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Problem Definition

n Given an edge-weighted, completely connected, 
directed graph G = (V,E,w) with:

V is set of n=#V vertices

E is the set of directed edges

is a function assigning each 
a weight w(e)

n Goal: find a minimum weight Hamilton cycle in G

aEw : Ee∈
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Why the TSP?
n Important for both research and applications

n Most combinatorial optimization algorithms have been 
developed using TSP

n Conceptually simple à easily understood and explained

n NP-hard à good for theoretical algorithmics
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TSP Benchmark Instances

n TSPLIB – benchmark library for TSP
¨More than 100 instances, up to 85,900 cities
¨ Problem instances from circuit board drilling, X-ray 

crystallography, geo-spatial datasets, beer garden 
optimization problems (BGOP) & more!

n Random generated instances have been a key 
to experimental and theoretical work
¨ Random Distance Matrix (RDM) 
¨ Random Uniform Euclidean (RUE)
¨ Random Clustered Euclidean (RCE)
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Circuit Board Drilling

TSPLIB instance pcb1173
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Circuit Board Drilling

TSPLIB instance pcb1173
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Random Uniform Euclidean (RUE)
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Random Clustered Euclidean
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Symmetric vs. Asymmetric TSP
n Symmetric TSP instances have w(v,v’) = w(v’,v) for all (v,v’) in V

n Asymmetric TSP (ATSP) instances have at least one pair of vertices (v,v’) 
such that w(v,v’) ≠ w(v’,v)

n ATSP are typically harder to solve

n Real world ATSP problems include
¨ Moving drills along a tilted surface
¨ Scheduling read operations on a computer disk
¨ Collecting coins from a payphone
¨ Genome reconstruction

n How to solve ATSP?
¨ Use native ATSP algorithms
¨ Transform ATSP into symmetric TSP

n For this presentation assume Symmetric
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Lower bounds on the TSP

n Lower bounds are necessary to rate quality 
guarantees of tours

n Important for study of complete algorithm

n Use simple relaxation method to obtain rough 
lower bound

n Best lower bound: Held-Karp bounds
¨ experimentally, shown to be very tight
¨ within less than 1% of optimum for random Euclidean
¨ up to 2% for TSPLIB instances
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State-of-the-Art Methods

n Complete algorithms
¨ Most based on branch & cut methods
¨ Current largest solved & proved instance is 24,978 cities
¨ Concorde is a distributed TSP solving environment

n Solved 106 out of the 110 TSPLIB instances

n SLS algorithms
¨ Enables us to specify degree of tradeoff between accuracy and 

computation time
¨ Construction heuristics
¨ Iterative improvement methods
¨ Hybrid methods
¨ Population-based methods
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Complete vs. SLS

TSP solved for the 13, 509 U.S. cities with population over 500
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Complete vs. SLS

The LK solution – only 2.3% above the optimum
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Current Largest Solved TSP
n TSP for all 24,978 cities in Sweden was 

solved & proved to be optimal

n Tour of length 855,597 TSPLIB units 
(approximately 72,500 kilometers)

n Used various complete methods and 85 
CPU years to prove. 

n Surpassed the previous record of 15,112 
cities through Germany set in April 2001. 

n Algorithm by Helsgaun using a version 
of his LK-H code.
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What’s Next?

World TSP - 1,504,711 cities
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Construction Heuristics

n Simple SLS methods that can quickly construct 
reasonably good tours

n Often used as initialization procedures for more 
advanced SLS algorithms

n Types of construction heuristics:
¨ Iteratively extend a connected partial tour
¨ Build up tour fragments and piece them together in the end
¨ Minimum spanning tree (MST)
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Nearest-Neighbour Heuristic (NNH)

n Start with randomly chosen vertex

n Iteratively extend current partial tour by 
adding an unvisited vertex connected by a 
minimum-weight edge

n Tours are usually locally similar to optimal 
solution but contain a few very long edges
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Results for Nearest-Neighbour Tours
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Insertion Construction Heuristic

n In each step, extend partial tour p by inserting a vertex v that leads 
to minimal increase

n Types of insertion heuristics
¨ Nearest Insertion
¨ Cheapest Insertion
¨ Farthest Insertion
¨ Random Insertion

n Nearest and cheapest and provably at most twice as long as optimal 
tour

n Random/farthest only guaranteed to be within O(log n) of optimal



21

Fragmented Construction Heuristics
n Build up multiple tour fragments and piece them together to form a 

complete tour

n Greedy Heuristics
¨ Sort all edges in G by weight, then begin linear insertion of edges

