group comprises only one single operation.

● Open Shop Problem (OSP) – There are no
precedence relations among the operations of
each job. For each job all of its operations form
one group.

● All of these problems are known to be NP-hard
with a few special cases having polynomial time
solutions.

Tabu Search for Job Shop Scheduling

● Also known as the TS-NS-JSP algorithm.
● Similar to TS-NS-PFSP
● Main ingredients

– Underlying neighbourhood relation

– Pruning mechanism for effectively searching this
neighbourhood

– Makes use of critical paths

Tabu Search for Job Shop Scheduling
cont. Neighbourhood Relation

● The TS-NS-JSP is based on the transpose
neighbourhood N

t
 restricted to operations that are

on the same machine.

● This neighbourhood relation N
t

NS exploits the

following observations.
– Reversing the order of two operations on a critical path

in a candidate schedule s never results in an infeasible
candidate solution.

– Reversing the order of two operations that are not on a
critical path cannot lead to a reduction of the
makespan.

Tabu Search for Job Shop Scheduling
cont. Neighbourhood Relation

– Reversing the order of two internal operations in a
block of a critical path cannot lead to a reduction of the
makespan.

– Reversing the order of the first two operations on the
first machine block or the last two operations on the
last block cannot reduce the makespan.

● Based on these observations N
t

NS(s) comprises

only schedules that are obtained by transpositions
of the first two operations and the last two
operations of any block except for the first and
the last block.

Tabu Search for Job Shop Scheduling
cont. Tabu Status

● Tabu status is associated with individual search
steps in N

t

NS such that after performing a search

step, the reverse step is considered tabu for the
next tt search steps.

Tabu Search for Job Shop Scheduling
cont. Search Steps

● Each search step is selected by first generating a
critical path and then choosing the best search
step from the local N

t

NS neighbourhood that is

either not tabu or whose tabu status is overridden
by an aspiration criterion.

● TS-NS-JSP uses an aspiration criterion that
overrides the tabu status of a search step if it
leads to an improvement over the best makespan
encountered so far.

Tabu Search for Job Shop Scheduling
cont. Additional Mechanisms

● Occasionally restore the search process to a
previously stored, highly promising candidate
solution, also called an elite solution. This is
triggered whenever a fixed number of iterations
has been performed without achieving an
improvement in the incumbent solution.

● A cycle detection mechanism stops the local
search if it is deemed to be stagnating.