n Quick-Boruvka Heuristic (based on MST algorithm by Boruvka)
¨ Sort vertices in G arbitrarily
¨ For each vertex v in G’ with degree(v) < 2, add minimum weight edge e 

incident to v, if e in G but not in G’

n Savings Heuristic
¨ Choose base vertex vb and then make n-1 cyclical paths (vb,vi,vb)
¨ While there are cyclical paths left, combine two cyclical paths p1 and p2

by removing a common edge
¨ Choose  edge that results in maximum reduction of cost between new 

merged path p12 and the combined cost of p1 and p2
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k-exchange Iterative Improvement
n Candidate solution s and s’ are neighbours iff s’

can be obtained from s by deleting k edges

n k=2 and k=3 are the most common choices
¨ Also known as 2-opt and 3-opt
¨ k>3 often returns better tours, but increased 

computation time renders the approach ineffective

n At each step, examine all combinations of k 
edges

n Tours that are locally 3-opt are also locally 2-opt
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Typical 3-exchange move
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Speed-up Techniques for 2 & 3-opt
n Fixed radius search 

¨ In 2-opt, for a given vertex ui, consider each of the two tour neighbours uj
¨ Search around ui for vertices uk that are closer than w(ui,uj)

à Fixed Radius Near Neighbour Search
¨ Accept the first improving 2-exchange move
¨ Can extend to 3-opt

n Don’t look bits (DLB)
¨ If no improving steps for a given vertex v was found, then until an incident 

edge is changes, don’t consider v
¨ Use a DLB to indicate the vertex can be ignored
¨ After each search step, reset DLB’s for all vertices incident to edges that 

were modified
¨ Significantly reduces time complexity of first-improvement search
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Speed-up Techniques for 2 & 3-opt
n Candidate lists

¨ Efficient access to a list of neighbouring vertices for a given 
vertex, usually sorted by edge weight

¨ Makes Fixed-Radius search very efficient

¨ Often desirable to bound length of candidate list

¨ Simple k-lowest weight edges sometimes problematic

¨ Alternatives are quadrant nearest-neighbour list and Delaunay
triangulations or    -value based listsα
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Effects of Speed-up Techniques
fr=fixed radius, dlb=don’t look bits, cl=candidate lists
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The Lin-Kernighan (LK) Algorithm

n k-exchange neighbours with k>3 sometimes gives better 
results, but at the cost of much higher computation time

n LK constructs complex search steps by iteratively 
concatenating smaller elementary 1-exchange moves

n In each complex step, a set of edges X = {x1,…,Xr} is 
deleted from current tour p, and replaced by another set 
of edges Y={y1,…,yr} to form a new tour p’

n The number of edges that are exchanged, r, is variable 
and changes from one complex step to another
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The Lin-Kernighan (LK) Algorithm

a) An edge (u,v) is 
removed to create a 
H-path

b) A new edge (w,v) is 
added to create a    -
path

c) -path broken by 
removing edge (w,v’), 
new H-cycle created 
by adding (u,v’) 

d) Or edge (w’,v’) could 
be added instead to 
create another    -
path

δ

δ

δ
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The Lin-Kernighan (LK) Algorithm
n At each stage in the construction process, 

compute:
¨ w(pi) = length of tour pi

¨ gi = gain criteria, defined as:

n Stop construction when gi < w(p) – w(pi*), where 
p is current tour and pi* is best tour encountered 
during the construction
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The Lin-Kernighan (LK) Algorithm

n Restrictions/constraints
¨ Sets X and Y are disjoint (bounds length of search)
¨ Limited backtracking: only for first two levels, i.e. x1, 

y1, x2, y2
¨ Ensures all 2- and 3-exchange moves are checked 

when searching for improving steps

n Pruning Techniques
¨ Search for edges (v,v’) to be added to Y is restricted 

to the 5 shortest edges incident to v
¨ Basic look-ahead: choose edges to be added to Y 

such that w(xi+1) – w(yi) is maximize 
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Variants of the LK Algorithm
n Variations of algorithm differ mainly on:

¨ Depth and width of backtracking
¨ Rules used for look-ahead
¨ Rules used to bound complex steps
¨ Choice of 2-exchange move as elementary step

n Variations do not always lead to optimal performance

n Noteworthy variation is Heslgaun’s LK (LK-H)
¨ First-improvement on 5-exchange move
¨ Candidate list based on     -values
¨ Backtracking limited to one edge

α
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Iterated Local Search for the TSP

n Straight-forward flexible way of extending simple SLS 
methods

n ILS and some hybrids, are among the best-performing 
TSP algorithms

n Some examples of ILS algorithms:
¨ Iterated Descent
¨ Large-Step Markov Chains (LSMC)
¨ Iterated Lin-Kernighan
¨ Chained Lin-Kernighan
¨ Iterated Helsgaun (ILK-H)
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Large-Step Markov Chains (LSMC)

n Developed by Martin, Otto and Felten, was the first high-
performance ILS algorithm for the TSP

n Sequence of local minimum can be modeled as a 
Markov chain

n Segment of search trajectory between subsequent local 
minima corresponds to a “large step”

n Uses a random double-bridge move as perturbation
¨ Only considers move if combined weight of new edges is less 

than a constant k times average weight of optimal tour



34

Large-Step Markov Chains (LSMC)

n Local search step was originally a 3-opt first improvement; 
later changed to a LK-variant with speed-up techniques

n Acceptance criteria is same as Simulated Annealing

n LSMC with 3-opt can solve small TSP instances with 200 
cities in less than 1 CPU hour

n LSMC with LK variant reduced time by a factor of 4 and found 
optimal solutions to several large TSPLIB instances 
à found to critically rely on non-zero S.A. temperatures

n A variant of LSMC that always accepted better tours was 
called Chained Local Optimization (CLO)
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Iterated Lin-Kernighan (ILK)

n An early variation on LSMC by Johnson and McGeoch

n Several key differences:

¨ Acceptance criteria always selects best of two candidate 
solutions

¨ Double-bridge perturbation phase does not use edge-weight 
limitation; instead just choose 4 random cut points

¨ Local search is initialized with a randomized greedy heuristic

¨ Uses a much more efficient implementation of LK
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Chained Lin-Kernighan (CLK-ABCC)

n Like ILK, uses LK algorithm for subsidiary local search

n Main differences from ILK:

¨ Uses smaller candidate sets

¨ Locally-restricted perturbation mechanism: geometric double-
bridge move 

¨ Initializes the search using Quick-Boruvka construction heuristic

¨ Resetting of the DLB’s is applied to vertices within 10 edges of 
endpoints of modified edges; also include vertices in the 
neighbour sets (next slide)
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Chained Lin-Kernighan (CLK-ABCC)

n The geometric double-bridge move works as follows:

1. Randomly sample a set of vertices from G: U=min{0.001*n, 10}

2. For each edge (u,succ(u)), where u    U, remove the edge with 
the maximum difference w(u,succ(u)) – w(u,u*) where u* = 
nearest neighbour of u

3. Choose 3 vertices uniformly at random from the k nearest 
neighbours of u, and remove the edges (ui, succ(ui)) for i=1,2,3

4. The 4 edges chosen above determine the double-bridge move

à Value of k controls the locality of perturbation

∈
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Iterated Helsgaun (ILK-H)

n Uses LK-H for subsidiary local search procedure

n One of the best-performing SLS algorithms for TSP in terms of the 
solution quality

n Perturbation mechanism is based on a construction heuristic, biased 
by the incumbent candidate solution

n Acceptance criterion only accepts tours that lead to an improvement 
over the incumbent candidate solution

n Uses hashing technique to efficiently check if a given solution was 
previously found to be a local optimum
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Perturbation Mechanism for ILK-H
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Performance of ILK-H
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Variations to ILS for TSP

n Other perturbation mechanisms
¨ Single random k-exchange steps
¨ Modification of instance data
¨ Genetic Transform (GT)

n Other acceptance criteria
¨ LSMC uses Metropolis acceptance criterion
¨ Dynamic Restart Criterion
¨ Fitness-distance diversification (fdd)

n Tour Merging
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Fitness-distance Diversification

n Restarting search from a new initial candidate solution 
requires tinit time to reach high-quality solution

n Instead, FDD achieves diversification by finding high-
quality solutions beyond a minimum distance from the 
incumbent tour

n Let d(s,s’) = the bond distance between tours s and s’, 
which returns the # of edges in s but not in s’ (or vice-
versa)
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The FDD Function

1. Generate a set P comprising p copies of ŝ

2. Apply one perturbation step and a subsidiary local search to each 
candidate solution in P

3. Let Q be the set of q highest-quality candidate solutions from P, 
where 1 ≤ q ≤ p

4. Let s’ be the candidate solution from Q with maximal distance to ŝ

if d(s’, ŝ) < dmin or if numIterations < maxIterations
go to step 2

else
return s’
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Tour Merging

n When randomly restarting the search process, all 
information from high-quality tours is lost

n Tour Merging is a hybrid algorithm that tries to utilize 
information collect from multiple runs

n Phase 1:
¨ Generate a set of T of very high-quality tours
¨ Form a new graph G’ = (E’,w’) where E’ is edges contained in at 

least one tour in T 

n Phase 2: 
¨ Find an optimal tour through G’
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Population-based SLS Algorithms

n Iteratively manipulate populations of solutions

n Tour Merging is an extreme example of this

n Some common algorithms are:
¨ Population-based ILS
¨ Evolutionary Algorithms
¨Memetic Algorithms
¨ ACO Algorithms
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Population-based ILS Algorithms

n Extend basic ILS by applying main search steps 
to each individual of the population (i.e. each 
candidate solution)

n Uses selection and mutation, but not 
recombination

n Interaction between populations is fairly limited
à allows for efficient parallel implementations 
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Population-based ILS Algorithms

n Stützle examined three different algorithms with 
varying degrees of interaction

1. No interaction: performs fixed number of 
independent ILS runs

2. Replace-Worst: After l iterations, copy of best tour 
replaces worst tour

3. ss-ILS: Performs j iterations of standard ILS to one 
selected tour s0 from population.  If improvement 
found, replace a tour in population with s0
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The Memetic Algorithm (MA-MF)

n Memetic Algorithm by Merz and Freisleben

n Original algorithm has been improved by more efficient local search 
procedures, better recombination operators, and the addition of 
diversification mechanisms

Construct initial population
Perform subsidiary local search
While terminate criterion not satisfied

Recombination
local search
Mutation
local search
Selection
local search
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MA-MF : Initializing the Population

n Initial population is constructed from a randomized 
variant of the Greedy Heuristic

n For each tour in population, iteratively insert n/4 edges (n 
= # of vertices), where edges are chosen as follows:
¨ Select uniformly at random a vertex v from G (not already in 

partial tour)
¨ Shortest feasible edge to v is selected with probability 2/3; 

otherwise second shortest feasible edge is selected
à Feasible edge: endpoints not already contained in partial tour

n Complete the partial tour with standard GH
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MA-MF : Recombination Procedure

n Various recombination operators have been used, but 
Greedy Recombination (GX) achieves best 
performance

n GX operator generates one offspring from two parents 
and consists of four phases:

1. Copy a fraction pe of edges common to both parents
2. Add a fraction pn of new short edges not contained in either of 

the parents
3. Copy another fraction pc of short edges from parents
4. If necessary, complete candidate tour using randomized greedy 

heuristic
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MA-MF : Mutation and Selection

n Mutation operator is the standard double-bridge move, 
applied to a set of candidate solutions chosen uniformly at 
random

n Uses a (µ +   ) selection strategy:
¨ µ = population size
¨ = number of new tours generation from recombination and 

mutation
¨ Choose the best µ tours from µ +

n Restart operator used conditionally to maintain diversity
(a random k-exchange move with k=0.1*n)
¨ If average distance between tours falls below a given threshold
¨ Average solution quality has not changed in the last 30 iterations

λ

λ

λ
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Results for MA-MF

n Found optimal solutions for all TSPLIB instances up to 1000 
vertices with average runtime of 2 CPU minutes

n For all larger TSPLIB instances, solution-qualities within 1% 
of optimum were reached with average runtime of 1 CPU hour

n For instances with more than 5,000 vertices, MA-MF does not 
perform as well as high-performance ILS algorithms

n MA-MF could be more competitive if local search procedure 
was replaced with a more effective LK algorithm



53

ACO Algorithms for the TSP

n TSP has been critical for the development of Ant Colony 
Optimization (ACO) algorithms

n Some more well-known ones are:
¨ Ant System
¨ Ant Colony System
¨ MAX-MIN Ant System

n All used TSP as first example application

n All successful ACO algorithms include:
1. Good balance between search intensification and diversification
2. Subsidiary local search on ant-constructed tours
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MAX-MIN Ant System (MMAS)

n Borrows construction step from Ant System (AS)

n Three major differences from AS:
1. Strongly exploits the best candidate solution during pheromone 

update à elitist strategy
2. Upper and lower limits on pheromone trail levels
3. Pheromone trail levels initialized to encourage exploration

n Can solve instances from 100’s of vertices to more than 
1000 in minutes to hours, respectively.

n Still, not competitive with state-of-the-art ILS algorithms
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Summary

n TSP is a central problem in combinatorial optimization

n State-of-the-art complete TSP algorithms solve instances with 
several thousand vertices, while SLS algorithms solve instances 
with several millions within a fraction of a percent from optimum

n Construction heuristics find reasonably good solutions extremely
fast, iterative improvements methods and VDS method, such as Lin-
Kernighan, serve as a basis to many other more advanced TSP 
algorithms

n Iterated Local Search are the best-performing TSP algorithms

n Population-based algorithms appear to be promising as the basis for 
more advanced TSP algorithms
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